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Local Feature Selection for Data Classification
Narges Armanfard, James P. Reilly, Majid Komeili

Abstract—Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the
sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of
the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across
the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method
for measuring the similarities of a query datum to each of the respective classes is also proposed.
The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive
to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization
problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven
synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm.
In addition we show several examples where localized feature selection produces better results than a global feature selection
method.

Index Terms—Local Feature Selection, Classification, Linear Programming.
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1 INTRODUCTION

IN many applications nowadays, data sets are char-
acterized by hundreds or even thousands of fea-

tures. Typically, there is often an insufficient num-
ber of objects to adequate represent the distribution
of these high-dimensional feature spaces. Hence, di-
mensionality reduction is an important issue in a
wide range of scientific disciplines. Many approaches
for dimensionality reduction have been proposed in
the literature [1], [2], [3]. Dimensionality reduction
methods can be roughly categorized into two groups:
feature extraction (also known as subspace learning)
[4], [5], [6] and feature selection [7], [8], [9], [10], [11].

Feature extraction methods, like principal compo-
nent analysis [5], linear discriminant analysis [12] and
independent component analysis [13] mix original
features to produce a new set of features. Since such
features are a combination of the original features, the
physical interpretation in terms of the original fea-
tures may be lost. In addition to linear methods, there
are also some nonlinear feature extraction methods
which assume that data of interest lie on an embed-
ded nonlinear manifold [6], [14], [15], [16]. Manifold
learning techniques often need a large amount of
training data and dense sampling on a manifold. Such
rich training data may not be available in some real-
world applications [17]. On the other hand, in many
applications it is desired to reduce not only the dimen-
sionality, but also the number of features that are to be
considered. Unlike feature extraction, feature selection
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returns a subset of the original features without any
transformation.

In this study, the feature selection process is con-
sidered for data classification. Given a set of training
samples and their associated classes, the feature selec-
tion problem involves finding a subset of features that
leads to an ”optimal” characterization of the different
classes. Conventional feature selection algorithms se-
lect a single common feature set for characterizing all
regions of the sample space. In fact, these methods
assume that a single feature subset can optimally
characterize sample space variations.

In this paper we offer an alternative to the conven-
tional feature selection approaches by introducing the
novel concept of localized feature selection, where the
optimal feature subset varies over the sample space in
a manner that optimally adapts to local variations. We
propose that an enhanced mathematical description
of the sample space could be obtained by allowing
various groups of samples in different regions to be
associated with their own distinct feature set, which
is optimized for that specific region.

Embedding local information is not inherently a
new idea. LLE [6], Isomap [14], NPE [18] and MFA
[19] apply local information for feature extraction (not
feature selection) in which the physical interpretation
of the induced co–ordinate system is lost. Bi-clustering
approaches [20], [21], [22] apply local information for
clustering of samples and features simultaneously, but
these are basically unsupervised learning algorithms.
Some more related approaches such as Logo [23],
Simba [24], Relief [25] and MetaDistance[26] consider
local sample behavior for feature selection, but all
these algorithms suffer from the requirement that the
entire sample space be modeled by a single common
feature set.

In this paper, the concept of localized feature selec-
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Fig. 1: Block diagram of the proposed method where each training sample x(i) i = 1, . . . , N is considered to be a
representative point of its neighboring region and an optimal feature set (possibly different in size and membership)
is selected for that region. Feature sets of all representative points are used for classification of a query datum xq . The
detail of the feature selection and classification is presented in Sections 3.1 and 3.2, respectively.

tion is realized by considering each training sample
as a representative point of its neighboring region and
by selecting an optimal feature set for that region. The
optimal feature set is such that, within its correspond-
ing co–ordinate system, the within class distances
and the between class distances are locally minimized
and maximized, respectively. Since the optimal feature
set is no longer constant over the sample space,
ordinary classifiers are no longer appropriate for the
proposed method. We therefore propose a localized
classification procedure that has been adapted for our
purposes. We refer to the proposed algorithm as the
Localized Feature Selection (LFS) method.

The LFS method has several advantages. First, we
make no assumptions regarding the distribution of the
data over the sample space. The proposed approach
therefore allows us to handle variations of the samples
in the same class over the sample space, and to ac-
commodate irregular or disjoint sample distributions.
Moreover, we show later that the performance of the
LFS method is robust against the overfitting problem.
The proposed method also has the advantage that the
underlying optimization problem is formulated as a
linear programming optimization problem. Further-
more, feature selection process for different regions
of sample space are independent from each other and
can therefore be performed in parallel. The computer
implementation of the method can therefore be fast
and efficient.

An overview of the proposed method is shown in
Fig. 1. An early version of this paper appeared in [27].
The remaining portion of this paper is organized as
follows: Section 2 briefly reviews recent feature selec-
tion algorithms. Details of the proposed method for
local feature selection and classification are presented
in Section 3. In Section 4, experimental results, which

demonstrate the performance of the proposed method
over a range of synthetic and real-world data sets, are
presented. Conclusions are drawn in Section 5.

2 RELATED WORK
Feature selection has been an active research area in
past decades. In this section we briefly review some of
the main ideas of various feature selection approaches
for data classification.

