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Logistic Localized Modeling of the Sample Space
for Feature Selection and Classification

Narges Armanfard, James P. Reilly, Member, IEEE, and Majid Komeili

Abstract— Conventional feature selection algorithms assign a
single common feature set to all regions of the sample space.
In contrast, this paper proposes a novel algorithm for localized
feature selection for which each region of the sample space is
characterized by its individual distinct feature subset that may
vary in size and membership. This approach can therefore select
an optimal feature subset that adapts to local variations of the
sample space, and hence offer the potential for improved per-
formance. Feature subsets are computed by choosing an optimal
coordinate space so that, within a localized region, within-class
distances and between-class distances are, respectively, minimized
and maximized. Distances are measured using a logistic function
metric within the corresponding region. This enables the opti-
mization process to focus on a localized region within the sample
space. A local classification approach is utilized for measuring
the similarity of a new input data point to each class. The
proposed logistic localized feature selection (lLFS) algorithm is
invariant to the underlying probability distribution of the data;
hence, it is appropriate when the data are distributed on a
nonlinear or disjoint manifold. lLFS is efficiently formulated as a
joint convex/increasing quasi-convex optimization problem with
a unique global optimum point. The method is most applicable
when the number of available training samples is small. The
performance of the proposed localized method is successfully
demonstrated on a large variety of data sets. We demonstrate that
the number of features selected by the lLFS method saturates
at the number of available discriminative features. In addition,
we have shown that the Vapnik–Chervonenkis dimension of the
localized classifier is finite. Both these factors suggest that the
lLFS method is insensitive to the overfitting issue, relative to
other methods.

Index Terms— Convex optimization, data classification, feature
selection, local feature selection, local sample space modeling,
quasi-convex optimization.

I. INTRODUCTION

D IMENSIONALITY reduction is a very important
component in data classification applications. It is

an antidote to what Bellman referred to as the “curse of
dimensionality” [1]. It is well known that the performance of
typical classifiers notably drops when the number of available
objects is not adequate in comparison with the number of
candidate features [2]. A typical approach to addressing this
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problem is to apply some form of dimensionality reduction
to the candidate feature set before the classification process.
Dimensionality reduction plays an important role in big
data problems, such as, e.g., in the medical field, where
oligonucleotide microarray data are used for the identification
of cancer-associated gene expression profiles of prognostic
or diagnostic value [3]–[5]. In this case, the number of
available samples is less than a hundred, while the raw data
are characterized by thousands of features. Among this large
gene set, only a small subset of these features is relevant to
the determination of cancerous tumor spread or/and growth.
Thus, some form of dimensionality reduction technique is
required to identify this small subset of relevant features.

Dimensionality reduction approaches can be classified into
two categories. The first is feature extraction [6]–[9] which is
also called subspace learning. The second category is feature
selection [10]–[15]. Feature extraction approaches, such as
principal component analysis (PCA) [7], linear discriminant
analysis (LDA) [16], and independent component analysis
(ICA) [17], perform dimensionality reduction through
combining original features to find a new set of features.
Typically, extracted features lose their physical interpretation
in terms of the original features. Feature selection approaches
perform dimensionality reduction, with no transformation,
by selecting a subset of the original features. Hence, feature
selection approaches retain the physical interpretability
property in terms of the selected features. In this paper, we
consider the feature selection aspect of the dimensionality
reduction problem.

Traditionally, feature selection approaches are categorized
into wrapper and filter approaches. Wrapper approaches eval-
uate a feature subset based on the accuracy of a specific
classifier on a specific data set. Filter methods evaluate a
feature subset based on its information content instead of
optimizing the performance of any specific classifier. The
interested reader may refer to [18]–[20] for more details.

Feature selection algorithms can also be categorized into
batch methods and online algorithms. In the former, the
feature selection task is conducted in an off-line phase where
all features of training instances are given, while the online
feature selection algorithms assume that the full feature space
is unknown in advance. The online methods are appropriate
for the applications where the training samples or features
arrive in a sequential manner [21]–[23]. This paper considers
batch algorithms.

From another point of view, conventional feature selection
algorithms assume that all the regions of sample space can be
optimally characterized by a common subset of features [10],
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[12], [24]–[27]. These approaches can be roughly categorized
into two major groups. The first group includes approaches
that select a common feature subset with no consideration of
the local behavior of the samples over the sample space. For
example, in [10], a common subset of features is selected using
a mutual information-based approach that utilizes a minimal-
redundancy maximal-relevance criterion. In [28], redundancy
among features is measured based on normalized mutual
information where the authors claim that their method is a
an enhancement over [10]. In [29], a common feature set is
computed based on a genetic algorithm (GA), where the GA
solutions are fine-tuned based on a Markov blanket algorithm;
the embedded Markov blanket-based memetic operators add
or delete features from a GA solution. Paper [30] presents an
algorithm to learn local causal structures around a target vari-
able of interest by focusing on both identification of variables
that are direct causes or direct effects of the target, and dis-
covery of Markov blankets. In [12], a common discriminative
feature subset is obtained by maximizing a class separability
criterion. In [27], a differential-evolution-based algorithm is
used for computing a common feature set. The Fisher criterion
is used in [16] where each feature score is computed based
on minimizing intraclass distances and maximizing interclass
distances. In [31], a common feature set is selected based
in spirit on Fisher’s discriminant analysis, where in defining
the class separability, it incorporates the kernel trick to map
each original input to a higher dimensional kernel space.
In [32], a common set is computed through a combination
of linear discriminant analysis and sparsity regularization. In
[33], a feature subset is determined based on two criteria
designed for the optimization of the support vector machine
(SVM), including kernel target alignment and kernel class
separability. In [34], a common feature subset is computed
through expanding a nonconvex paradigm into a sparse group
feature selection process. The selection algorithm elastic net,
presented in [35], combines the algorithmic ideas of least angle
regression (LARS) [36], the computational benefits of ridge
regression, and the tendency toward sparse solutions of the
LASSO. In [37], a feature selection method for microarray
data classification is presented that is based on partial least
squares and theory of reproducing kernel Hilbert space [38].

The second group applies local information of the sample
space for computing an optimal feature subset [5], [39]–[44].
For example, biclustering approaches [45]–[47] use local
information for simultaneously clustering data and features.
In [48], data clustering is realized through a greedy feature
selection algorithm, which can assign a specified feature set
to each cluster. However, these algorithms are unsupervised
feature selection approaches. The approaches more relevant
in the present case are “margin”-based algorithms that are
supervised and embed local information. These methods select
features based on maximizing “margin,” where “margin” of
a sample is defined as the difference between the distance
to the nearest differently labeled sample and the distance
to the nearest same labeled sample. For example, in the
sample-based RELIEF algorithm [39], feature weights are
iteratively updated according to the margin of a randomly
selected sample at the current iteration. The main drawback

of RELIEF is that the neighboring samples are predefined
in the original feature space, which yields degraded margin
estimates in the presence of irrelevant features. The Simba
algorithm [41] is an enhancement of the RELIEF algorithm
in that during the learning process, margins are reevaluated
based on the learned feature vector. The main drawback of
Simba is that its objective function is nonconvex and hence
is characterized by the presence of local minima. In [5],
a local learning-based feature selection method is presented
in which a complex nonlinear problem is decomposed into
a set of locally linear problems. In [49], local information
is embedded in feature selection through combining instance-
based and model-based learning methods. However, the main
disadvantage of this second group of algorithms is that they
still generate a common feature set for the whole sample space.

Thus, we see that current feature selection schemes impose a
global set of features that are common across the entire sample
space. Such schemes are inherently restricted in their ability to
adapt to statistical variations (i.e., nonstationarities), across the
sample space. These variations could be the result of a change
in operating conditions of the underlying generative process.
In this paper, we introduce an alternative view to the traditional
concept of a common feature set. We introduce what we
believe is the novel concept of localized feature selection.
The concept of localized feature selection is implemented by
considering each sample of the training set as a representative
point for its neighboring region. A unique (and possibly
distinct) feature subset is selected for every such region, based
on an optimality criterion that encourages local clustering over
that region. Because the selected feature subset varies over the
sample space, conventional classifiers are no longer appropri-
ate for the logistic localized feature selection (lLFS) algorithm.
We therefore present a localized classification procedure that
has been adapted to the proposed scenario. We refer to the
proposed algorithm as the lLFS method.

