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Deep Multi-Representation Learning for Data
Clustering

Mohammadreza Sadeghi∗, and Narges Armanfard

Abstract—Deep clustering incorporates embedding into clus-
tering in order to find a lower-dimensional space suitable for
clustering tasks. Conventional deep clustering methods aim to
obtain a single global embedding subspace (aka latent space) for
all the data clusters. In contrast, in this paper, we propose a deep
multi-representation learning (DML) framework for data clus-
tering whereby each difficult-to-cluster data group is associated
with its own distinct optimized latent space and all the easy-to-
cluster data groups are associated with a general common latent
space. Autoencoders are employed for generating cluster-specific
and general latent spaces. To specialize each autoencoder in its
associated data cluster(s), we propose a novel and effective loss
function which consists of weighted reconstruction and clustering
losses of the data points, where higher weights are assigned to the
samples more probable to belong to the corresponding cluster(s).
Experimental results on benchmark datasets demonstrate that
the proposed DML framework and loss function outperform
state-of-the-art clustering approaches. In addition, the results
show that the DML method significantly outperforms the SOTA
on imbalanced datasets as a result of assigning an individual
latent space to the difficult clusters.

Index Terms—Data clustering, autoencoder, multiple represen-
tation learning, cluster-specific autoencoders.

I. INTRODUCTION

IN many science and real-world applications, obtaining
useful information about the class (aka label) of data points

is hard or expensive. There are algorithms with the goal of
handling the sparse labeled data issue, such as weakly super-
vised [1, 2] and semi-supervised methods [3, 4] that use only a
few labeled data during the training phase. Unsupervised clus-
tering methods endeavor to extract valuable knowledge only
from unlabeled data samples in a fully unsupervised manner.
Clustering addresses many difficulties in practical applications
such as astronomical information extraction [5], medical data
analysis [6], gene sequencing [7], and information retrieval
[8, 9, 10, 11]. The ultimate goal of clustering algorithms is to
find similar and dissimilar groups of data samples based on a
similarity metric.

Although extensive varieties of clustering methods have
been recently proposed, the two conventional algorithms k-
means [12] and fuzzy c-means [13] are still utilized in
many practical applications [14, 15, 16] because of their
simplicity. However, these algorithms do not show promising
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clustering performance when the data samples are not evenly
scattered around cluster centroids. Furthermore, they suffer
from the curse of dimensionality [17] when dealing with high-
dimensional data; this causes their failure in many recent
applications where data samples have numerous features [18].

Recently, deep learning-based clustering algorithms have
been significantly investigated in various applications such
as image segmentation [19], network embedding [20], face
recognition [21], and machine vision [22]. The goal of these
algorithms is to find an optimal lower-dimensional represen-
tation (aka latent representation) for the input data points,
in which data clusters can be separated by performing a
traditional clustering algorithm such as k-means or fuzzy c-
means.

To obtain the optimal latent space in an unsupervised
manner, researchers have proposed different autoencoder (AE)
structures [23, 24, 25]. In general, an AE comprises two
networks: an encoder network that projects the original input
space onto a lower-dimensional space (aka latent space) and
a decoder network that aims to reconstruct the original input
space using the latent representation of the data points gener-
ated by the encoder network. Encoder and decoder networks
are trained to minimize data reconstruction loss. More recent
algorithms try to make the AE’s latent space more suitable
for data clustering by minimizing data clustering loss besides
the data reconstruction loss [26, 27, 28]. However, all suffer
from the following drawbacks. 1) at the beginning of each
training epoch, data points are assigned to the most probable
cluster – i.e., a crisp cluster assignment is performed at the
beginning of each epoch. They then assume that the obtained
crisp assignments are correct and compute the clustering
loss accordingly, e.g. see [26, 27, 28]. This assumption may
mislead the AE’s training phase due to the unsupervised nature
of the clustering task, where the true cluster assignments of
the data samples are unknown. This issue would be more
crucial when the non-crisp (aka soft) K-dimensional cluster
assignment vector (acquired before converting it to the crisp
K-dimensional one-hot vector) is far from the K-dim one-hot
vector obtained by the crisp assignment. K is the number of
clusters. 2) All the traditional deep-learning-based methods
ignore the different characteristics of the data clusters and
assign a single common latent space, obtained from the trained
AE, to all the data clusters. In fact, they assume that a single
latent space can optimally characterize variations over clusters.

In this paper, we offer an alternative to the conventional
deep learning-based clustering approaches by introducing the
novel concept of deep multi-representation learning (DML)
framework where the representation varies across clusters in a
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manner that optimally adapts to the variations within a cluster.
We propose that an enhanced description of the original sam-
ple space could be obtained by allowing the “difficult” clusters
to be associated with their own distinct representation space,
which is optimized for that specific cluster. In this study, a
cluster is considered difficult if the Euclidean distance of its
corresponding center is too close to at least one of the other
cluster centers, and a cluster is considered an “easy” one if its
corresponding center is far from all the other cluster centers.
DML trains a common autoencoder, called General AE, for the
easy clusters and cluster-specific autoencoders for the difficult
ones. More specifically, the DML’s mission is to create distinct
latent spaces in which samples of the corresponding cluster(s)
are closely packed around their associated center(s). DML is a
general framework capable of improving the performance of
any existing reliable AE-based clustering algorithm M that
aims at gathering the data points around their corresponding
cluster centers, e.g., [29, 28, 27]. To this end, all the DML
autoencoders are initialized by the M’s autoencoder network.
The DML’s autoencoders are then updated to improve the
compactness of their corresponding cluster(s) through mini-
mizing a novel loss consisting of weighted reconstruction and
clustering losses of the data points. For each autoencoder,
higher weights are assigned to the samples that are more
probable to belong to the corresponding cluster(s). Minimizing
the reconstruction losses is to maintain the local structure of
the data points [26, 30] and to avoid too much manipulation
of the latent spaces by the clustering loss. Minimizing the
clustering loss encourages the data points to sit close to their
corresponding cluster centers hence helping in providing AE
latent spaces that are more appropriate for clustering.