Some of the conventional feature selection ap-
proaches assign a common discriminative feature set
to the whole sample space without considering the
local behavior of data in different regions of the
feature space [28], [7], [9], [29]. For example in [7] a
common feature set is selected using a minimal redun-
dancy maximal relevance criterion, which is based on
mutual information. In [9] a common discriminative
feature set is selected through maximizing a class
separability criterion in a high-dimensional kernel
space. In [29] a common feature set is computed using
an evolutionary method, which is a combination of
a differential evolution optimization method and a
repair mechanism based on feature distribution mea-
sures. One conventional feature selection approach
which seems to be close to the proposed LFS algo-
rithm is feature selection using the Fisher criterion [12]
(FDA) that computes a score for each feature based on
maximizing between class distances and minimizing
within class distances in the data space spanned by
the corresponding feature. The main drawback of this
algorithm, besides ignoring the local behavior of the
samples, is that it considers features independently,
leading to a sub-optimal subset of features.

On the other hand, several approaches exist that
try to improve classification accuracy by local inves-
tigation of the feature space. One such approach are
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the margin-based feature selection methods [25], [30],
[24], [31], [32], [23], [33]. These methods are instance-
based, where each feature is weighted to achieve
maximal margin. The ”margin” of a data point is de-
fined as the distance between the nearest same-labeled
data (near-hit) and the nearest differently labeled data
(near-miss). RELIEF [25] detects those features which
are statistically relevant to the target. One drawback
of RELIEF is that the margins are not reevaluated
during the learning process. Compared to RELIEF, the
Simba algorithm [24] reevaluates margins based on
the learned weight vector of features. However since
its objective function is non-convex, it is characterized
by many local minima. Recently, a local margin–based
feature selection method is presented in [23], which
uses local learning to decompose a complex nonlinear
problem into a set of locally linear problems. In [26]
local information is embedded in feature selection
through combining instance-based and model-based
learning methods. Although all these approaches use
local information to determine an optimal feature set,
the selected feature set is still forced to model the
entire sample space.

3 PROPOSED METHOD

The proposed method is presented in two parts:
feature selection and class similarity measurement.
In the former, a discriminative subset of features is
selected for each of the sample space regions. In the
latter, a localized classifier structure for measuring
the similarity of a query datum to a specific class
is presented. The overfitting issue with regard to the
proposed algorithm is discussed in Section 3.3.

3.1 Feature selection

Assume that we encounter a classification problem
with N training samples

{(
x(i), y(i)

)}N
i=1
⊂ RM × Y

where Y = {Y1, . . . , Yc} is the set of class labels, x(i)

is the ith training sample containing M features and
y(i) ∈ Y is its corresponding class label.

To implement the proposed localized feature se-
lection scheme, we consider each training sample
x(i) to be a representative point for its neighboring
region and assign an M -dimensional indicator vector
f (i) ∈ {0, 1}M to x(i) that indicates which features are
optimal for local separation of classes. If the element
f
(i)
m = 1, then the mth feature is selected for the

ith sample, otherwise it is not. The optimal indicator
vector f (i) is computed such that, in its respective
subspace, the neighboring samples with class label
similar to y(i) cluster as closely as possible around
x(i), whereas samples with differing class labels are
as far away as possible. No assumptions are made
that require the classes to be unimodal, nor on the
probability distribution of the samples. In this work,
Euclidean distance is used as the distance measure.

The following will present the process of calculating
f (i) corresponding to the representative point x(i).

3.1.1 Initial formulation
Assume that x

(k,i)
p is the projection of an arbitrary

training sample x(k) into the subspace defined by f (i)

as follows:

x(k,i)
p = x(k) ⊗ f (i) , k = 1, . . . , N (1)

where ⊗ is the element-wise product. In the sequel,
projection into the space defined by f (i) is implied, so
dependence on i in x

(k,i)
p is suppressed.

We want to encourage clustering behaviour – i.e.
in the neighborhood of x

(i)
p , we want to find an op-

timal feature subset f (i) so that, in the corresponding
local co–ordinate system, we satisfy the following two
goals:

1) neighboring samples of the same class are
closely situated around x

(i)
p , and simultaneously,

2) neighboring samples with different classes are
further removed from x

(i)
p .

To realize these goals, we define N −1 objective func-
tions which are weighted distances of all within- and
between-class samples to be respectively minimized
and maximized as in (2).

min
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j ∈ y(i), j 6= i

max
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j /∈ y(i) (2)

where y(i) is the set of all training samples with class
label similar to y(i). The quantity w

(i)
j is the weight

of the corresponding distance where, in order to con-
centrate on neighboring samples and reduce the effect
of remote samples on the objective functions, higher
weights are assigned to the closer samples of x

(i)
p .

Weights decrease exponentially with increasing dis-
tance from x

(i)
p . However, measuring sample distances

from x
(i)
p is a challenging issue since these distances

should be measured in the local co–ordinate system
defined by f (i), which is unknown at the problem
outset. To overcome this issue, we use an iterative
approach for computing f (i), where at each iteration
weights are determined based on the distances in the
co–ordinate system defined at the previous iteration.
The following discussion assumes the weights have
been determined in this manner. Further discussion
on the computation of the weights is given in Section
3.1.4.

There are constraints that must be considered in
our optimization formulations. Since we are looking
for an indicator vector f (i) = (f

(i)
1 , f

(i)
2 , . . . , f

(i)
M )T the

problem variables f (i)m ,m = 1, . . . ,M are restricted to
0 and 1, where (.)T is transpose operator. Because
there must be at least one active feature in f (i), the
null binary vector must be excluded, i.e. 1 ≤ 1Tf (i)
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where 1 is an M dimensional vector with all elements
equal to 1. Furthermore, we would like to limit the
maximum number of active features to a user–settable
value α, i.e. 1Tf (i) ≤ α, where α must be an integer
number between 1 and M . Therefore, the feature
selection problem for the neighboring region of x(i)

can be written as follows:

min
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j ∈ y(i), j 6= i

max
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j /∈ y(i)

s.t.