The proposed lLFS approach has several advantages. First,
it accommodates nonstationarities in the underlying data distri-
bution, because no assumptions are made about the distribution
of data over the sample space. Therefore, lLFS allows irregular
and/or disjoint distributions of samples. The lLFS method
is also effective when the sample space lies on a nonlinear
manifold, since an optimal feature subset can be selected to
fit the local behavior in each region of the manifold. Second,
the lLFS method may be less sensitive to overfitting relative to
other methods. The overfitting phenomenon may be considered
from two perspectives: feature selection and classification.
With regard to feature selection, with alternative methods
such as [10], [27], and [29], the number of selected features
is determined in advance by a user-defined parameter. The
value of this parameter is often difficult to determine and
if this parameter is set too high, features may be selected
whether they are relevant or not, a fact which introduces
vulnerability to overfitting. In contrast, we show that the
proposed lLFS algorithm limits the number of selected features
only to those features which are most discriminative, and so
in this sense is less vulnerable than other methods to overfit-
ting. Furthermore, with regard to classification, we investigate
the Vapnik–Chervonenkis (VC) dimension for the proposed
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classifier structure. Under certain assumptions, we show that
the value of the VC dimension for the lLFS classifier is moder-
ate. A modest value of the VC dimension also implies reduced
sensitivity to overfitting. In addition, the lLFS algorithm is
formulated as a pair of optimization problems, one of which
is convex and the other is an increasing quasi-convex problem
where both have a unique global optimum point. Thus, the
lLFS algorithm converges to the optimal solution regardless
of the initialization point.

We do not promote the off-line training phase of the
lLFS method as being computationally fast (although it is
considerably faster in the test phase). Rather, its advantages are
with respect to performance. The performance of the method
is demonstrated with multiple data sets over a range of N
(number of training samples) and M (number of candidate
features).

II. PROPOSED METHOD

A. Overview

Let {(x(i), y(i))}Ni=1 ⊂ R
M × Y be the training data set

of a c-class classification problem, where N is the number
of training samples, x(i) is an M-dimensional feature vector,
Y = {Y1, . . . , Yc} is the set of all class labels, and y(i) ∈ Y is
the class label of the i th training sample x(i).

Our main idea for locally modeling the sample space is
to assign a specific optimal feature subset to each of the
sample space regions. To realize this goal, we assume that
each sample x(i) is a representative point for its neighboring
region. For each representative point x(i), we compute an
M-dimensional indicator vector f (i) ∈ {0, 1}M , i = 1, . . . , N ,
which indicates the discriminative features for the neighboring
region of x(i). We use the notation {·} to indicate a discrete
set. For example, if the second and the fourth features are
the discriminative features for the neighboring region of x(i),
all the elements of f (i) are zero except the second and fourth
ones. Thus, f (i) defines a local coordinate system, or frame.
The vector f (i) is computed such that, in the i th frame,
neighboring samples of x(i) whose class labels are similar to
that of x(i), i.e., y(i), cluster as closely as possible around x(i),
whereas samples with different class labels are as far removed
as possible from x(i). Determining the neighboring samples
is a challenging issue, since these distance measures depend
on the local coordinate system, which is determined by f (i),
which is unknown at the problem outset. In the early version
of this paper, presented in [50] and [51], the neighboring
samples are mainly determined based on the distances in
the original feature space. This is not a reliable procedure
in the presence of a large number of irrelevant features,
since distance measurements can vary strongly between the
selected feature space and the original feature space. In this
paper, the distance measurement problem is alleviated, since
the underlying optimization problem is formulated such that
distances are a function of the unknown vector f (i).

In Section II-B, we present the proposed algorithm
for computing the binary discriminative feature subset
corresponding to the representative point x(i). In Section II-C,
we present a simple yet effective classification process through

the aggregation of multiple weak classifier results, which are
based on the region-specific feature subsets. The properties of
the proposed method are presented in Section III. Performance
of the proposed algorithm, on eleven synthetic and real-world
data sets, is demonstrated in Section IV. The conclusions are
drawn in Section V.

B. Feature Selection

This section is organized as follows. Section II-B1
presents the proposed formulation for local feature selec-
tion. The accompanying optimization problem is treated in
Section II-B2. A procedure for determining the two required
parameters of the proposed formulation is presented in
Section II-B3.

1) Problem Definition: Let S(i) be the subspace of the
original M-dimensional feature space whose axes correspond
to the selected features. That is, an axis corresponding to a
candidate feature is contained in S(i) if the corresponding
element of f (i) is 1. Denote x(i)

p as the projection of the i th
training sample x(i) into S(i). In this paper, the feature set
f (i) = ( f (i)

1 , f (i)
2 , . . . , f (i)

M )T is found, such that the clustering
behavior in the neighborhood of x(i)

p is optimum with respect
to the following two objectives.

1) Other samples of the same class cluster as closely as
possible around x(i)

p , and simultaneously.
2) Samples with different classes are separated as far as

possible from x(i)
p , where distances in each case are

measured within S(i).
To quantify these goals, we consider the respective objective
functions U1 and U2, defined by

U1(f (i)) = 1

n − 1

∑

j ;y( j)=y(i), j �=i

G((
aT

j f
)(i); σ (i), λ

)
(1a)

U2(f (i)) = 1

N − n

∑

j ;y( j) �=y(i)

G((
aT

j f
)(i); σ (i), λ

)
. (1b)

The functions U1 and U2 may be regarded as local intraclass
and interclass distance measures, respectively. The role of
the function G(·) is described later. The term (aT

j f)(i) is
the �1-norm of the distance vector between x(i) and x( j )

in S(i). In fact, the simpler notation (aT
j f)(i) replaces the more

correct but awkward expression a(i)T

j f (i); a(i)
j is the �1 distance

vector between x(i) and x( j ) in the original feature space, i.e.,
a(i)

j = |x(i) − x( j )|, where | · | denotes the absolute value
of the elements of the vector. The variables λ and σ (i) are
parameters to be defined later in Section II-B3. The variable
n is the number of samples whose class labels are y(i) and
(·)T is transpose operator.

The local feature selection process may then be formulated
in the context of the following optimization problem:

min
f(i)

U1(f (i))

max
f(i)

U2(f (i))

s.t.

{
f (i)
m ∈ {0, 1}, m = 1, . . . , M

1 ≤ 1T f (i) ≤ α.
(2)
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Fig. 1. Function G(·), which is a shifted logistic function with an additional
linear term, where the parameters σ (i) and λ are set to the typical values 0.1
and 0.001, respectively.

Some constraints are considered in (2). Since f (i) is an indica-
tor vector, the problem variables are either 0 or 1. Since there
must be at least one active feature, the null indicator vector
is discarded, i.e., 1 ≤ 1Tf (i), where 1 is an M-dimensional
vector whose elements are all 1. Furthermore, we would like
to set an upper bound on the number of selected features using
a user-settable constant parameter α, and hence, the constraint
1Tf (i) ≤ α is also included.

We note that the distance measure (aT
j f)(i) is transformed

by the modified logistic function G (see Fig. 1), which for the
purposes of this paper, is defined as

G(z; σ, λ) = 1

1+ exp(−σ z)
− 0.5+ λz. (3)

Since optimization algorithms in general are gradient driven,
the changes in variables at the next iteration depend on the
gradients at the current iteration. As explained later, λ is set
to a small value, so the linear term in (3) may be neglected
for the time being. In this case, the gradient of the logistic
function for the large-distance samples in (1a) and (1b) (i.e.,
those in the saturation region shown in Fig. 1) have a small
value and hence does not contribute significantly to changes
in U1 and U2 at the next iteration. On the other hand, terms
for which the quantity (aT

j f)(i) have a small-to-medium value
(i.e., for a point in the effective region), we note that G in
these cases is approximately linear. Since the large-distance
terms can be neglected, the optimization problem of (2) thus
becomes approximately equivalent to

min
f(i)

1

n − 1

∑

j∈RoL, y( j)=y(i)

(
aT

j f
)(i)

max
f(i)

1

N − n

∑

j∈RoL, y( j) �=y(i)

(
aT

j f
)(i)

s.t.