To summarize, the main contributions of this work are:
• We propose the novel concept of deep multi-

representation learning, which performs the data
clustering task by employing multiple autoencoders: a
general autoencoder for the easy clusters and cluster-
specific autoencoders for the difficult ones.

• We develop the training procedure of the cluster-specific
AEs to discover the appropriate latent representation for
the tangled clusters.

• We devise a general AE to obtain representations for the
easy data clusters that are well separated from the other
clusters.

• We propose to train each of the DML’s autoencoders with
a novel loss function consisting of weighted reconstruc-
tion and clustering losses, where weights are assigned
based on the similarity between the data points and the
corresponding cluster centers.

• Our extensive set of experiments on nine benchmark
datasets demonstrate the effectiveness of the proposed
DML framework.

II. RELATED WORKS

The scope of this paper does not allow for a comprehensive
review of previous works. However, we recommend referring
to [31, 32, 33] for an in-depth analysis of non-deep learning-
based clustering and subspace learning methods. The subse-

quent discussion will mainly focus on reviewing some relevant
deep clustering methods.

A. DNN-based methods

Deep neural networks (DNN) have been broadly investi-
gated to handle clustering tasks. These algorithms aim to train
a DNN model in an unsupervised manner. For example, [34]
finds a new latent space in which the predicted representation
of augmented data samples is as close as possible to those
of original data points by maximizing information-theoretic
dependency between data points and their predicted represen-
tations. RUC [35] presents a clustering framework that could
enhance the clustering performance of other algorithms. RUC
consists of two steps. In the first step, it purifies datasets
by assigning labels to the most confident samples. Then
in the second phase, it retrains a neural network using the
refined dataset. [36] obtains indicator features for each data
sample by training a DNN model in an unsupervised manner.
Then, the data are assigned to different clusters based on the
extracted feature vectors. Recently, unsupervised contrastive
learning algorithms have been widely studied [37, 38]. These
algorithms define negative and positive pairs by applying data
augmentation. They then project data samples onto a new
feature space and minimize (maximize) the distance between
positive (negative) pairs in the new space. A thorough review
of DNN-based methods can be found in [39]. Among the
DNN-based algorithms, the AE-based and generative-based
clustering algorithms are widely used in practical applications.

B. AE-based methods

AE-based algorithms use a deep AE to map the original
data space to a lower-dimensional latent space. In some con-
ventional algorithms [40, 41], the clustering task is separated
from learning the lower-dimensional feature space. [40] trains
an AE by imposing a locality-preserving constraint to obtain
the lower-dimensional data space. It then applies k-means to
define clusters. Graph clustering [42, 43] is an essential branch
of clustering, which aims to separate nodes of a graph based
on the relationship between their connections (aka edges). [41]
utilizes a deep AE to find lower-dimensional features for a
graph. It then uses k-means to assign graph nodes to different
clusters.

More recent AE-based algorithms simultaneously map the
data points onto a lower dimensional space and perform
clustering in the lower dimensional space. This is to further
enhance the final clustering performance. For instance, deep
embedding clustering (DEC) [29] trains a stacked AE layer
by layer, where each layer is a denoising AE that aims
to reconstruct the previous layer’s output after a random
corruption. It then discards the decoder part and fine-tunes
the encoder part by minimizing a Kullback–Leibler (KL)
divergence between the distribution of soft assignments and
a pre-determined target distribution. DEC utilizes Students’
t-distribution for finding soft assignments to measure the
similarity between data points and cluster centers. Because
of the unsupervised nature of the clustering problem, the true
target distribution of the data points is unknown. DEC suggests
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Fig. 1. Block diagram of the proposed DML framework. (a) Training scheme of DML. (b) Final crisp cluster assignment phase.

an arbitrary target distribution defined based on the squared of
the soft assignments. Despite DEC, a few recently proposed
algorithms, i.e., [28, 27, 26, 30], take advantage of the decoder
part in addition to the encoder to retain the data locality
structure. For example, improved deep embedding clustering
(IDEC) [26] enhances the clustering performance of DEC by
minimizing the reconstruction loss of an AE besides the KL
divergence of DEC. Improved deep embedding clustering with
fuzzy supervision (IDECF) [30] improves DEC by estimating
target distribution using a fully connected network called
deep fuzzy c-means network. It also considers the reconstruc-
tion loss besides the KL divergence loss in its optimization
problem. Deep clustering network (DCN) [28] simultaneously
embeds data points in a lower-dimensional space and performs
clustering. DCN minimizes a weighted combination of the
reconstruction loss and the objective function of k-means
to find a k-means-friendly latent space where clusters are

located around the cluster centers. DCN separately updates the
network’s weights and cluster centers. The latter is by finding
an optimal solution to a discrete optimization problem. Deep
k-means (DKM) [27] has the same objective function as DCN.
However, it considers a continuous optimization problem for
updating the AE’s parameters and cluster centers.

C. Deep generative-based algorithms

Variational autoencoders (VAEs) [44] and Generative ad-
versarial networks (GANs) [45] are the two popular deep
generative models which could be effective for finding data
distribution and performing the data clustering task. For exam-
ple, variational deep embedding (VaDE) [46] proposes a data
generative procedure using Gaussian Mixture Model (GMM)
and a deep neural network (DNN). VaDE aims to find the
distribution of data points by maximizing the likelihood of a
given data sample. It then assigns data points to the most prob-
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able cluster. Deep adversarial clustering (DAC) [47] is another
generative model that employs an adversarial autoencoder
(AAE)[48] for the clustering task. AAE’s generator generates
a latent code and attempts to deceive the discriminator into
believing that the latent code is drawn from the specified
distribution. The discriminator, on the other hand, predicts
whether a given latent code was generated by the autoencoder
or a random vector drawn from the normal distribution. DAC’s
loss function consists of a reconstruction term, Gaussian
mixture model likelihood, and the adversarial objective.