{
f
(i)
m ∈ {0, 1}, m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α
(3)

where the notation {·} is used to indicate a discrete
set, whereas the notation [·] is used later to indicate a
continuous interval.

In the next section, the above optimization problem
is reformulated into an efficient linear programming
optimization problem.

3.1.2 Problem reformulation

To obtain a well-behaved optimization problem, in
the following, we use the squared Euclidean distance
instead of the Euclidean distance itself. It is apparent
that the optimal solution of (3) is invariant to this
replacement. Considering the sample projection def-
inition in (1) and the fact that the problem variables
fm(i),m = 1, . . . ,M are binary, each objective function
of (3) can be simplified as follows:

w
(i)
j

∥∥∥x(i)
p − x(j)

p

∥∥∥2
2

= w
(i)
j

∥∥∥(x(i) − x(j)
)
⊗ f (i)

∥∥∥2
2

= w
(i)
j

M∑
m=1

(
δ
(i)
j,mf

(i)
m

)2
= w

(i)
j

M∑
m=1

f (i)m δ
(i)2

j,m

= w
(i)
j ∆

(i)T

j f (i) (4)

where ∆
(i)
j =

(
δ
(i)2

j,1 , δ
(i)2

j,2 , . . . , δ
(i)2

j,M

)T
,
(
x(i) − x(j)

)
⊗(

x(i) − x(j)
)
.
(
f
(i)
m

)2
in the second line is replaced

with f
(i)
m due to the first constraint in (3). The impor-

tant conclusion drawn is that the objective functions
are linear in terms of the problem variables.

Using the summation of all weighted within-class
distances and all weighted between-class distances in
the sub-feature space defined by f (i), we define the
total intra-class distance and the total inter-class distance
as in (5). The problem is then reformulated by simul-
taneously minimizing the former and maximizing the

later.

total intra− class distance :∑
j∈y(i)

(
w

(i)
j ∆

(i)T

j f (i)
)
, a(i)Tf (i)

total inter − class distance :∑
j /∈y(i)

(
w

(i)
j ∆

(i)T

j f (i)
)
, b(i)Tf (i) (5)

We see that (3) is in the form of an integer program,
which is known to be computationally intractable [34].
However this issue is readily addressed through the
use of a standard and widely–accepted approximation
of an integer programming problem [35], [36], [34].
Here, we replace (relax) the binary constraint in (3)
with linear inequalities 0 ≤ f

(i)
m ≤ 1,m = 1, . . . ,M .

This procedure restores the computational efficiency
of the program. A randomized rounding procedure
(to be discussed further) that maps the linear solution
back onto a suitable point on the binary grid, then
follows.

These reformulations result in (6), which is a multi-
objective optimization problem consisting of two lin-
ear objective functions that are to be simultaneously
minimized and maximized, along with 2M + 2 linear
constraints.

min
f (i)

a(i)Tf (i)

max
f (i)

b(i)Tf (i)

s.t.

{
f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α
(6)

There are several ways to re-configure a multi-
objective problem into a standard form [34], [37], [38]
with a single objective function; e.g. a linear combina-
tion of the objective functions. In the multi-objective
case, the concept of optimality is replaced with Pareto
optimality. A Pareto optimal solution is one in which
an improvement in one objective requires a degrada-
tion of another. Since our multi-objective optimization
problem is convex (because both objective functions
and the constraints defined in (6) are convex) the set of
achievable objectives Λ is also convex. The solution to
a multi-objective optimization problem is not unique
and consists of the set of all Pareto optimal points that
are on the boundary of the convex set Λ. Different
points in the set correspond to different weightings
between the two objective functions. The set of Pareto
points is unique and independent of the methodology
by which the two functions are weighted (for more
detail about Pareto optimal approach see [34]). In this
paper, we use the ε-constraint method as described by
(7), such that instead of maximizing the total inter-
class distance, we force it to be greater than some
constant ε(i). In this way we can map out the entire
Pareto optimal set by varying a single parameter,
ε(i). One advantage of this approach is that we can
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Fig. 2: The polyhedron P in the case of a 3-D original feature
space, i.e. the data dimension M is 3, where α is set to 2. It is
a unit cube (defined by 0 ≤ f (i)

m ≤ 1, m = 1, . . . , 3) in which
two regions, i.e. blue and red pyramids, are removed. The
blue pyramid is the intersection between unit cube and the
half space 1Tf (i) < 1, and the red pyramid is the intersection
between the half space 1Tf (i) > α and the unit cube.

guarantee the combined inter-class distances are in
excess of the value of the parameter ε(i).

min
f (i)

a(i)Tf (i)

s.t.


f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α
b(i)Tf (i) ≥ ε(i)

(7)

The parameter ε(i) must be determined such that the
optimization problem defined in (7) is feasible. In the
next section we present an approach to automatically
determine a value of the parameter ε(i) which guar-
antees that the feasible set is not empty.