{
f (i)
m ∈ {0, 1}, m = 1, . . . , M

1 ≤ 1T f (i) ≤ α
(4)

which corresponds directly to satisfying goals 1 and 2 as
desired. The set of sample points for which (aT

j f)(i) is in the
effective region of G is considered as the region of locality of
the point x(i)

p .
Therefore, within S(i), through the objective functions

of (2), the large-distance samples have little effect on the
selection of f (i), whereas the small-distance samples have a

stronger effect on the selection of f (i). Therefore, the purpose
of transforming the distance measure (aT

j f)(i) by G(·) is
to influence the choice of f (i) by “focusing” the objective
functions on samples that are close to x(i)

p , i.e., to encourage
localization in the feature selection process.

The existence of the linear term in (3) introduces a (small)
gradient in the objective functions with respect to f (i). This is
so that potentially relevant samples that are far from x(i)

p at a
current iteration of the optimization process have the potential
to become close to x(i)

p in an appropriate coordinate system in
the subsequent iterations.

Note that to measure the distance between two samples in
the original space, other standard definitions (e.g., Euclidean
distance) may also be used. However, for the purpose of
this paper, following [5], we use the �1 distance, because
it provides a linear combination of the featurewise distances
(with no transformation), which preserves the logistic function
behavior with respect to each elemental distance measure.

2) Optimization Process: The optimization problem posed
by (2) is a discrete binary program and hence is computation-
ally intractable [52]. A standard and widely accepted way to
alleviate this difficulty is relaxation of the binary variables,
i.e., replacing f (i)

m ∈ {0, 1} with f (i)
m ∈ [0, 1] m = 1, . . . , M ,

followed by a randomized rounding process [52]–[54]. Here,
the notation [·] denotes a continuous interval, whereas {·}
denotes a binary set, as before. The randomized rounding
procedure (to be discussed further) maps the linear solution
back onto a suitable point on the binary grid.

The optimization problem defined in (2) is a multiobjective
optimization problem. In this case, the concept of optimality is
replaced with Pareto optimality [52]. One approach to solving
a multiobjective optimization problem is to linearly combine
each of the objective functions into a single objective function.
The solution of a multiobjective problem is therefore not
unique and consists of the set of all Pareto optimal points,
each of which may be obtained through different weightings of
the individual objective functions. A Pareto optimal solution is
one in which an improvement in one objective function results
in the degradation of another. The set of Pareto optimal points
is unique and independent of the methodology by which the
two objective functions are treated [52].

In this paper, the individual objective functions are com-
bined using the concept of the ε-constraint [55] as shown in

min
f(i)

U1(f (i))

s.t.

⎧
⎪⎨

⎪⎩

f (i)
m ∈ [0, 1], m = 1, . . . , M

1 ≤ 1T f (i) ≤ α

U2(f (i)) ≥ ε(i).

(5)

Here, the interclass distance measure [relating to U2 in (1b)]
becomes a constraint, and is forced to be greater than a
parameter ε(i). In this way, we can map out the entire Pareto
optimal set by varying this single parameter. This procedure
guarantees that the transformed interclass distances are in
excess of the value of ε(i).

We must determine the parameter ε(i), such that the feature
selection problem defined in (5) is feasible. Equation (5) is
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Fig. 2. Intersection of a unit cube and two half-spaces, in the case of a
3-D feature space, i.e., M = 3, where the parameter α = 2. The unit cube
is defined by 0 ≤ f (i)

m ≤ 1, m = 1, . . . , 3. The blue and red pyramids are
the intersections of the half-spaces, respectively defined by 1Tf(i) < 1 and
1Tf(i) > α, and the unit cube. The polyhedron P (white region of cube) is a
unit cube in which the red and the blue pyramids have been removed.

feasible if its constraint set is nonempty. In the following, we
present an effective approach to specify a value for ε(i) that
guarantees feasibility.

The constraints f (i)
m ∈ [0, 1], m = 1, . . . , M indicate that

the optimum solution must be within an M-dimensional unit
hypercube. The two constraints 1 ≤ 1Tf (i) and 1Tf (i) ≤ α
indicate that the optimum point must also be inside the space
bounded by the two parallel hyperplanes 1Tf (i) = 1 and
1Tf (i) = α which is also nonempty, because by definition,
the integer parameter α is greater than or equal to 1. Hence,
the optimum point must be inside the intersection of the unit
hypercube and the space between the parallel hyperplanes.
This intersection defines a nonempty polyhedron P . In fact,
the polyhedron P is a unit cube in which two parts have been
removed: the intersection between the unit cube and the half-
space 1Tf (i) > α and the intersection between the unit cube
and 1Tf (i) < 1. Note that the maximum value that α can take
is equal to the total number of available features, i.e., M . For
an illustration of the geometry of P , see Fig. 2.

The maximum feasible value ε
(i)
max of ε(i) is determined by

solving the maximum value of U2 over P . This is equivalent to
finding the extreme Pareto optimal point where the weighting
assigned to the within-class distance term, i.e., U1, is zero.
Hence, ε

(i)
max is the solution to the feasibility problem defined in

ε(i)
max = max

f(i)
U2(f (i))

s.t.

{
0 ≤ f (i)

m ≤ 1, m = 1, . . . , M

1 ≤ 1T f (i) ≤ α.
(6)

Finally, the parameter ε(i) in (5) is replaced with the
value βε

(i)
max, where 0 ≤ β ≤ 1. In this way, the feature

selection problem is always feasible and the entire Pareto
optimal set corresponding to different relative weightings of
the objective functions (1a) and (1b) can be mapped out
through variation of β. In the following, the Pareto point
corresponding to a specific value of β is defined as f (i)

β , where

f (i)
β = ( f (i)

1,β , f (i)
2,β , . . . , f (i)

M,β )T; therefore, the complete Pareto

optimal set is defined as {f (i)
β }β∈[0,1]. The problem of interest

now becomes

min
f(i)
β

U1
(
f (i)
β

)

s.t.

⎧
⎪⎨

⎪⎩

f (i)
m,β ∈ [0, 1], m = 1, . . . , M

1 ≤ 1T f (i)
β ≤ α

U2
(
f (i)
β

) ≥ βε(i)
max.

(7)

The optimum point obtained from solving (7) defines the
relaxed solution, such that each element of f (i)

β exists in the
continuous range [0, 1]. However, the final (binary) solution
f∗(i)β must be over the discrete set {0, 1} as in (2), i.e., the

solution f (i)
β to (7) must be snapped onto a binary grid. This

procedure is performed by applying a randomized rounding
process [52]–[54] to f (i)

β so that the mth element is set to 1

(active) with probability f (i)
m,β and is set to zero (inactive)

with probability (1 − f (i)
m,β ), where m = 1, . . . , M . In order

to explore the entire region surrounding f (i)
β , we repeat the

randomized rounding process a thousand times; the choice for
the binary optimum vector f∗(i)β is the one which provides the
minimum value for the objective function of (7), as well as
satisfying all constraints.

The final value f∗(i) , corresponding to the best value of β

from the set {f∗(i)β }β∈[0,1], is chosen as the one which provides
the best local clustering performance of the training samples.
The procedure for determining the best local clustering per-
formance is discussed in Section II-C.1

Algorithm 1 presents the pseudocode of the proposed fea-
ture selection algorithm. The problem variables are initialized
to uniform values that satisfy the constraint 1Tf (i)

β ≤ α. Note
that since the problem does not suffer from the presence
of local minima (as discussed in Section III-A), the initial
point does not affect the solution, although it may affect the
computational time.

3) Determination of the Parameters of G(·): We discuss a
procedure for determining values of the parameters σ (i) and λ.
This procedure depends on the feature values being normalized
into their respective z-score values beforehand.

The value of the parameter σ (i) in G(·) is defined such
that, in the subspace defined by the initial value of f (i)

β in the
optimization procedure, the farthest sample from x(i), denoted
by ϕ(i), sits on the knee point of G(·); hence, σ (i) is the
solution of

1

1+ exp(−σ (i)ϕ(i))
− 0.5 = 0.47 (8)

where

ϕ(i) = max
j=1:N, j �=i

{(
aT

j fβ
)(i)}

.