GAN is a training method for generative models that frames
the problem as a supervised learning task with two sub-
models: the generator model, which is trained to generate
new samples, and the discriminator model, which attempts to
categorize examples as real or fake (generated). Many GAN-
based clustering algorithms [39] have been proposed. [49]
presents an unsupervised GAN-based algorithm for learning
disentangled representations through maximizing the mutual
information between a subset of latent variables and the
observation. GAN mixture model (GANMM) [50] extends the
concept of GMM by developing a GAN model for each cluster.
Vanishing gradients and mode collapse plague the GAN-based
clustering algorithms.

III. PROPOSED METHOD

Consider a K-clustering problem that aims to divide the
given dataset X = {x1, x2, ..., xN} with N samples into K
disjoint groups (aka clusters), where the ith data sample is
denoted by xi, and K is the predefined number of groups.

The DML aims at improving the clustering performance of
the existing AE-based clustering methodM that tries to gather
data samples around their corresponding cluster center in the
single common latent space of the M’s AE. Generally, the
clustering performance of M drops when there are tangled
clusters in the AE’s latent space. To improve the performance
of M, DML assigns distinct autoencoders to such difficult
clusters and a common general autoencoder to the well-
separated clusters. A cluster is considered as difficult if the
Euclidean distance (in theM’s latent space) between its center
and the closest cluster center is less than threshold τ which is
a user-settable parameter. Non-difficult clusters are considered
easy.

A. Notation clarification and initialization

Assume there are L−1 difficult clusters (hence there are K-
L-1 easy clusters), where L < K. DML trains an individual AE
for each of the difficult clusters and a single common AE for
the easy clusters. We refer to the lth AE of DML as AE(l), l =
1, . . . ,L; where AE(L) denotes the general AE assigned to the
easy clusters and the remaining AEs, i.e., AE(l) l = 1, . . . ,L−
1, are assigned to the L−1 difficult clusters.

The cluster centers, i.e. µ(k) k = 1, . . . ,K, are initialized
to the centers obtained by M. Consequently, all the DML’s
autoencoders are initialized with the M’s autoencoder.

The AE of M is denoted by ÃE. The encoder and decoder
of ÃE are respectively denoted by f̃(.) and g̃(.). Repre-
sentation of X in the latent space of ÃE is denoted by

Ũ = {ũ1, ..., ũN}, where ũi = f̃(xi; θ̃e) ∈ Rd, d indicates
dimension of the latent space, and θ̃e represents parameters of
the encoder network. The reconstructed output of ÃE is shown
by x̃i = g(ũi; θ̃d), where θ̃d denotes the decoder parameters
of ÃE.

The encoder and decoder parameters of the lth autoencoder
of DML, i.e. AE(l), are respectively shown by f (l)(.) and
g(l)(.). U (l) = {u(l)1 , ..., u

(l)
N } denotes the representation of X

in the latent space of AE(l), where u(l)i = f (l)(xi; θ
(l)
e ) ∈ Rd

and θ
(l)
e shows AE(l)’s encoder parameters. Also, the recon-

structed output of AE(l) is denoted by x̂
(l)
i = g(l)(u

(l)
i ; θ

(l)
d ),

where θ(l)d denotes the decoder parameters of AE(l).

In the following, for simplicity, we use the notation (.)(lk)

to refer to the DML’s latent space associated with the kth

data cluster. In general, if D = {d1, ..., dL−1} is the set of
difficult clusters and and E = {e1, ..., eK−L+1} is the set of
easy clusters, then lk can be obtained as below:

lk =

L−1∑
i=1

i1{k = di}+ L1{k ∈ E}. (1)

As an instance, assume there are four data clusters, i.e., k =
{1, 2, 3, 4} and K = 4, of which the second and third ones
(i.e., k = {2, 3}) are difficult, and the first and fourth clusters
(i.e., k = {1, 4}) are easy. Therefore, in this example, L = 3,
D = {2, 3}, E = {1, 4}, and lk for k = 1, 2, 3 and 4 are
respectively equal to 3, 1, 2 and 3 – e.g., the DML’s AE
associated to k = 2 is AE(1), and the representation of xi in
the latent space corresponding to the data cluster k = 2 is u(1)i
because l2 = 1. Note that lk ∈ {1, 2, ..,L}.

B. Soft assignment

To focus AE(lk) on creating a latent space specialized in the
kth cluster, we devise a novel loss function that navigates the
training process of the AE(lk)’s encoder and decoder networks
to pay more attention to the data points similar to µ(k). To
measure the similarity between a data point xi and the cluster
center µ(k), denoted by pik where pi = [pi1, . . . , piK ], we
propose to solve the optimization problem shown in (2a) where
m ≥ 1 is the level of fuzziness 1. As is shown in (2b), we use
the Lagrangian multiplier method [51] to solve (2a) where the
Lagrange multiplier γ is computed by substituting pik from
(2b) in the constraint of (2a), as is shown in (2f). The final
value for the similarity of data point xi to the kth cluster,
i.e., pik, is obtained by substituting γ from (2f) in (2b), as
is shown in (2g). It can be seen that samples that are closer
to µ(k), in the corresponding latent space U (lk), take higher

1(2a) is inspired by the fuzzy c-means clustering method; the main
difference is that in (2a) there are multiple representations for a single data
point while in fuzzy c-means each data point has a single representation.
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similarity values.

minpik
∑K
k=1 p

m
ik||u

(lk)
i − µ(k)||22

s.t.
∑K
k=1 pik = 1 (2a)

S =
∑K
k=1 p

m
ik||u

(lk)
i − µ(k)||22 − γ(

∑K
k=1 pik − 1)

∂S
∂pik

=0

−−−−−→ pik = ( γ

m||u(lk)

i −µ(k)||22
)

1
m−1 (2b)

since we know
∑K
k=1 pik = 1, we substitute the value of pik

by the value we obtained in 2b; hence:
K∑
k=1

pik = 1
2b−→
∑K
k=1(

γ

m||u(lk)

i −µ(k)||22
)

1
m−1 = 1 (2c)

−→
∑K
k=1(

γ
m )

1
m−1 ( 1

||u(lk)

i −µ(k)||22
)

1
m−1 = 1 (2d)

−→ ( γm )
1

m−1 (
∑K
k=1

1

||u(lk)

i −µ(k)||22
)

1
m−1 = 1 (2e)

−→ γ = m
(

1∑K
k=1

1

||u
(lk)
i
−µ(k)||2/(m−1)

2

)m−1
(2f)

if we substitute the value we obtained for γ in (2b), we have:

2f−→ pik =

1

||u
(lk)
i
−µ(k)||2/(m−1)

2∑K
j=1

1

||u
(lj)

i
−µ(j)||2/(m−1)

2

(2g)

Note that, since
∑K
k=1 pik = 1, one can also think of

pik as a soft assignment of data point xi to the kth cluster;
hence, the two terms “similarity” and “soft assignment” are
interchangeable throughout this paper.