3.1.3 Problem feasibility

The optimization problem defined in (7) is feasible if
there is at least one point that satisfies its constraints.
The constraints f

(i)
m ∈ [0, 1] ,m = 1, . . . ,M indicate

that the optimum point must be inside a unit hyper-
cube. The constraints 1 ≤ 1Tf (i) ≤ α indicate that
the optimum point must be within the space between
two parallel hyper-planes defined by 1Tf (i) = 1 and
1Tf (i) = α. Since α is an integer number greater
than or equal to 1, the space bounded by these two
parallel hyper-planes is always non-empty and its
intersection with the unit hyper-cube is also non-
empty. In fact, the intersection of the spaces defined
by f

(i)
m ∈ [0, 1] ,m = 1, . . . ,M and 1 ≤ 1Tf (i) ≤ α is a

polyhedron P that can be seen as a unit cube in which
two parts are removed; the first part is the intersection
between the half-space 1Tf (i) < 1 and the unit hyper-
cube, and the second is the intersection between the
half-space 1Tf (i) > α and the unit hyper-cube (see
Fig. 2). If the intersection between the polyhedron P
and the half-space defined by b(i)Tf (i) ≥ ε(i), i.e. the
last constraint, is non-empty then the optimization
problem is feasible. The maximum value ε(i)max that ε(i)

can take such that the intersection remains non-empty

is the solution to the following feasibility LP problem:

max
f (i)

b(i)Tf (i)

s.t.

{
f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α.
(8)

Effectively, (8) corresponds to an extreme Pareto point
where the weighting given to the intra-class distance
term (the first objective in (6)) is zero. Finally, we
set ε(i) = βε

(i)
max where β lies between zero and

one. In this way, the optimization problem is always
feasible and by changing β we can map out the entire
Pareto optimal set corresponding to different relative
weightings of intra- vs. inter-class distances. Here we
define the Pareto optimal point corresponding to a
specific value of β as f

(i)
β ; furthermore we define the

set
{

f
(i)
β

}
β∈[0,1]

as the complete Pareto optimal set.

The final reformulation of the problem may therefore
be expressed as:

min
f
(i)
β

a(i)Tf
(i)
β

s.t.


f
(i)
m,β ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf
(i)
β ≤ α

b(i)Tf
(i)
β ≥ βε

(i)
max.

(9)

where f
(i)
β = (f

(i)
1,β , f

(i)
2,β , . . . , f

(i)
M,β)T. This formulation

has the desirable form of a linear program and hence
is convex.

The solution to (9) provides a solution for each
element of f

(i)
β over the continuous range [0, 1] that

may be considered close to the corresponding binary
Pareto optimal solution f∗

(i)

β . To obtain f∗
(i)

β , a ran-
domized rounding process [35], [36], [34] is applied
to the optimal point of (9), i.e. f

(i)
β , where f (i)m,β is set

to one with probability f
(i)
m,β and is set to zero with

probability (1 − f
(i)
m,β) for m = 1, . . . ,M . To explore

the entire region surrounding the Pareto optimal f
(i)
β ,

the randomized rounding process is repeated 1000
times and the point that simultaneously satisfies con-
straints of (9) and provides the minimum value for
the objective function of (9) is chosen as the binary
Pareto point f∗

(i)

β . Among the binary Pareto optimal

points
{

f∗
(i)

β

}
β∈[0,1]

the one which yields the best local

clustering of samples is chosen as the binary feature
vector f∗

(i)

corresponding to the representative point
x(i). This process is explained more in detail in Section
3.2.

3.1.4 Weight definition

In order to compute the sub-feature set f∗
(i)

corre-
sponding to the representative point x(i), the pro-
posed method focuses on the neighboring samples
by assigning higher weights to them. However, the
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computation of the weights is dependent on the co–
ordinate system, which is defined by f∗

(i)

, which is
unknown at the problem outset. To overcome this
problem, we use an iterative approach. At each iter-
ation, weights w

(i)
j , j = 1, . . . , N, j 6= i (see (3)) are

computed using the previous estimates of f∗
(i)

, i =
1, . . . , N . Initially, the weights are all assigned uniform
values. Empirically, if two samples are close to each
other in one space, they are also close in most of
the other sub-spaces. Therefore we define w(i)

j , using
the distance between x(i) and x(j) in all N subspaces
obtained from the previous iteration, in the following
manner:

w
(i)
j =

1

N

(
N∑
k=1

exp
(
−
(
dij|k − dminij|k

)))
dij|k =

∥∥∥(x(i) − x(j)
)
⊗ f∗

(k)
∥∥∥
2

dminij|k =


min
v∈y(i)

div|k , if y(j) = y(i)

min
v/∈y(i)

div|k , if y(j) 6= y(i)
(10)

where f∗
(k)

, k = 1, . . . , N are known from the previ-
ous iteration. Such a definition implies all the w(i)

j are
normalized over [0, 1].

The pseudo code of the proposed feature selection
method is presented in Algorithm 1 where the param-
eter τ is the number of iterations.

3.2 Class similarity measurement
A consequence of the localized feature selection ap-
proach is that, since there is no common set of features
across the sample space, conventional classifiers are
inappropriate. We now discuss how to build a classi-
fier for the localized scenario. The proposed classifier
structure is based on measuring the similarity of a
query datum xq to a specific class using the optimal

feature sets specified by the
{

f?
(i)
}N
i=1

.
The proposed method assumes that the sample

space consists of N (probably overlapping) regions,
where each region is characterized by its represen-
tative point x(i), its class label y(i) and its optimal
feature set f?

(i)

. We define each region to be a hyper-
sphere Q(i) in the co–ordinate system defined by
f?

(i)

, which is centered at x
(i)
p . The radius of Q(i) is

determined such that the “impurity level” within Q(i)

is less than the parameter γ. The “impurity level” is
the ratio of the normalized number of samples with
differing class label to the normalized number of sam-
ples with the same class label. In all our experiments,
γ is fixed at the value 0.2.