The number 0.47 above is chosen to be representative of the
knee point of G(·) (see Fig. 1). The intuition behind (8) is that
no sample should fall within the saturation region during the
first iteration of the optimization process, so that effectively
all the samples are considered by the objective function of (7).

1Throughout this paper, our use of the term “optimal” refers to the solution
of (7) followed by the randomized rounding process.
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Algorithm 1 Pseudocode of the Proposed Feature Selec-
tion Algorithm

Input:
{(

x(i), y(i)
)}N

i=1, α

Output:
{

f	(i)
}N

i=1

1 Initialization: Set f (i)
β = 1

α (1, . . . , 1)T i = 1, . . . , N ,
β ∈ [0, 1]; λ = 0.01

α ;
2 for i ← 1 to N do
3 Compute distance vectors a(i)

j =
∣∣x(i) − x( j )

∣∣;
4 Compute σ (i) through solving (8) using the initial

values;
5 Compute ε

(i)
max through solving (6);

6 for β ← 0 to 1 do
7 Compute f (i)

β through solving (7);

8 Randomized rounding process of f (i)
β to obtain

binary feature vector f	(i)

β ;
9 end

10 Set f	(i)
equal to the member of {f	(i)

β }β∈[0,1] which
yields the best local clustering performance as
explained in Section II-C;

11 end

The parameter λ controls the contribution of the samples
that are in the saturation region (see Fig. 1). The addition of
the linear term in (3) allows potentially close samples that are
far from x(i)

p in a current iteration, i.e., situated in the saturation
region, to have the potential to migrate into the effective region
of G(·) in the subsequent iterations. Thus, we require a small
gradient in the saturation region relative to the gradient in
the effective region. As α grows, the slope of the effective
region decreases, because elements in f (i)

β , and consequently
ϕ(i), may increase, which results in a decrease of σ (i) in the
solution to (8). Hence, as α grows, the slope of the saturation
region, i.e., λ, should decrease. Thus, in our experiments, the
value of λ is set heuristically according to the value (0.01/α).
This form allows λ to vary inversely with α as required. The
value 0.01 in the numerator allows the slope of the saturation
region to be small enough compared with that of the effective
region.

Note that the values for σ (i) and λ are set once during
the initialization process of the algorithm according to the
procedure just described. They are not varied further during
execution. The parameter values used to produce the results
shown in Section IV were set according to this procedure and
were not tuned to improve performance.

C. Class Similarity Measurement

The localized feature selection approach results in optimal
feature set variation over the sample space. Hence, conven-
tional classifiers are inappropriate. In this section, we build
a classifier that is appropriate for the localized scenario.
The proposed localized classifier classifies query data xq

based on measuring distances in the induced feature spaces

(i.e., all N frames) defined by the optimal feature sets f	(i)
,

i = 1, . . . , N .
The proposed localized feature selection algorithm assumes

that the sample space is formed from N , probably overlapped,
regions around representative points. Here, we define each
region to be a hypersphere Q(i) centered at x(i)

p (i.e., the
projection of x(i) into the i th frame S(i)) with class label y(i).
In this paper, we determine the radius, i.e., r (i)(γ ), of Q(i),
such that the “impurity level” within the hypersphere Q(i) is
not greater than the user-defined parameter γ . The “impurity”
level is the ratio of the number of interclass samples within
Q(i) to the number of intraclass samples within Q(i). In all
our experiments, γ is fixed at the value of 0.2.

The similarity SY� (x
q; γ ) of query data xq to class Y� ∈ Y

is measured based on how many hyperspheres with class label
Y� contain xq . To this end, we define a set of binary variables
s(i)(xq; γ ) : RM → {0, 1}, i = 1, . . . , N , defined as follows:

s(i)(xq; γ ) = step
[
r (i)(γ )− ∥∥x(i)

p − x(q)
p

∥∥
2

]
(9)

where

step(z) =
{

1, if z ≥ 0

0, otherwise.
(10)

s(i)(xq; γ ) may be interpreted as “weak” classifiers that
indicate the similarity of xq to the corresponding region.2 The
similarity SY� (x

q; γ ) of xq to the class Y� is computed through
aggregation of the “weak” classifier results corresponding to
the regions whose class labels are the same as Y� as follows:

SY� (x
q; γ ) =

∑
i∈Y�

si (xq; γ )

η�
(11)

where Y� indicates the set of all the regions whose class
labels are Y�. η� is the cardinality of Y�. We compute the
SY� (x

q; γ ), � = 1, . . . , c and the class label of xq , i.e., yq ,
is the one which has the largest similarity

yq = argmax
Yl∈Y

{SY1 , SY2 , . . . , SYc }. (12)

If xq is not situated in any of the hyperspheres Q(i)

i = 1, . . . , N , then we would like its class label to be
determined based on the class label of its nearest neighboring
sample. However, since there are N local coordinate systems in
which to measure distance, which one or ones are appropriate?
To address this matter, we evaluate the set of distances of all
N nearest neighbors as measured in each coordinate system.
The class of xq is then determined using a majority voting
procedure over the corresponding classes in the set. The
number of votes for each class is normalized to the total
number of samples within that class. It is to be noted that
such a situation is a rare occurrence in all our experiments—
only 0.009%.

In the following, we discuss an approach to determine an
appropriate value for β, which results in the selection of a

2Heuristically, slightly better results may be obtained if the neighboring
sample of xq is also considered, i.e., s(i)(xq ; γ ) is set to 1 if the output
of (9) is 1 and the class label of the nearest neighbor is y(i) . However, since
here γ = 0.2, the effect of the neighboring sample is small.
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Fig. 3. Block diagram of the proposed algorithm for data classification. The neighboring region of each representative point is modeled by an optimal
feature subset selected from the available feature pool. Details of the local feature selection and classification procedures for query data xq are presented in
Sections II-B and II-C, respectively.

suitable point in the Pareto set. We solve (7) for different
values of β followed by the randomized rounding process to
obtain f	(i)

β , where β ranges from 0 to 1 with the increments

of 0.05. Each candidate binary vector f	(i)

β defines a local
coordinate system and therefore specifies the respective hyper-
sphere Q(i) and the weak classifier s(i). The local clustering
performance corresponding to f	(i)

β is then determined using
a leave-one-out cross validation procedure over the training
samples situated within Q(i). Performance is evaluated using
decisions from the respective weak classifier s(i). Finally,
among the candidate binary points {f	(i)

β }β∈[0,1], the one with
the best local clustering performance is chosen as the optimum
binary feature set f	(i)

corresponding to the representative point
x(i) (see line 10 of Algorithm 1).

Fig. 3 shows a block diagram of the proposed algorithm.

III. PROPERTIES OF THE PROPOSED ALGORITHM

In this section, we present four important properties of the
proposed approach defined in Section II. These properties are
that: 1) the optimization problems [in (6) and (7)] of the
proposed feature selection algorithm are convex and quasi-
convex and hence have unique global optimums; 2) the pro-
posed localized classifier defined in Section II-C has a modest
VC dimension; 3) the proposed approach is insensitive to
the overfitting problem; and 4) the proposed feature selection
method may be parallelized.

A. Problem Convexity

In this section, we discuss the convexity property
of the optimization problems defined in (6) and (7).
By definition, (aT

j f)(i) is always positive; hence, the terms
G((aT

j f)(i); σ (i), λ) in (1a) and (1b) are always positive. Thus,
the function G is both concave and increasing quasi-convex
(see Fig. 1) [52]. Equation (6) defines an optimization problem
whose objective function is concave, because it is the summa-
tion of N − n concave functions [see (1b)]. The constraint set

is linear and hence defines a convex feasible set. Thus, (6) is
a convex problem.

The objective function of (7) is a strictly increasing quasi-
convex function, since it is the summation of n − 1 strictly
increasing quasi-convex functions [see (1b)]. The constraint set
of (7) is convex and feasible. Therefore, (7) defines a quasi-
convex problem with a unique global minimum [52]. Since
both the problems have unique global optima, they have the
computational advantage of not being trapped in local minima,
with the solution being invariant to the initialization procedure.

B. Vapnik–Chervonenkis Dimension

The VC dimension [56] is used to quantify the “power” of
a classifier to separate points in a feature space. A classifier
with a larger VC value indicates higher classification power,
yet may be prone to overfitting, compared with one with a
lower VC dimension.