C. Training Procedure

As discussed before, we propose to use weighted samples
when training the autoencoder corresponding to the kth cluster,
i.e., AE(lk). We consider the soft assignment pik (defined
in Section III-B) as the weight of sample xi when training
AE(lk). This is to realize the idea of assigning higher weights
to the samples closer to the target cluster center µ(k), in the
corresponding latent space U (lk).

We define the loss function L(lk), shown in (3), to be
minimized when training AE(lk), where L(lk)

r and L(lk)
c re-

spectively denote the weighted reconstruction and clustering
losses, and λ is a hyperparameter that indicates the effect of the
clustering loss in the networks’ training. AE(lk)’s parameters,
i.e. θ

(lk)
e and θ

(lk)
d for k = 1, . . . ,K, are optimized in an end-

to-end manner using the back-propagation algorithm while
minimizing L(lk), k = 1, . . . ,K.

L(lk) = L(lk)
r + λL(lk)

c (3a)

L(lk)
r =

∑
xi∈B pmik||xi − x̂

(lk)
i ||22 (3b)

L(lk)
c =

∑
xi∈B pmik||u

(lk)
i − µ(k)||22 (3c)

Most of the existing deep-clustering methods (see Section
II) only consider the reconstruction loss (to be minimized) in
the hope of making the latent space more discriminative for
data clustering, while the reconstruction loss has no substantial

Algorithm 1 DML Algorithm

Input: Data points X , θ̃e, θ̃d, µ(k) for k = 1, . . . ,K, τ ,
and MaxIter.
Output: θ

(l)
e , θ(l)d for l = 1, . . . ,L.

1: Find sets D and E based on Section III-A.
2: Initialize θ

(l)
e and θ

(l)
d for l = 1, . . . ,L with θ̃e and θ̃d

respectively.
3: for iter ∈ {1, 2, ...,MaxIter} do
4: for k ∈ {1, 2, ...,K} do
5: Compute soft assignments pik using (2g), for i ∈ B
6: Update AE(lk)’s parameters employing loss function

(3)
7: end for
8: end for
9: Use crisp assignment based on Section III-D to assign data

point to clusters

connection with the clustering performance. The proposed
loss function shown in (3) considers both of the influential
factors reconstruction and clustering performances through
incorporating their corresponding losses. This allows AE(lk)

to simultaneously learn a feature representation and compact
data points with similar latent representations around their
corresponding cluster center.

By incorporating the soft assignment pik in the reconstruc-
tion loss L(lk)

r , we direct the encoder and decoder networks
to be specialized in reconstructing samples that are more
probable to belong to the kth cluster. Similarly, including pik
in the clustering loss L(lk)

c encourages data points that are
more probable to belong to the kth cluster to sit close to their
corresponding cluster center µ(k), in the latent space U (lk).
Thus, by minimizing L(lk)

c , we implicitly minimize the intra-
cluster distances between samples of the kth cluster.

Finally, to update the cluster center µ(k), we define total
loss function L(lk)

t , k = 1, ...,K, and set its derivative to 0, as
is shown in (4).

L(lk)
t =

∑
xi∈X

pmik

(
||xi − x̂(lk)i ||

2
2 + λ||u(lk)i − µ(k)||22

)
∂L(k)t

∂µ(k)
=0

−−−−−→ µ(k) =

∑
xi∈X p

m
iku

(lk)
i∑

xi∈X p
m
ik

(4)

D. Crisp Assignment

We utilize the trained encoders and cluster centers to
compute the final degree of membership, pik, based on (2g).
Each data point is assigned to the most probable cluster.

The pseudo-code of DML is presented in Algorithm 1. The
block diagram of DML is shown in Fig. 1.

IV. EXPERIMENTS

In this section, we investigate the effectiveness of our
proposed DML framework on nine benchmark datasets by
running an extensive set of experiments. Both large-scale
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and small-scale datasets are considered. The clustering per-
formance of the DML framework is compared against thir-
teen traditional and state-of-the-art clustering methods. The
code of the proposed DML framework is available at
https://github.com/Armanfard-Lab/DML.

Demonstration of the DML’s performance on the large-scale
datasets is shown in Sections IV.C, IV.D, IV.E, IV.F, IV.G, and
IV.H. Demonstration of the performance of the DML on the
small-scale datasets is shown in Section IV.I.

A. Evaluation Metrics

To evaluate clustering performance, we utilize two widely
used metrics, including clustering accuracy (ACC) [52] and
normalized mutual information (NMI) [53]. ACC finds the best
match between the ground truth and predicted cluster labels.
NMI calculates the normalized reduction in entropy of a class
when cluster labels are assigned. The formula for ACC and
NMI are shown below:

ACC = maxm
∑N
i=1 1{li=map(ci)}

N (5a)

NMI = I(l;c)
max{H(l),H(c)} , (5b)

where li and ci respectively denote the ground truth and
predicted labels for a given data point xi. map(.) represents
the best mapping between true and predicted labels. Moreover,
H(.) denotes entropy function and I(l; c) presents the mutual
information between ground truth label l = {l1, l2, ..., lN} and
predicted cluster assignments c = {c1, c2, ..., cN}. ACC and
NMI vary in the interval of [0,1], where higher scores specify
better clustering performance.

B. Datasets

The effectiveness of our proposed DML framework is eval-
uated on nine commonly used large- and small-scale datasets.
Since clustering is a fully unsupervised task, we merge train
and test sets for all datasets. Concatenating train and test sets
is a standard practice in the clustering research studies [26,
30, 29, 54].