To assess the similarity SY` (xq) of a query datum
xq to class Y` ∈ Y , we measure the similarity of xq

to all regions whose class label is Y`. To this end we
define a set of binary variables si(x

q), i = 1, . . . , N
such that si(xq) is set to 1 if xq ∈ Q(i) and the class

Input:
{(

x(i), y(i)
)}N
i=1

, τ , α

Output:
{

f?
(i)
}N
i=1

1 Initialization: Set
f?

(i)

= (0, . . . , 0)
T
, i = 1, . . . , N ;

2 for iteration← 1 to τ do
3 f?

(i)

prev. = f?
(i)

, i = 1, . . . , N ;
4 for i← 1 to N do
5 Compute w(i)

j , j = 1, . . . , N − 1 using{
f?

(k)

prev.

}N
k=1

as in (10);

6 Compute ε(i)max through solving (8);
7 for β ← 0 to 1 do
8 Compute f

(i)
β through solving (9);

9 Compute f?
(i)

β through randomized
rounding of f

(i)
β ;

10 end
11 Set f?

(i)

equal to the member of{
f?

(i)

β

}
β∈[0,1]

which yields the best

local performance as explained in
Section 3.2;

12 end
13 end
Algorithm 1: pseudo code of the proposed
feature selection algorithm.

label of the nearest neighbor of xq is y(i); otherwise it
is set to 0. The variable si(xq) may be interpreted as
a weak classifier which shows the similarity of xq to
the ith region. The similarity SY` (xq) is then obtained
as follows:

SY` (xq) =

∑
i∈Y` si (xq)

η`
(11)

where Y` indicates the set of all regions whose class
labels are Y`. The cardinality of Y` is η`. After com-
puting the similarity of xq to all classes, the class label
of xq is the one which provides the largest similarity.

If query sample xq does not fall in any of the Q(i)s,
our desire is to assign its class as the class label of the
nearest sample to xq . The question is “what coordi-
nate system should be used to determine the nearest
neighboring sample”. To address this matter, we use
a majority voting procedure of the class labels within
the set of all nearest neighboring samples. This nearest
neighbor set consists of those samples which have the
nearest distances to the query datum as measured
over each of the N local co–ordinate systems. The
number of votes for each class is normalized to the
number of samples within that class. It is to be noted
that on the basis of our experiments, the percentage
of such a situation occurring is very rare – only 0.03%.

We now discuss a method for determining a suit-
able value for β (which corresponds to the selection
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of a suitable point in the Pareto set). We examine
different values of β ∈ [0, 1] in increments of 0.05. For
each value, we solve (9) followed by the randomized
rounding process. This determines the candidate local
co–ordinate system for the respective value of β, i.e.
f?

(i)

β , and therefore specifies the candidate Q(i) and the
weak classifier si. The corresponding local clustering
performance may then be determined using a leave-
one-out cross-validation procedure, using the respec-
tive weak classifier results over the training samples
situated within the correspondingQ(i) as a criterion of
performance. The Pareto optimal point corresponding
to the value of β which yields best local performance
is then selected as the binary solution f?

(i)

at the
current iteration (see line 11 of Algorithm 1).

3.3 Discussion about overfitting
In the following we discuss the overfitting issue with
the proposed method. Let the available feature pool
be denoted by the set X . Let us consider the idealized
scenario where for each localized region, we can
partition X into the two disjoint sets X (i)

R and X (i)
I

such that X (i)
R ∪ X (i)

I = X , i = 1, . . . , N . The sets
X (i)
R and X (i)

I contain only the relevant and irrelevant
features, respectively. Let η(i)R denote the cardinality
of X (i)

R .
For the time being, let us consider the hypothetical

situation where α = η
(i)
R . We note that “relevant”

features are those which encourage local clustering
behaviour, which is quantified by the optimization
problem of (9). We therefore make the assumption
that all features in X (i)

R are sufficiently relevant to be
selected as local features by the proposed procedure;
i.e., with high probability, they are the solution to
(9), followed by the randomized rounding process. If
we now let α grow above the value η

(i)
R , features in

X (i)
I become candidates for selection. Because these

features do not encourage clustering, then with high
probability these features must be given a low f-value
in order to satisfy the optimality of (9). Thus there
is a low probability that any feature in X (i)

I will be
selected by the randomized rounding procedure. We
recall that any solution selected by the randomized
rounding procedure must also satisfy the constraints;
therefore, such a solution remains feasible, due to the
inequality constraint involving α in (9). Therefore in
this idealized scenario, we see that as α grows, the
number of selected features tends to saturate at the
value η(i)R .

In the more practical scenario, the features may not
separate so cleanly into the relevant and irrelevant
groups as we have assumed, with the result that “par-
tially relevant” features may continue to be selected
as α grows. Therefore the risk of overfitting is not
entirely eliminated for real data sets. Nevertheless, as
we demonstrate in Section 4, a saturation effect of the
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Fig. 3: Illustration of the synthetic data set in terms of
its relevant features x1 and x2, after feature values are
transformed into their z-scores.

number of selected features in real data scenarios is
clearly evident.

In summary, the LFS algorithm inherently tends
to select only relevant features and rejects irrelevant
features. This imposes a limit on the number of
selected features. Thus the LFS method tends to be
immune to the overfitting problem. This behavior is
in contrast to that of current feature selection methods
which inherently do not penalize over-estimation of
the number of selected features.