A classifier structure may be represented by a family F of
functions parameterized by a set θ , such that F = { f (x; θ) :
R

M → Y}, where x is a training sample. For example, in
the case of the linear perceptron, f = sign{θT

1 x − θ2} where
θ = [θ1; θ2]. Consider a training set XN = {(x(i), y(i))}Ni=1 ⊂
R

M × Y . Then, F “shatters” this set if there exist values of θ
which can correctly classify the training samples correspond-
ing to all possible cN combinations of the respective y values,
where c is cardinality of Y . The VC dimension is the largest N ,
which can be shattered. For example, in the case of a two class
problem, the linear perceptron classifier has a VC dimension
of M + 1 [57]. The VC dimension plays an important role in
establishing bounds on the performance of the classifier.

The VC dimension h for the lLFS classifier is developed in
the Appendix, and under certain modest assumptions, is shown
to be equal to the value L(
(1/γ )� − 1), where L is the
number of clusters in the training set and 
·� denotes the
ceiling function.

The fact that the lLFS classifier has a finite VC dimension
means that a variety of learning theoretic performance bounds
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can be applied in this situation. One such bound relates to how
well a learning algorithm trained on a finite training set will
generalize to unseen data [56]. In this respect and under the
assumption that all training points are drawn independent and
identically distributed (i.i.d) from some distribution D(x, y),
i.e., XN ∼ DN , and under the assumption that future test
points will draw from the same distribution, we can define an
empirical risk and an expected risk [56], [57], respectively, as
follows:

RN (θ) = 1

N

N∑

i=1

1

2
|y(i) − f (x(i); θ)| (13)

R(θ) =
∫

1

2
|y − f (x; θ)|dD(x; y). (14)

Assuming the empirical loss converges uniformly to the
expected loss, then with probability 1 − ξ , ξ ∈ [0, 1], the
following bound holds:

R(θ) ≤ RN (θ)+
√

h
(

log
( 2N

h

)+ 1
)− log

( ξ
4

)

N
. (15)

This bound indicates that, by minimizing RN (θ) over θ for
a given training set, a minimum upper bound on expected
performance over unseen samples is established if h is finite.
See [56] for details.

Furthermore, a finite value of h permits us to make asser-
tions regarding the sample complexity of the classifier. To this
end, we define the optimal risk R	 as follows:

R	(θ) = inf
θ
R(θ). (16)

Then, a good training algorithm will generate an RN (θ) close
to R	(θ), or more precisely [58], for a positive real number
ρ ∈ [0, 1], which is prescribed in advance, we have

Pr
XN∼DN

{RN (θ) < R	(θ)+ ρ} ≥ 1− τ (17)

where τ ∈ [0, 1] tends to be a small value.
No is the sample complexity. It indicates the number of

training samples required for the error of the classifier to be
well behaved. If a learning system has a finite VC dimension
h, then the value of No can be bounded [58] as follows:

No(ρ, τ ) ≤ 64

ρ2

(
2h log

(
12

ρ

)
+ log

(
4

τ

))
. (18)

In many cases, these bounds are of not much value in the
practical setting, since they have been demonstrated to be very
loose in some situations [57]. However, these bounds do give
us a sense that the empirical risk is not far from the expected
risk for a reasonable value of N . Furthermore, (18) suggests
that the number of training samples required to guarantee a
certain level of performance varies only logarithmically with
the parameters τ and ρ. Both these points suggest that with the
lLFS classifier, we can expect well-behaved error performance,
i.e., that the classifier will generalize well to new, unseen
samples, under modest values of N .

C. lLFS and the Overfitting Issue

Both the feature selection and classification processes
contribute to the overfitting problem. As is discussed in
Section III-B and the Appendix, the lLFS classifier has a finite
and moderate VC dimension value, which is independent of
the dimension of the feature space in which the classification
is performed. Therefore, it is less prone to overfitting than a
method with a high or infinite value of h [57].

We now discuss the lLFS feature selection procedure with
respect to overfitting. Assume that the set X denotes the set of
all available features. Consider an ideal scenario in which, for
each localized region, the set of available features X can be
partitioned into two disjoint sets X (i)

R and X (i)
I so that X (i)

R ∪
X (i)

I = X , i = 1, . . . , N . X (i)
R and X (i)

I , respectively, denote
the set of relevant and irrelevant features. Assume that the
cardinality of X (i)

R is ζ
(i)
R .

Assume a hypothetical situation where the parameter α is set
to ζ

(i)
R . Note that “relevant” features are those that encourage

local clustering behavior quantified by the optimization prob-
lem defined in (7). In this way, we assume that the features in
X (i)

R are sufficiently relevant to be selected by the proposed
algorithm, i.e., the features in X (i)

R with high probability are
selected as the solution to (7) followed by the randomized
rounding procedure. If α now grows above the value ζ

(i)
R ,

the features in X (i)
I become candidates to be selected. Since

the features in X (i)
I are “irrelevant” features, i.e., do not

encourage local clustering behavior, their respective element
in the optimal solution of (7) must be given a low value, i.e.,
a value close to zero in order to satisfy optimality. Hence, the
features in X (i)

I , with high probability, are not selected after
the randomized rounding process. Such a solution remains
feasible because of the inequality constraint involving α in (7).
Therefore, in this idealized scenario, as α increases, the
cardinality of the selected localized feature set tends to saturate
at the level ζ

(i)
R .

In the more practical scenario, the available feature set X
may not be clearly partitioned into relevant and irrelevant
features as we have assumed; hence, as α grows, “partially
relevant” features may continue to be selected. Nonetheless,
as is demonstrated in Section IV-F, the saturation behavior of
the number of selected features is clearly evident in real-world
scenarios.

In summary, the proposed lLFS feature selection method
chooses only relevant features. In this respect, it is less vul-
nerable to overfitting than methods that select a predetermined
number of features. If this number is too high, then as indicated
previously, these methods can select noisy features, making
them prone to overfitting. Thus, both the lLFS feature selection
and classifier procedures are insensitive to the overfitting
problem in the sense we have indicated.

D. lLFS Can Be Parallelized

The feature selection procedure for any representative point
is independent of all other such points. This enables the
localized feature selection process to be performed in parallel.
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IV. EXPERIMENTAL RESULTS

In real-world applications, obtaining labeled examples to
be used as training samples is often very expensive and time
consuming, as it can require the effort of human annotators,
who must often be quite skilled. However, small sample sizes,
and their inherent risk of imprecision and overfitting, pose a
significant challenge for many modeling problems [59]–[62].
Hence, most of the real-world data sets used in our experi-
ments have a small value of N , with M varying over a range
of values. The performance of the lLFS method on data sets
with large N is not the focus of this paper; nevertheless, we
discuss this case in Section IV-J.

A. Experimental Setup

In this section, we perform several experiments on
1 synthetic and 11 binary real-world data sets to demonstrate
the effectiveness of the proposed feature selection algorithm.
The proposed algorithm is compared with the eight state-of-
the-art feature selection algorithms: Logo3 [5], FMS4 [31],
MBEGA5 [29], Elasticnet6 (based on LARS-EN) [35],
kPLS7 [37], MetaDistance8 [49], DEFS9 [27], and
mRMR10 [10], where the first seven methods are specifically
developed for the sparse data case where the number of
available training samples is low in comparison with the
number of variables. For a fair comparison, the parameters
of all these feature selection algorithms as well as those of
the proposed lLFS algorithm were set to the default values
suggested by the respective authors.

In the case of the Elasticnet method, in the training phase,
the regularization parameter δ that determines the weight of the
l2 penalty ranges from 10−3 to 103 (evenly spaced on the log-
scale), where for each given δ, the entire regularization path
corresponding to the l1 penalty is considered. Among the entire
grid corresponding to these two regularization parameters, the
node that provides the best fit on the training data (based on the
Akaike’s information criterion) is chosen as the regularization
parameters corresponding to the l2 and l1 penalties for use in
the test phase (see [63] for more details).