The large-scale datasets are:
(1) MNIST [55] comprises 60,000 training and 10,000 test
gray-scale handwritten digits with size 28 × 28. This dataset
has ten classes.
(2) Fashion MNIST [56] contains various types of fashion
items. The number of samples and the image size are the same
as those of the MNIST dataset.
(3) 2MNIST is a more challenging dataset that is created
by concatenation of the two MNIST and Fashion MNIST
datasets. Hence, it consists of 140,000 gray-scale images from
20 classes.
(4) CIFAR-10 [57] contains 60,000 RGB images from 10
different categories, where the size of each image is 32× 32.
(5) STL-10 [58] comprises of 13,000 96 × 96 RGB images
from different objects.
(6) CIFAR-100 [57] is similar to the CIFAR-10 in terms
of number of samples and image size. However, it has 20
supergroups based on the similarity between images.

The small-scale datasets are:
(7) Coil-20 [59] comprises of 1,440 32×32 images of 20

different objects.
(8) UMIST [60] is contains of 575 112 × 92 gray-scale face
images of 20 individuals.
(9) USPS [61] comprises of 9,298 16× 16 handwritten digits
0 to 9.

C. Clustering Performance

The effectiveness of our proposed DML framework is
compared with thirteen popular conventional and state-of-the-
art clustering algorithms.

k-means [12], large-scale spectral clustering (LSSC) [62],
and locality preserving non-negative matrix factorization
(LPMF) [63] are among the most commonly used conven-
tional clustering algorithms. Deep-learning-based algorithms
include deep embedding clustering (DEC) [29], improved deep
embedding clustering (IDEC) [26], deep clustering network
(DCN) [28], deep k-means (DKM) [27], variational deep
embedding (VaDE) [64], GAN mixture model for clustering
(GANMM) [65], [66], and the very recent methods contrastive
clustering (CC) [37] and deep successive learning (DSL) [67].
In addition to these algorithms, we compare our results with
scalable deep k-subspace clustering (SDkC), which offers a
scalable and efficient approach for subspace clustering through
the application of deep learning. SDkC is one of the few
deep subspace clustering (DSC) methods capable of handling
large-scale datasets that feature high-dimensional features and
multiple subspaces. Furthermore, we report the clustering
performance of the baseline approach AE + k-means, in which
k-means is simply applied to the latent representation of an
AE that has a similar architecture to the AE’s used in the DML
method; the AE in AE + k-means is trained to minimize the
data reconstruction loss. In Section II, you may find more
information about the comparison algorithms. Note that, in all
the below Tables and Figures, for the comparison methods,
we executed the code released by the authors with the same
hyper-parameters specified in the original papers if the results
of interest are not reported in the corresponding original paper.
When the code is not publicly available or not applicable to
the dataset, we put dash marks (-) instead of the corresponding
results.

The effectiveness of DML in boosting the performance of
the state-of-the-art AE-based clustering methods is shown in
Table I. Note that in general, DML would be effective for
the AE-based clustering algorithms which aim at creating
hyperspheres of data clusters in a lower dimensional space,
such as DCN [28], DKM [27] and DSL[67]. In Table I,
DML-M refers to the performance of DML when the AE of
algorithm M is used as the DML’s autoencoders (see Section
III). As it can be seen from the table, DML significantly
improves the clustering performance of the base method M
mainly due to assigning cluster-specific AEs to the difficult
data clusters. On average, DML improves ACC (NMI) of
DCN, DKM, and DSL, respectively, by 2.50% (2.48%), 2.84%
(2.75%), and 0.42% (0.55%). Less significant improvement in
DSL compared to that of DCN and DKM could be associated
with the fact that DSL implicitly has some sort of cluster-
specific training procedure when training its AE, but note that
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TABLE I
ACC AND NMI (IN PARENTHESIS) ON THE BENCHMARK DATASETS FOR METHODM AND DML-M WHEREM∈ {DCN, DKM, DSL}. THE MEAN

AND THE VARIANCE ARE OBTAINED BY RUNNING TEN INDEPENDENT EXPERIMENTS.

`````````Method
Datasets MNIST Fashion MNIST 2MNIST CIFAR10 STL10 CIFAR100

DCN 83.00 (81.00) 51.22 (55.47) 41.35 (46.89) 30.47 (24.58) 33.84 (24.12) 20.17 (12.54)
DKM 84.00 (81.54) 51.31 (55.57) 41.75 (46.58) 35.26 (26.12) 32.61 (29.12) 18.14 (12.30)
DSL 96.22 (90.66) 62.90 (63.58) 45.31 (63.00) 83.40 (71.32) 96.02 (91.90) 50.30 (49.80)

DML-DCN 87.48±0.68 (81.63±0.31) 55.57±0.45 (55.90±0.71) 44.79±0.34 (58.23±0.29) 31.51±0.15 (25.00±0.23) 34.05±0.19 (25.14±0.21) 21.56±0.31 (13.58±0.26)
DML-DKM 91.18±0.78 (82.58±0.34) 55.36±0.16 (56.00±0.12) 44.66±0.84 (58.30±0.72) 36.28±0.21 (27.00±0.18) 34.10±0.29 (31.21±0.34) 18.56±0.22 (12.69±0.24)
DML-DSL 96.36±0.15(91.24±0.22) 63.20±0.21 (64.80±0.25) 45.83±0.34 (63.40±0.23) 84.15±0.36 (71.70±0.29) 96.45±0.13 (92.11±0.18) 50.68±0.22 (50.19±0.15)

TABLE II
ACC AND NMI (IN PARENTHESIS) ON THE BENCHMARK DATASETS FOR DIFFERENT CLUSTERING METHODS. THE MEAN AND THE VARIANCE ARE

OBTAINED BY RUNNING TEN INDEPENDENT EXPERIMENTS.