Further, the proposed algorithm deals with the
effect of outlier training samples through the aggre-
gation process of (11) where the final decision is
based on the average of the “weak classifier” results
si (xq) , i = 1, . . . , N . Since si (xq) is either 0 or 1, if
the number of outlier samples in each class is much
smaller than the number of true samples within that
class, as in well-behaved classification problems, then
the effect of outlier samples in the final classification
result is diminished.

4 EXPERIMENTAL RESULTS

The performance of the proposed method is demon-
strated by performing a large-scale experiment on
one synthetic data set and ten real-world binary
classification problems and is compared against six
well-known and state-of-the-art feature selection al-
gorithms including FDA [12], Simba [24], mRMR [7],
KCSM [9], Logo [23] and DEFS [29].

As is shown in Fig. 3, the synthetic data set is
distributed in a two dimensional feature space where
class Y1 data is split into two discrete clusters. The
features x1 and x2 of all subclasses ’�’, ’+’ and ’◦’ are
drawn from Normal distributions with unit variances.
Besides the two relevant features x1 and x2, following
[9], each sample is artificially contaminated by adding
a varying number of irrelevant features, ranging in
number from 1 to 30, 000, as a means of testing the
capability of the proposed method to detect only the
most relevant features. The number 30, 000 is deemed
to be a reasonable upper limit for most scientific
applications [23]. The artificial irrelevant features are
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TABLE 2: Characteristics of the real-world data sets used in
the experiments.

Data set # Train # Test # Features (M )
Sonar [28] 100 108 60(100)
DNA [9] 100 3086 180(100)
Breast [28] 100 469 30(100)
Adult [39] 100 1505 119(100)
ARR [40] 100 320 278(100)
ALLAML [41] 60 12 7129
Prostate [41] 90 12 5966
Duke-breast [42] 30 12 7129
Leukemia [28] 60 12 7070
Colon [40] 50 12 2000

The number of artificially added irrelevant features is indi-
cated in parentheses.

independently sampled from a Gaussian distribution
with zero-mean and unit-variance.

Details of real-world data sets are summarized in
Table 2. The total number of available samples in
each case is the sum of entries in columns 2 (# train)
and 3 (# test). Following [23], the performance of the
various feature selection algorithms on each data set
is evaluated using a bootstrapping algorithm. To this
end, each algorithm is run 10 times on each data set.
For each run, the number of data points as shown
in column 2 of Table 2 is randomly selected to be
the training set, and the remaining samples (whose
number is indicated in the third column of Table 2)
are used as test samples for that run. The average
performance over all 10 runs is recorded. For a fair
comparison between feature selection algorithms, the
training and test sets for each run is common for all
algorithms.

To increase the challenge of the classification prob-
lem, following [23], the set of original features of
the data sets “Sonar”, “DNA”, “Breast”, “Adult” and
“ARR” have been augmented by 100 irrelevant fea-
tures, independently sampled from a zero-mean and
unit-variance Gaussian distribution. Data sets “AL-
LAML”, “Prostate”, “Duke-breast”, “Leukemia” and
“Colon” are microarray data sets where in each case
the number of features is significantly larger than the
number of samples. Each feature variable in the syn-

thetic data set and the real-world data sets have been
transformed to their z-score values. These real data
sets represent applications where expensive feature
selection methods such as an exhaustive search cannot
be used directly.

The code for our comparison feature selection meth-
ods are all available on the respective author’s web-
sites, with the exception of KCSM, which was ob-
tained directly from the author. The default settings
for each algorithm are used. In the case of the Simba
algorithm, following [23], a nonlinear sigmoid activa-
tion function is used with sigmoid parameter set to
1.

Apart from the parameter α, which is analogous
to the number of selected features in our comparison
feature selection algorithms, the proposed method has
two additional user–defined parameters: the number
of iterations τ (see Section 3.1.4) and the level of
impurity γ (see Section 3.2). Generally, these parame-
ters can be estimated through cross validation and be
tuned for each data set to provide the most accurate
classification results. However, in this case, for a fair
comparison, they are not tuned and set respectively
to 2 and 0.2, i.e. default values. These values are fixed
during all our experiments on all data sets.

The proposed algorithm is implemented in MAT-
LAB and executed on a desktop with an Intel Core
i7-2600 CPU @ 3.4 GHz and 16 GB RAM.

4.1 Classification accuracy
Since the comparison feature selection algorithms do
not inherently incorporate a classifier, an SVM classi-
fier with an RBF kernel is used to estimate the classifi-
cation accuracy corresponding to the features selected
by our comparison feature selection algorithms on
each data set. To this end, after performing feature
selection on the training samples, an SVM classifier
with the top-t selected features is trained with training
data and tested on the test data. Default values for the
SVM classifier are used for both the training and the
test phase. In our experiments, t ranges from 1 to 30
since there is no performance improvement for larger
values, with the exception of the data set “Adult”.

TABLE 1: Minimum classification error (in percent) and standard deviation (in percent) of the different algorithms. Standard
deviations are presented in parentheses.