In order to evaluate classification accuracies corresponding
to the features selected by our comparison algorithms, we use
the SVM classifier with an RBF kernel. In each case, the
top t features are selected by the respective algorithm, and
then, the SVM classifier is trained using the sampled training
data in the induced feature subspace defined by these top-t
features. Finally, the sampled test data, in the respective
induced subspace, are classified using the trained SVM, where
following [10], [12], [27], [29], [31], [41], and [64]–[66], the
SVM classifier parameters are set to their default values (in
MATLAB). To provide a fair comparison, the parameter of the

3http://plaza.ufl.edu/sunyijun/PAMI2.htm
4http://www2.cs.siu.edu/ ∼ qcheng/featureselection_pubfolder/index.html
5http://csse.szu.edu.cn/staff/zhuzx/MAFS.html
6http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3897
7https://github.com/sqsun/kernelPLS
8http://metadistance.igs.umaryland.edu/
9http://www.mathworks.com/matlabcentral/fileexchange/30877-differential-

evolution-based-channel-and-feature-selection
10http://penglab.janelia.org/proj/mRMR/

Fig. 4. Illustration of the synthetic data set in terms of its discriminative
features x1 and x2.

TABLE I

CHARACTERISTICS OF THE REAL-WORLD DATA
SETS USED IN THE EXPERIMENTS

proposed localized classifier (i.e., γ ) is also set to its default
value 0.2 and is fixed during all experiments.

The proposed algorithm is implemented in MATLAB on a
computer with an Intel Core i7-2600 CPU at 3.4 GHz and
16-GB RAM.

B. Data Sets

We present our results using both synthetic and real-world
data sets. The synthetic, or “toy” data set, as is shown in Fig. 4,
is distributed in a 2-D feature space defined by x1 and x2
in which class Y1 has two disjoint subclasses shown by �
and �, whereas samples of class Y2, shown by �, have a
unimodal distribution. Samples of each subclass are drawn
from unit variance normal distributions. In order to test the
capability of the proposed lLFS method to identify only the
discriminative features x1 and x2, following [12], each sample
is artificially contaminated by augmenting it with 100 i.i.d
irrelevant features drawn from a standard normal distribution.

The characteristics of the real-world data sets used for the
experiments are summarized in Table I, where the first ten have
a small number of training samples, whereas the last one has
a relatively large training set. The total number of available
labeled samples in each data set is given by the sum of the
second and third columns.

To increase the challenge of the classification problems,
following [5], the original features of the data sets “Sonar”
through “ARR” and “DNAl” are artificially augmented
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TABLE II

MINIMUM CLASSIFICATION ERROR (IN PERCENT) OF THE DIFFERENT ALGORITHMS. THE CORRESPONDING STANDARD DEVIATION (IN PERCENT)
AND t (α) ARE, RESPECTIVELY, REPORTED IN PARENTHESIS. THE LAST COLUMN CORRESPONDS TO THE

CLASSIFICATION RESULTS USING SVM WITH NO FEATURE SELECTION

by 100 irrelevant features, independently sampled from a
standard normal distribution. Data sets “Prostate” through
“Nervous system” are microarray data sets, for which M
is large in comparison to N . In each case, to speed up
the simulations, for the lLFS method only, we prune to
300 features beforehand. This will only have the effect of
slightly degrading of performance of the proposed algorithm.
In this paper “Logo” [5] is used for pruning, although other
approaches may be used.

Each feature variable in the synthetic data set and the
real-world data sets has been transformed beforehand to their
z-score values.

C. Accuracy of Classification

In this section, the classification performance of the pro-
posed lLFS algorithm is compared with eight well-known
feature selection algorithms indicated in Section IV-A.

In our experiments, the number of selected features t in our
comparison feature selection algorithms and the parameter α
of the lLFS algorithm (which is analogous to the parameter t)
ranges from 1 to 30 for data sets “Sonar,” “DNA,” “Breast,”
“Prostate,” “Duke-Breast,” “Leukemia,” and “Colon,” 1 to 60
for data set “Adult,” 1 to 100 for data set ARR and 1 to 35
for data set “Nervous System,” since there is no performance
improvement for our comparison algorithms for larger values.

Following [5], for each data set, a bootstrapping algorithm is
used to evaluate the feature selection algorithms’ performance.
For this purpose, for a given t (α), each feature selection
algorithm is run ten times on each data set, where for each
run, the respective number of available data points, presented
in the second column of Table I, are randomly selected as
training samples and the remaining data points, the number
of which is indicated in the third column of Table I, are
used as test samples for that run. The average performance
and the standard deviation over all ten runs are recorded. For
a fair comparison of different feature selection algorithms,
the training and test sets for each run are common for all
algorithms.

The minimum classification error rate, the corresponding
standard deviation, and the number of selected features t (α),
for each algorithm on each data set, are reported in Table II

where, for each data set, the best result over all eight algo-
rithms is shown in bold. The average of the classification error
rates over all the ten data sets is shown in the last row in
Table II.

In order to demonstrate the effectiveness of feature selec-
tion, we also report the classification error rate which results
from applying the SVM classifier with an RBF kernel on each
data set without prior feature selection. These results, shown
in the last column of Table II, are significantly degraded with
respect to the case when feature selection is used, and thus
demonstrate that the feature selection process is indeed an
important component of the data classification process.

Furthermore, for each data set, the classification error rate
versus the number of selected features [i.e., t (α)] for the
lLFS method and the best four comparison feature selection
algorithms (on the basis of the last row of Table II) are shown
in Fig. 5. This figure, in addition to the results reported in
Table II, show that the classification accuracy of the proposed
lLFS algorithm has the lowest error rate over all the data sets
considered. In particular, it is to be noted that the performance
of the lLFS method exceeds that of other comparison methods
specifically designed for the small N large M case, for the data
sets shown.

In addition, in order to demonstrate that the improved
relative performance of the lLFS method is not just a reflection
of the performance of the SVM classifier, we perform an
additional set of classification experiments using two alter-
native classifiers: logistic regression and Adaboost (with a
decision tree as a weak learner) [72], [73]. These classifiers
are again used in conjunction with the best four comparison
feature selection algorithms. The average of the minimum
classification errors (using these classifiers) over all ten data
sets is presented in Table III. We see that the improved
performance of the lLFS method persists in this case also.

D. Relevant Feature Identification

In the following, we demonstrate the performance of the
proposed method in identifying discriminative features using
the synthetic data set and the data set “DNA,” for which there
is a “ground truth.”

The synthetic or “toy” data set shown in Fig. 4 is included
for the sole purpose of demonstrating that the proposed method
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Fig. 5. Classification error (in percent) versus the number of selected features for the proposed lLFS method and the best four comparison feature selection
algorithms over all ten real-world data sets.
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Fig. 6. Selected features for the synthetic data set. The height of each feature index indicates what percentage of the representative points in (a) subclass �
of class Y1, (b) subclass � of class Y1, and (c) class Y2 shown by � select the respective feature as a member of their optimal feature subset, where α is set
to 2.

TABLE III

MINIMUM CLASSIFICATION ERROR (IN PERCENT) OF THE BEST FOUR

COMPARISON FEATURE SELECTION ALGORITHMS USING TWO

ALTERNATIVE CLASSIFIERS: ADABOOST (FIRST VALUE)
AND LOGISTIC REGRESSION (SECOND VALUE)

is capable of identifying discriminative and distinct feature sets
in the presence of a large number of contaminating features,
in a disjoint data space. We see that samples of class � require
both discriminative features x1 and x2 to be discriminated
from class Y1, whereas samples of subclass � require only x1
and samples of subclass � require only x2. Fig. 6 shows the
performance of the proposed local feature selection algorithm
on the synthetic data set. For each subclass, the height of
each feature index indicates what percentage of the samples
within that subclass select the respective feature. As can be
seen, the lLFS method has perfect performance in selecting
feature x1 for subclass �, feature x2 for subclass �, and
features {x1, x2} for class �, as well as perfectly discarding
all irrelevant features indexed from 3 to 102. Note that the
sample distribution is unknown at the problem outset, due
to the contamination by the hundred irrelevant features. This
“toy” example demonstrates the ability of the lLFS method to
select a feature set that optimally adapts to local variations in
the sample space.