`````````Method
Datasets MNIST Fashion MNIST 2MNIST CIFAR10 STL10 CIFAR100

k-means 53.20 (50.00) 47.40 (51.20) 32.31 (44.00) 22.90 (8.70) 19.20 (12.50) 13.00 (8.40)
LSSC 71.40 (70.60) 49.60 (49.70) 39.77 (51.22) 21.14 (10.89) 18.75 (11.68) 14.60 (7.92)
LPMF 47.10 (45.20) 43.40 (42.50) 34.68 (38.69) 19.10 (8.10) 18.00 (9.60) 11.80 (7.90)
DEC 84.30 (83.72) 51.80 (54.63) 41.20 (53.12) 30.10 (25.70) 35.90 (27.60) 18.50 (13.60)
IDEC 88.13 (83.81) 52.90 (55.70) 40.42 (53.56) 36.99 (32.53) 32.53 (18.85) 19.61 (14.58)
DCN 83.00 (81.00) 51.22 (55.47) 41.35 (46.89) 30.47 (24.58) 33.84 (24.12) 20.17 (12.54)
DKM 84.00 (81.54) 51.31 (55.57) 41.75 (46.58) 35.26 (26.12) 32.61 (29.12) 18.14 (12.30)

AE + k-means 86.03 (80.25) 57.94 (57.15) 44.01 (62.80) 80.11 (70.35) 95.89 (91.75) 49.86 (48.57)
VaDE 94.50 (87.60) 50.39 (59.63) 56.60 (51.20) 29.10 (24.50) 28.10 (20.00) 15.20 (10.80)

GANMM 64.00 (61.00) 34.00 (27.00) 50.12 (49.35) - - -
SDkC 83.30 (77.38) 60.02 (62.30) - - - -

CC 88.56 (84.21) 64.52 (61.45) 42.15 (58.89) 79.00 (70.50) 85.00 (76.40) 42.90 (43.10)
DSL 96.22 (90.66) 62.90 (63.58) 45.31 (63.00) 83.40 (71.32) 96.02 (91.90) 50.30 (49.80)

DML-DSL 96.36±0.15 (91.24±0.22) 63.20±0.21 (64.80±0.25) 45.83±0.34 (63.40±0.23) 84.15±0.36 (71.70±0.29) 96.45±0.13 (92.11±0.18) 50.68±0.22 (50.19±0.15)

(b) DEC (d) DCN (e) DKM(a) Raw data (c) IDEC (f) DSL

(h) AE + k-means(g) CC (i) DML-DCN (j) DML-DKM (k) DML-DSL

Fig. 2. Clustering visualization of different methods using t-SNE, for MNIST dataset. Axes range from -100 to 100.

(a) DCN (b) DKM (c) DSL

Fig. 3. Visualization of the easy and difficult clusters. Cluster centers of easy
and difficult clusters are shown by green triangles and red circles, respectively.

DSL still trains a single common latent space for all of the
data clusters. To further show the effectiveness of the proposed
DML framework, considering that DSL [67] is the most recent
and effective AE-based clustering algorithm, we pick DSL as
the base of DML and compare DML-DSL with more SOTA
algorithms in Table II. As can be seen, DML-DSL outperforms
all comparison methods on 75 out of 76 reported results. Each
dataset’s best result is shown in bold. The second-top results
are denoted by an asterisk (*).

For the DML-M method, we use the same network struc-

ture suggested by the M method for each dataset, where
M∈ {DCN[28], DKM[27], DSL[54]}. We first train a single
AE using theM method to obtain the initial network parame-
ters (θ̃e and θ̃d) and cluster centers µ(k). We then train L AEs
and update cluster centers based on our proposed algorithm in
Section III. For all datasets τ = dmin+dmax

4 , where dmin and
dmax are the minimum and maximum distance between initial
cluster centers, respectively. We choose λ = {0.001, 0.01, 0.1}
based on the accuracy of our model on the validation set for
each dataset. Moreover, in DML-M, we use the same data
pre-processing technique as what is used in the original M
method.

D. t-SNE Visualization

In Fig. 2, we further demonstrate the effectiveness of the
proposed DML framework by comparing different data rep-
resentations of the MNIST dataset using t-SNE visualization
[68]. To this end, we use the trained cluster-specific AEs
and the general AE to obtain the L latent representations
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TABLE III
ACC AND NMI (IN PARENTHESIS) ON IMBALANCED DATASETS FOR DIFFERENT CLUSTERING METHODS. THE MEAN AND THE VARIANCE ARE OBTAINED

BY RUNNING TEN INDEPENDENT EXPERIMENTS.

PPPPPPMethod
r 0.1 0.2 0.3 0.4 0.5

AE + k-means 82.61 (78.51) 83.11 (78.99) 84.78 (81.48) 84.83 (81.55) 85.60 (83.70)
DCN 72.74(68.80) 73.02 (72.91) 79.60 (72.80) 74.52 (73.61) 76.32(74.62)
DKM 45.96 (39.21) 46.21 (39.54) 48.56 (38.96) 51.25 (42.10) 50.98 (43.27)
DSL 83.73 (81.38) 89.86 (82.30) 90.40 (83.55) 92.14 (84.71) 94.22 (88.15)

DML-DCN 75.34±0.35 (69.83±0.38) 80.32±0.29 (73.51±0.28) 81.23±0.35 (73.05±0.30) 79.20±0.20 (75.59±0.26) 77.58±0.33 (75.37±0.28)
DML-DKM 67.25±0.27 (61.32±0.25) 74.35±0.16 (66.24±0.17) 68.31±0.28 (63.17±0.25) 79.24±0.31 (77.12±0.39) 80.16±0.22 (78.12±0.19)
DML-DSL 85.35±0.30 (81.92±0.38) 90.63±0.27 (83.44±0.27) 91.22±0.22 (84.57±0.26) 92.44±0.24 (85.72±0.27) 94.63±0.19 (88.68±0.21)

(d) CIFAR-10

(c) STL-10

(a) MNIST

(b) Fashion MNIST

Fig. 4. Visualization of soft assignments vector pi for samples from (a) MNIST, (b) Fashion MNIST, (c) STL-10, and (d) CIFAR-10 datasets. The vertical
axes range from 0 to 1.

of each data point. Then the most probable one is selected
as the latent representation of the data, i.e., the latent space
that provides the closest representation of the data to its
corresponding center is chosen. Afterward, the t-SNE method
is utilized to map the latent representation to a 2D space. The
benefit of the proposed DML method in providing a clear
distribution structure is more apparent if we compare the t-
SNE representation.