Data set LFS FDA Simba mRMR KCSM Logo DEFS SVM
(no feature selection)

Sonar 22.87(3.92) 26.11(4.29) 25.24(3.67) 28.70(2.61) 26.85(3.49) 26.75(3.44) 27.81(6.67) 49.90(4.81)
DNA 13.41(1.88) 13.94(2.71) 14.43(4.77) 13.75(2.96) 35.95(17.04) 15.35(5.73) 18.68(5.02) 49.70(2.04)
Breast 6.37(1.33) 7.71(1.92) 8.89(1.28) 8.29(2.19) 7.73(1.63) 8.25(1.36) 11.01(2.49) 37.61(0.60)
Adult 22.27(1.46) 24.65(0.33) 24.65(0.67) 24.75(7.58) 24.85(1.10) 24.53(7.85) 26.37(2.05) 24.65(0.33)
ARR 33.06(2.60) 46.68(9.95) 33.53(6.46) 31.59(3.25) 33.34(9.039) 33.93(5.32) 31.42(4.73) 43.68(1.19)
ALLAML 1.66(3.51) 5.00(4.30) 25.50(16.49) 7.50(8.28) 32.50(17.76) 7.50(7.29) 14.66(10.50) 38.33(15.81)
Prostate 4.16(4.39) 6.66(6.57) 12.66(8.79) 8.33(7.58) 33.33(16.66) 8.33(7.85) 13.66(9.56) 57.50(10.72)
Duke-breast 10.83(7.90) 17.50(8.28) 30.83(12.86) 21.66(5.82) 33.33(16.19) 21.66(11.91) 26.66(14.61) 63.33(10.54)
Leukemia 3.33(4.30) 5.00(5.82) 12.00(8.06) 5.00(5.82) 32.50(13.86) 6.66(5.27) 16.83(10.85) 35.83(14.19)
Colon 9.16(0.08) 11.66(8.95) 34.50(13.58) 19.16(5.62) 12.50(9.00) 20.83(10.57) 26.66(14.12) 36.66(17.21)
Average 12.71 16.49 22.22 16.87 27.29 17.38 21.38 43.72
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Fig. 4: Percentage of correct feature selection over four suc-
cessive iterations of the proposed algorithm for the synthetic
data set, where the samples are contaminated with a varying
number of irrelevant features. The parameter α is set to 2.

Here the minimum error rate for all methods, except
LFS and Logo, happens out of this range and is equal
to the case where no feature selection is performed,
i.e., when all candidate features are selected. The per-
formance in this case is 24.65% (see the last column of
Table 1 for the Adult data set). For a fair comparison,
the parameter α (analogous to t) of the proposed LFS
method also ranges from 1 to 30.

The minimum classification error and the corre-
sponding standard deviation as determined by the
bootstrapping procedure described earlier is pre-
sented in Table 1. For reference, the classification error
rate of the SVM classifier performed on the data sets
without any feature selection is also reported in the
last column of Table 1. Since the performance in this
case is generally very low, this result implies that,
without feature selection, classification suffers from
the presence of irrelevant features and the curse of
dimensionality [43]. The best result for each data set
is shown in bold. Among the seven algorithms, the
proposed LFS algorithm yields the best results in
nine out of the ten data sets. The last row shows
the classification error rates averaged over all data
sets. This row indicates that the proposed LFS method
performs noticeably better on average than the other
seven algorithms.

4.2 Iterative weight definition and correct feature
selection

As illustrated in Fig. 3, the distribution of class Y1
of the synthetic data set has two disjoint subclasses,
whereas class Y2 is a compact class with one mode.
Samples of subclass ’+’ can be discriminated from
samples of class Y2 using only the relevant feature
x1. In a similar way, samples of subclass ’�’ require
only x2, whereas samples of class ’◦’ require both
x1 and x2 . The results of applying the proposed
method to the synthetic data set over four successive
iterations is shown in Fig. 4, where samples have
been contaminated with additional irrelevant features
ranging in number from 1 to 30,000. Each point shows
the percentage of samples for which the expected
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Fig. 5: Selected features for “DNA” data set. The height cor-
responding to each feature index indicates what percentage
of representative points select the respective feature as a
discriminative feature, where α is set to a typical value of
5.

feature(s), (i.e. x1 for samples within subclass ’+’, x2
for samples within ’�’ and {x1, x2} for samples within
’◦’), are correctly identified. It can be seen that the
performance is refined from one iteration to another,
especially for a higher number of irrelevant features.
The most significant improvement happens at the
second iteration; hence, as mentioned previously, the
default value of τ is set to 2.

The data set ”DNA” has a ”ground truth”, in
that much better performance has been previously
reported if the selected features are those with indexes
in the interval between 61 to 120 [44], [9]. This ob-
servation provides a good means of evaluating LFS
performance on a real world data set. Fig. 5 shows
the result of applying the proposed LFS method to
the data set “DNA”, where the height of each fea-
ture index indicates the percentage of representative
points which select these ground-truthed features as
a member of their optimal feature set. These results
demonstrate that the proposed method mostly iden-
tifies features with indexes from 61 to 105. Thus they
are well matched to the ”ground truth”. The proposed
method also performs very well in discarding the
artificially added irrelevant features, i.e. features with
indexes from 181 to 280.

4.3 Sensitivity of the proposed method to α and
γ

To show the sensitivity of the proposed method to
the parameter α, the classification error rate and
the cardinality of the optimal feature sets (averaged
over all N sets) versus α, for data set “Sonar”, are
respectively shown in Fig. 6 and Fig. 7 where α
ranges from 1 to the maximum possible value of
M = 160. These results demonstrate the robustness
of the proposed LFS algorithm against overfitting as
discussed in Section 3.3.