The data set “DNA” is generally used for detecting
the “presence” or “absence” of a splice junction in a
given deoxyribonucleic acid (DNA) sequence [12]. It has
been previously shown that improved performance in most
cases is observed if the attributes closest to the junctions
are used [12], [74]. These attributes correspond to features
indexed from 61 to 120. We therefore have a good idea

Fig. 7. Selected features for “DNA” data set. The height corresponding to
each feature index indicates what percentage of representative points select
the respective feature as a discriminative feature, where α is set to a typical
value of 10.

beforehand what the good features are, and thus have an avail-
able “ground truth” for this example. The result of applying
the proposed method on the data set “DNA” is shown in
Fig. 7, where the height of each feature index indicates the
percentage of representative points that select the respective
feature as a member of their optimal discriminative subfeature
set. This figure demonstrates that the lLFS method mostly
selects attributes indexed from 80 to 105, that are well matched
to the “ground truth,” as well as discarding the artificially
added irrelevant features, which are indexed from 181 to 280.

E. Validation of the Localized Feature Selection Concept

In this section, we present two examples which demonstrate
the efficacy of this concept. In the first example, we show that
the distribution of samples around various representative points
from typical real-world data sets is not uniform, suggesting
that the underlying statistical behavior varies from one region
to the next. In the second example, we show that the optimal
selected features vary considerably over the representative
regions. These two examples validate the motivation for the
localized approach, at least in these cases.

1) Clustering Around Representative Points: To demon-
strate the performance of the proposed algorithm in forming
a within-class cluster around representative points, the dis-
tribution of sample distances from two typical representative
points, selected respectively from the data sets “Adult” and
“ARR,” is shown in Fig. 8. Here, the normalized histogram
of within-class samples is shown in red and between-class
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Fig. 8. Distribution of samples around a typical representative point of
(a) “Adult” data set and (b) “ARR” data set. In each case, the normalized
histogram of within-class distances from the respective representative point
is shown in red, and that for between-class distances is in blue. The black
dashed line indicates the value of the radius of the respective Q(i) , for the
specified level of impurity γ = 0.2.

Fig. 9. Histogram of selected features for “Duke-Breast” data set. The
height of each feature index indicates what percentage of representative points
select the respective feature as a member of their optimal subfeature set. The
parameter α is set to the typical value of 10.

samples in blue. The height of each bar in the red (blue) his-
togram indicates what proportion of the within-class (between-
class) samples corresponds to the respective distance from
the representative point. All distances are computed in the
respective induced feature subspace. As may be seen, there is
a cluster of within-class samples, where the distances from the
corresponding representative point are relatively small. This
group forms the desired cluster. We note that the interclass
samples are distributed further from the representative point, as
desired. Fig. 8 illustrates an important concept related to lLFS,
in that only the localized clustering behavior is significant,
and so not all within-class samples are required to lie close
to the respective representative point. In this respect, it is
interesting to note that in both cases in the figure, there is
a second cluster of within-class samples (outside the Q(i)

radius). However, in this case, unlike that of the close-in
cluster, we see that these samples are heavily contaminated
with between-class samples. Therefore, in this far-away region,
the feature space corresponding to the representative point is
not appropriate for separating the classes and that a different
set of coordinates may be more effective in this case. Thus,
we see that this example provides an instance which shows
how an adaptive feature selection scheme has potential for
improved performance over one which uses a common set of
features.

2) Overlap of the Optimal Feature Subsets: To what extent
do the selected features vary over the representative regions?
To address this question, in Fig. 9, we show the normalized

Fig. 10. Classification error rate (in percent) of the proposed method for
the data set “Breast” where the parameter α ranges from 1 to the maximum
possible value of M, i.e., 130.

histogram of the selected features over all feature subsets
for the data set “Duke-Breast,” where the parameter α is set
to a typical value of 10. The height of each feature index
indicates what percentage of the representative points select
that respective feature as a member of their selected feature
subset. We see that the selected feature set indeed varies over
the set of available training samples, as a consequence of
the adaptability property of the lLFS method. As expected,
the optimal feature subsets overlap to some extent, but it
is also evident that there is no common feature subset that
pervades over all regions. This experiment demonstrates that
in typical problems, there exist a large number of common
features that are selected by a significant number of repre-
sentative points, and a less common set of features that are
informative, but only for some small subpopulations of the
sample space. The most commonly selected features perform
most of the discrimination task, and therefore provide a
form of “interpretability” of the features. However, the less
common features are still important, in that they can provide
“specialized” information relevant to discrimination, but only
over the small subpopulations. It is clear that the ability to
offer this specialized information cannot be afforded with a
method employing a global feature set.

The reader may also be interested to know what would be
the classification accuracy if the top ten dominant features,
i.e., most informative features, are selected as global features
and fed into the SVM classifier with an RBF kernel. The
classification error rate using such a subfeature set is 18.33%,
which is in the range of the error rate of our comparison
algorithms, but nevertheless is significantly greater than the
7.5% error rate corresponding to the proposed algorithm, as
presented in Table II for the Duke-Breast data set. This result
illustrates the effectiveness of including the less-common
features for this case, and hence gives an example of the
advantage of an adaptable feature selection approach.

F. Sensitivity to the Parameter α

With this example, we provide a demonstration of the
property of the proposed method where the selected number
of features tends to saturate at a value corresponding to the
number of discriminative features for the respective region,
as previously discussed in Section III-C. To demonstrate this
point, the classification error rate of the proposed method vs.
the number of selected features (averaged over all N feature
sets) for the data set “Breast” for all possible values of α
(i.e., 1 ≤ α ≤ 130) are shown in Figs. 10 and 11, respectively.
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Fig. 11. Averaged number of active features in the optimal feature

sets f∗(i) i = 1, . . . , N versus the parameter α. α ranges from 1 to the
maximum possible value of M = 130.

Fig. 12. Normalized histogram of distances of binary elements from the
corresponding relaxed elements for data set “Duke-Breast.” The parameter α
is set to the typical value of 10.

The saturation effect is clearly evident from the figures. The
saturation value can be obtained by examining the behavior
for a sufficiently large value of α; for example, in the case of
the data set “Breast,” as can be seen in Fig. 11, the saturation
value is 21. This value is the maximum number of features
that each local region may require.

G. How Far Is the Binary Solution From the Relaxed One?

To demonstrate that the relaxed solutions are proper approx-
imations of the final binary solutions obtained from the
randomized rounding process explained in Section II-B2, the
normalized distribution of the distances of binary elements
from the corresponding relaxed elements for data set “Duke-
Breast” is shown in Fig. 12. The height of each bar indicates
what percentage of elements have the corresponding value
as the distance between their binary solution and the linear
approximation. This result demonstrates that the relaxed solu-
tions are appropriate approximations of the binary solutions.

H. lLFS With a Large Number of Irrelevant Features

A reader may be interested to see performance of the
proposed lLFS method in selecting discriminative features in
the presence of thousands of irrelevant features. To this end,
the performance of the lLFS method on the real-world data set
“DNA” (where its “ground truth” is defined in Section IV-D)
is shown in Fig. 13 where samples of “DNA” are contaminated
with 105 iid irrelevant features. As is shown, after fea-
ture selection, the lLFS algorithm correctly selects attributes
indexed from 80 to 105 that are well matched to the “ground
truth,” as well as discarding the artificially added irrelevant fea-
tures indexed from 181 to 100 180. This experiment, as well as

the results reported in Table II, confirms the performance of the
proposed method for identification of the most discriminative
features in the presence of thousands of irrelevant features.

I. CPU Time

The required CPU time for computing optimal feature
subsets for lLFS and all our comparison feature selection
methods over all data sets are presented in Table IV. Note that
these algorithms are implemented in different programming
languages—MBEGA is implemented in Java, mRMR, and
FMS in C, and the remainder in MATLAB. In comparing
computing times in Table IV, the language must be taken into
consideration, since MATLAB is significantly slower than Java
or C.

The lLFS method is implemented in MATLAB where we
use the package “fmincon” for solving the convex and quasi-
convex optimization problems defined in (6) and (7). Because
the proposed lLFS method can be parallelized, depending on
the available number of CPU cores, the required CPU time
lies between the two extremes reported in the second column
in Table IV. If a computer has K cores, the CPU time of
the lLFS method will be 1/K of the upper extreme, and
therefore, the lower extreme corresponds to the case where
N cores are available (i.e., the required time for computing
the optimal feature subset for a single representative point)
and the upper extreme corresponds to the case where there
is no parallelization (i.e., N times the lower extreme). For
example, since the personal computer used in this paper has
eight cores, the required CPU times are 1/8 of the upper
extreme values. Note that these computation times could be
substantially further reduced by executing the algorithm in a
faster language such as C.