The effectiveness of our proposed multi-representation
learning framework, and the proposed loss function, in mini-
mizing intra-cluster distance(s) is apparent when we compare
the clusters obtained by DML-M shown in Fig.2- (i), (j),
(k) with M shown in Fig. 2- (d), (e), (f). The DML-M

clusters are much more compactly distributed around their
corresponding cluster centers. The improved performance of
DML-M compared withM is more significant when looking
at the separation of clusters colored in magenta and purple
(digits 4 and 9), as well as the separation of clusters in cyan,
olive, and orange (digits 3, 5 and 8) when comparing Fig. 2-(i)
with 2-(d), and Fig. 2-(j) with 2-(e), and Fig. 2-(k) with Fig.
2-(f).

In Fig. 3, we further illustrate the properties of easy and
difficult clusters by visualizing their cluster centers. The
cluster centers of easy and difficult clusters are represented by
green triangles and red circles, respectively. As can be seen in
the figure, the cluster centers of difficult clusters are located
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ℒ𝑟ℒ𝑐 ℒ

c) DML − DSL

a) DML − DCN

b) DML − DKM

Fig. 5. The average reconstruction loss Lr , clustering loss Lc, and total loss L of DML-M methods, M∈ {DCN, DKM, DSL}, for different datasets.

a) DML-DSL b) DML-DKM c) DML-DCN

𝜆 = 0 𝜆 = 0.01 𝜆 = 0.1 𝜆 = 1

Fig. 6. Effect of hyperparameter λ on clustering performance of DML-M where M∈ {DCN, DKM, DSL}.

c) DML-DSLb) DML-DKMa) DML-DCN

ACC NMI

Fig. 7. Effect of number of networks on clustering performance of DML-M
where M∈ {DCN, DKM, DSL}.

close to each other and far from the easy clusters. For instance,
in DCN and DSL, the distances between the magenta, pink,
and purple clusters, which are associated with numbers 4, 7,
and 9, are much smaller than the distances between other
clusters. Therefore, our algorithm considers these clusters
as the difficult ones and allocates four autoencoders (three
cluster-specific autoencoders for the difficult ones and one
general autoencoder for the easy ones) to cluster the data
points. In DKM, our algorithm identifies the pink cluster

c) DML-DSLb) DML-DKMa) DML-DCN

ACC NMI

Fig. 8. Effect of the dimension of the latent space on clustering performance
of DML-M where M∈ {DCN, DKM, DSL}. on MNIST dataset

as an easy cluster because its distance from other clusters
is sufficient. Thus, three autoencoders (two cluster-specific
autoencoders and one general autoencoder) are assigned to
perform the clustering task.

E. Performance on Imbalanced Datasets

One of the main advantages of the proposed multi-
representation learning method is its outstanding ability to
deal with imbalanced datasets since, in contrast with the state-
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of-the-art methods that provide a common latent space for
all clusters, DML dedicates cluster-specific AEs for difficult
clusters. To show the effectiveness of the proposed framework
on imbalanced data, we sample subsets of MNIST with various
retention rates r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, where data points
of class 0 are kept with probability r and class 9 with
probability 1, with the other classes linearly in between 0 and
1. As such, the smallest cluster is r times smaller than the
largest cluster. ACC and NMI for various r on all datasets
are shown in Table III. It can be seen that the proposed
DML-M method significantly outperformsM for all r values,
where M ∈ {DSL, DKM, DCN}. DML-DCN, DML-DKM,
and DML-DSL improve the performance of DCN, DKM, and
DSL by 0.79% (0.85%), 25.25% (28.57%), and 3.51% (0.94%)
in ACC (NMI) in average on the five datasets, which shows
the effectiveness of our proposed training procedure of DML
in learning useful representation of data points. For reference,
the performance of the baseline method AE + k-means is also
reported in Table III.

F. Soft assignments visualization

Fig. 4 depicts soft cluster assignment vectors, i.e., pi,
corresponding to samples from various data clusters for DML-
DSL. The kth element of pi shows the probability of sample
xi belonging to the kth cluster. We observe that, with a high
probability, the index of the highest element in vector pi of
samples from the same ground-truth labels are the same – in
other words, with a high probability, samples from the same
ground truth class are mapped to the same cluster. Since DML
dedicates individual AEs to difficult clusters, it is capable
of distinguishing more complex clusters, such as deer and
horse. Moreover, DML reasonably recognizes the second most
probable cluster for each sample. For example, in the STL-10
dataset, the second most probable cluster for a truck is a car,
which is also a vehicle.

G. Loss function convergence

Fig. 5 shows the average of the reconstruction, clustering,
and total losses for different DML-M methods. This average
is taken over different networks on different batches of data
points. The figure shows the convergence of all losses at the
end of training. The remarkable reduction in the clustering
loss indicates the ability of our DML framework to gather the
data points near their cluster centers to obtain a better latent
space for the clustering task.

H. Hyperparameters Sensitivity

In Fig. 6, Fig. 7, and Fig. 8, we investigate the effect of the
DML’s hyperparameters λ, the number of AE networks and the
dimension of the latent space on the clustering performance
of DML-M.

In Fig. 6, we scrutinize the effect of hyperparameter λ on the
clustering performance of DML-M for the Fashion MNIST
dataset, where λ ∈ {0, 0.01, 0.1, 1}. λ indicates the importance
of the clustering loss in the total loss function of DML (See
Section III-C). We observe that for large values of λ, e.g.,

λ = 1, DML mainly concentrates on centering the data points
near cluster centers and ignores the informative features that
provide a low data reconstruction error. For relatively small
values of λ, e.g., λ = 0, DML ignores the clustering loss
and only focuses on minimizing the data reconstruction loss,
which may mislead the DML in assigning the data points to
the correct clusters. The best clustering performance of DML-
DCN, DML-DKM, and DML-DSL on the Fashion MNIST
dataset are respectively obtained when λ is 0.1, 0.1, and 0.01.