Note that estimating an appropriate value for the
number of selected features is generally a challenging
issue. This is usually estimated using a validation
set or based on prior knowledge, which may not
be available in some applications. As can be seen,



10

20 40 60 80 100 120 140 160
20

25

30

35

40

α

E
r
r
o
r
r
a
t
e

Fig. 6: Classification error rate of the proposed method for
data set “Sonar” where the parameter α ranges from 1 to
the maximum possible value of M = 160.
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Fig. 7: Averaged cardinality of the optimal feature sets
f∗

(i)

i = 1, . . . , N versus the parameter α where α ranges
from 1 to the maximum possible value of M = 160.

the proposed LFS algorithm is not too sensitive to
this parameter. Moreover, as illustrated in Fig. 7, the
cardinality of the optimal feature sets saturates for a
sufficiently large value of α.

The error rate of the proposed method versus the
impurity level parameter γ for data set “Colon” is
shown in Fig. 8 where γ ranges from 0 to 1. Small
(large) values of γ can be interpreted as a small (large)
radius of the hyper-spheres. This demonstrates that
the error rate is not too sensitive to a wide range of
values of γ. As one may intuitively guess, we found
that impurity levels in the range of 0.1 to 0.4 are
appropriate. As mentioned previously, throughout all
our experiments, γ is set to 0.2 without tuning. This
value is seen to work well over all data sets.

4.4 Overlapping Feature Sets?
The reader may be interested to know if there is
any overlap between the optimal feature sets of the
representative points. To answer this question, the
normalized histogram over all feature sets for the
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Fig. 8: Classification error rate of the proposed method for
data set “Colon” where the parameter γ ranges from 0 to 1.
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Fig. 9: Selected features for “ALLAML” data set. The Height
of each feature index indicates what percentage of represen-
tative points select the respective feature as a discriminative
feature where α is set to the typical value of 5.

data set “ALLAML” is shown in Fig. 9, where the
parameter α is set to a typical value of 5. The height
of each feature index indicates what percentage of
representative points select the respective feature. As
is expected, there are some overlap between region
specific feature sets, but it is evident there does not
appear to be one common feature set that works well
over all regions of the sample space. Indeed, with
the proposed method and these results, we assert the
assumption of a common feature set over the entire
sample space is not necessarily optimal in real world
applications.

The most common features may be interpreted as
the most informative features in terms of classification
accuracy over the sample space. The less common
features may be interpreted as being informative fea-
tures, but only relevant for a small group of samples;
e.g. in the context of biology/genetics applications,
the less common features may be interpreted as being
important in the discrimination of some small sub-
population of samples.

One may be interested to know the classification ac-
curacy in the context of a global selection scheme; i.e.,
we select the top 5 dominant features from Fig. 9 as
produced by the LFS method, and then feed them into
an SVM classifier. Using such a feature set, the error
rate is 6.66% which is in the range of that of the other
methods, but nevertheless significantly greater than
the error rate (1.66%) corresponding to the proposed
LFS region-specific feature selection method (see Table
1). This example is a further demonstration of the
effectiveness of modeling the feature space locally.

4.5 How far is the binary solution from the relaxed
one?

To demonstrate that the relaxed solutions are a proper
approximation of the final binary solutions, obtained
from the randomized rounding process explained in
Section 3.1, the normalized histogram over the `1–
norm distances between the relaxed solutions and
their corresponding binary solutions is shown in Fig.
10. The height of each bar indicates what fraction
of the representative points have the corresponding
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Fig. 10: Histogram of distances between relaxed solu-
tions and their corresponding binary solutions for data set
“Prostate” where α is set to the typical value of 5.

value as their `1–norm distance. The `1–norm dis-
tances are normalized relative to the data dimension
M . As may be seen, the relaxed solutions are appro-
priate approximations of the binary solutions.

4.6 CPU time:

The computational complexity for computing a fea-
ture set for each representative point depends mainly
on the data dimension. Fig. 11 shows the CPU time
taken by the proposed method (using MATLAB) to
perform feature selection for one representative point
on the synthetic data set, with the number of irrel-
evant features ranging from 1 to 30000. As may be
seen, the figure shows linear complexity of the LFS
method with respect to feature dimensionality.

Note that the feature selection process for each
representative point is independent of the others and
can be performed in parallel. For instance, in the
case of a data set with 100 training samples (i.e.
N = 100) and 10,000 features (i.e. M = 10, 000) on a
typical desktop computer with 12 cores, the required
processing time in the training phase is almost 25
seconds. Note again that this is the training phase time
which is performed off-line. On the other hand, the
test phase only involves testing weather the query da-
tum contained within the specified hyper-spheres and
determining the class label of its nearest neighbors.
This is much faster than the training process, since it
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Fig. 11: The CPU time (seconds) taken by the proposed
algorithm to perform feature selection for one representative
point x(i) with a given β on the synthetic data set where
the parameter α is set to 2.

requires no optimization. In our experiments, the test
phase is typically performed in a fraction of a second.

5 CONCLUSIONS

In this paper we present an effective and practical
method for local feature selection for application to
the data classification problem. Unlike most feature
selection algorithms which pick a “global” subset of
features which is most representative for the given
data set, the proposed algorithm instead picks “local”
subsets of features that are most informative for the
small region around the data points. The cardinality
and identity of the feature sets can vary from data
point to data point. The process of computing a
feature set for each region is independent of the others
and can be performed in parallel.

The LFS procedure is formulated as a linear pro-
gram, which has the advantage of convexity and
efficient implementation. The proposed algorithm is
shown to perform well in practice, compared to pre-
vious state-of-the-art feature selection algorithms. Per-
formance of the proposed algorithm is insensitive to
the underlying distribution of the data. Furthermore
we have demonstrated that the method is relatively
invariant to an upper bound on the number of se-
lected features, and so is robust against the overfitting
phenomenon.
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