We do not promote the lLFS as being fast in the training
phase. Rather, we submit that its advantage is performance.
Regardless, even when lLFS is executed in MATLAB, the
required computational times lie between the fastest and
slowest of the comparison algorithms. From these data, it is
reasonable to say that the lLFS method is feasible with regard
to computational time.

Note further that, the feature selection process is performed
in the training phase, which is off-line. On the other hand, the
more critical online test phase, i.e., classification of query data,
is performed much more quickly, once training is complete—
the average test phase time over the data sets employed in
this paper is 6 ms. This is because the classification process
requires no optimization and only involves testing whether the
query data are contained within the specified hyperspheres, and
determining the class label of its nearest neighbors.

J. Discussion

The CPU time required for computing the optimal feature
subset of a single representative point versus the number of the
training samples N is shown in Fig. 14, where N is increased
up to 104. As may be seen, the figure shows approximately
linear complexity of CPU time (for one representative point)
with respect to the total number of training points. Therefore,
the complexity of the proposed lLFS algorithm for computing
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Fig. 13. Selected features for “DNA” data set where each sample is augmented with 105 i.i.d irrelevant features. The height corresponding to each feature
index indicates what percentage of representative points select the respective feature as a discriminative feature, where α is set to a typical value of 10.

TABLE IV

CPU TIME (s) TAKEN FOR FEATURE SELECTION BY DIFFERENT ALGORITHMS WHERE PARAMETER α (t) IS SET TO A TYPICAL VALUE 10.
FOR LLFS, THE LEFT-HAND NUMBER INDICATES THE REQUIRED COMPUTING TIME IN MATLAB USING N CORES, (i.e., K = N ),

WHEREAS THE RIGHT-HAND NUMBER IS FOR A SINGLE CORE

Fig. 14. CPU time taken for computing the optimal feature subset of a
representative point versus number of training samples N on a synthetic data
set (with a similar distribution as is illustrated in Fig. 4, where all three data
clusters have the same number of sample points) where α is set to 2 and the
data set is contaminated with 5000 irrelevant features.

all N training points is O{(N2/K )}, where K is the number
of available CPU cores (see Section IV-I).

The performance of the proposed lLFS method and the
best four comparison algorithms on data set “DNAl” that
has relatively large number of training samples is shown in
Table V. In this case, the classification result using lLFS is
comparable with the global algorithms. Therefore, it can be
said that in classification problems with a large enough training

TABLE V

MINIMUM CLASSIFICATION ERROR (IN PERCENT) OF THE DIFFERENT

ALGORITHMS APPLIED TO THE DATA SET “DNAl ” WITH RELATIVELY

LARGE TRAINING SET WHERE THE NUMBER OF SELECTED
FEATURES t (α) RANGES FROM 1 TO 30, SINCE THERE IS

NO PERFORMANCE IMPROVEMENT FOR LARGER VALUES.
THE LAST COLUMN CORRESPONDS TO THE

CLASSIFICATION RESULTS USING SVM
(WITH RBF KERNEL) WITHOUT PRIOR

FEATURE SELECTION

set, the overlap between the selected feature subsets (computed
by the lLFS method) would increase. Hence, considering the
fact that the global feature selection algorithms usually have
lower computational complexity, we recommend that global
feature selection algorithms be applied in such applications.

V. CONCLUSION

In this paper, we introduce the concept of localized feature
selection. The proposed local feature selection algorithm adap-
tively assigns a specific optimal feature subset to each of the
sample space regions, in contrast to traditional methods, which
select a common feature set for the entire sample space. This
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allows the feature set to optimally adapt to local variations of
the sample space.

The process of computing a specific feature subset for each
region is independent of those of other regions and hence
can be performed in parallel. Since the proposed algorithm
makes no assumptions regarding the data distribution over the
sample space, it is also an appropriate approach for the case
where the data are distributed on a nonlinear and/or a disjoint
manifold. The proposed feature selection is formulated as
a joint convex/increasing quasi-convex optimization problem
with no local minima. Query data are classified through
aggregation of “weak” classifier results, which are based on the
selected region-specific feature subsets. The VC dimension is
determined and, under certain assumptions, is found to have a
finite, moderate value. This, in combination with the fact that
the method selects only discriminative features, suggest the
lLFS method is insensitive to the overfitting problem. In this
paper, we specifically considered the challenging case where
a small number of observations are available for training.
Experimental results demonstrate the superior performance of
the proposed algorithm on a large variety of data sets.

APPENDIX

In this section, the VC dimension of the proposed lLFS clas-
sifier defined in Section II-C is discussed. To this end, for sim-
plicity, we only consider the case where the number of classes
is two, i.e., Y = {Y1, Y2}. Based on Sections II-C and III-B,
the family of functions F = { f (x(i); γ )} for the lLFS classifier
is given, such that the functions f (·; ·) are defined as

f (x(i); γ ) = argmax
Yl∈Y

{SY1(x
(i); γ ), SY2(x

(i); γ )} (19)

where SYl (x
(i); γ ), l = 1, 2 is defined in (9) to (11). The only

parameter which varies in f is the radius of the hyperspheres,
controlled through γ .

It is necessary to make assumptions in the derivation of the
VC dimension for the lLFS classifier. First, we assume that
within the kth frame (i.e., the induced space corresponding
to x(k)), some points of the same class as x(k) form a cluster
around x(k)

p . We assume that samples within the same data
cluster are close enough, such that the localized cluster centers
and the radii of the corresponding weak classifiers are similar
enough so that the query data fall within all hyperspheres.
This is not unreasonable since, in the lLFS algorithm, the
corresponding feature subset of the kth frame is selected to
encourage clustering. Furthermore, we assume the underlying
problem is well behaved so that the number of clusters L does
not go to infinity as N →∞, where N is the total number of
training points.

Theorem: We are given the lLFS class of functions F
as described. Then, under the stated assumptions, the VC
dimension is L(
(1/γ )� − 1).

Proof: Recall the radius of a weak classifier grows until
the “impurity level” of the corresponding hypersphere Q(k) is
not greater than the predefined parameter γ , where “impurity
level” is the ratio of the number of samples with the opposite
class label to the number of samples having the same class
label as x(k)

p . It follows therefore that, in the shattering process

to define the VC dimension, each weak classifier correspond-
ing to the cluster Ll misclassifies �γ |Ll |� samples where �·�
denotes the floor function and |Ll | is the cardinality of the
lth cluster where l = 1, . . . , L. Therefore, in the shattering
process, there is no misclassification as long as �γ |Ll |� = 0,
i.e., the maximum cardinality of the lth cluster without any
classification error is 
(1/γ )�−1, where 
·� denotes the ceiling
function. Hence, over L clusters, the lLFS classifier can shatter
at least L(
(1/γ )� − 1) samples.

Now, assume the case where there is an extra training point
added, i.e., there are altogether a total of L(
(1/γ )� − 1)+ 1
training samples. This extra training point will be situated
in one of the existing clusters. Without loss of generality, in
the shattering process, we assign label Y1 to the samples of
this cluster and label Y2 to the samples of the other clusters.
The number of samples with label Y1 is η1. The radii of
all weak classifiers associated with the cluster Y1 must now
grow until one sample from class Y2 is misclassified, i.e., until
the impurity level is not greater than γ . This sample will be
misclassified by all η1 weak classifiers (see the assumptions).
Therefore, for this sample, the first term of the argmax function
in (19) is 1, while the second term is less than or equal
to 1. Hence, for any value of L, the classifier output is Y1
or 0 (i.e., no decision), which is a wrong decision. Similarly,
by increasing the number of training points in the shattering
process, there will be a class label combination in which at
least one point will be misclassified.

Thus, the number of points that can be shattered is at most
L(
(1/γ )� − 1), i.e., the VC dimension of the lLFS classifier
is L(
(1/γ )� − 1). �
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