In Fig. 7, we explore the impact of the total number of
AEs on the clustering performance of DML-DCN, DML-
DKM, and DML-DSL for the MNIST dataset. What we can
infer from this figure are as follows. 1) there is a significant
improvement in the clustering performance of DML-DCN and
DML-DKM when we increase the number of networks from
one to three, which shows the effectiveness of having multiple
AEs in finding effective representations for data points. The
fact that the DSL itself implicitly includes some form of
cluster-specific training technique when training its AE could
explain the less significant improvement obtained for DSL
compared to the DCN and DKM cases. 2) As is expected,
increasing the number of networks does not always lead to a
model with better performance. For example, the best model
performance in terms of ACC and NMI for DML-DSL is
achieved when four cluster-specific networks are trained for
the MNIST dataset. Note that, in this paper, we proposed
an automatic approach, using τ , to determine the number of
required AEs per dataset (see Section IV-C).

In Fig. 8, the impact of the latent space dimensionality d
on the clustering performance of DML-DCN, DML-DKM, and
DML-DSL is investigated using the MNIST dataset. We made
the following observations: (1) when d has a low value (e.g.,
d = 5), the network lacks the ability to capture well enough
information of the input data, resulting in high reconstruction
and clustering errors. (2) when d has a high value (e.g., d =
30), the network may capture unnecessary details that might
be data noises; these details may reduce the reconstruction loss
but result in overfitting for clustering. The figure shows that
a proper choice would be a mid-value, e.g., 10 in this case.
Note that one may get better performance by fine-tuning the
d value for each dataset; however, for the sake of generality
and fair comparison, in all our experiments, we set d to 10
for all datasets.

I. Experiments on small datasets
In this section, we compare the performance of our proposed

DML framework with graph convolutional neural networks
(GCN) and deep subspace clustering (DSC) methods.

GCN models, such as variational graph autoencoder (GAE)
[69], marginalized graph autoencoder (MGAE) [70], unsu-
pervised graph representation learning (UGRL) [71], and
structural deep clustering network (SDCN) [72], have often
been trained on small-scale datasets due to their very high
computational complexity. The common practice in graph-
based clustering techniques is to consider every data point as
a graph node. This results in large graphs with a sheer number
of trainable parameters when dealing with large datasets [73,
69, 70].
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TABLE IV
ACC AND NMI (IN PARENTHESIS) ON SMALL SIZE BENCHMARK DATASETS FOR DIFFERENT CLUSTERING METHODS.

`````````Method
Dataset COIL-20 UMIST USPS

GAE 69.10 (86.45) 61.91 (80.24) 76.63 (76.02)
MGAE 60.99 (73.59) 49.19 (68.00) 64.13 (62.18)
UGRL 80.00 (87.71) 41.39 (63.71) 67.64 (71.50)
SDCN 41.04 (60.07) 27.65 (38.65) 37.43 (38.97)

AE + SSC 87.11 (89.90) 70.42 (75.15) 70.23 (72.15)
DSCNet-L1 93.10 (93.70) 72.42 (75.46) 77.33 (76.78)
DSCNet-L2 93.70 (94.10) 73.12 (76.62) 77.54 (78.00)
MRL-DSC 73.25 (84.27) 63.65 (75.18) 74.15 (75.13)
DML-DSL 93.80 (94.53) 74.14 (80.29) 78.37 (79.22)

Similarly, the number of parameters in a network for deep
subspace clustering (DSC) algorithms highly depends on the
size of the dataset, making almost all DSC algorithms, such
as AE + SSC that applies sparse subspace clustering (SSC)
[74] on the latent space of a trained autoencoder, the two
versions of the deep subspace clustering network denoted by
DSCNet-L1 and DSCNet-L2 [75], and multi-level representa-
tion learning for deep subspace clustering (MRL-DSC) [76] ,
only applicable to small datasets (or subsets of larger datasets).
For example, [77] uses the first 2,000 train images and the
first 2,000 test images of the MNIST dataset to report their
results on this dataset, and [78] uses 6,000 train and 1,000
test images of the MNIST dataset in its experiments; while
as is mentioned in Section IV.A, the MNIST dataset contains
70,000 data points.

To have a fair comparison of the proposed DML framework
with the GCN and DSC methods, we report the clustering
performance on the commonly used benchmark datasets in
the field, namely COIL-20 [59], UMIST [60], and USPS [61].
The results displayed in Table IV demonstrate that our DML
framework outperforms both GCN and DSC methods in terms
of ACC and NMI. This also highlights the effectiveness of our
framework in finding appropriate representations for small-
scale datasets.

V. CONCLUSION AND FUTURE WORKS

In this paper, we present an effective and practical method
for obtaining cluster-specific latent spaces for data clustering.
Unlike most deep learning-based clustering methods, which
provide a single global latent space, the proposed algorithm
provides multiple latent spaces, where an individual cluster-
specific latent space is assigned to a difficult cluster, and a
common latent space is devised for easy clusters. The idea
is realized by devising cluster-specific losses based on the
weighted reconstruction and clustering losses. Effectiveness of
the proposed multi-representation learning framework and the
proposed loss function is demonstrated on multiple benchmark
datasets through an extensive set of experiments.

The current DML method assigns an individual AE to the
difficult clusters. There might be applications for which there
are not enough data points within a difficult cluster to be used
for training their associated network. In such scenarios, one
may consider artificially increasing the number of data points
through data augmentation [79]. Another interesting approach

would be to reduce the number of DML parameters leveraging
a multi-task learning strategy where a shared encoder is
assigned to all clusters. L cluster-specific heads then follow
the encoder for the difficult clusters and one head for the easy
clusters. A head can be made of fully connected layers or
CNN layers. The head outputs provide the required multiple
representations. For the decoder part, we suggest employing
L different decoders: L − 1 for data samples of the difficult-
to-cluster and one general decoder for samples of the easy-to-
cluster data groups.
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