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Multiview Feature Selection for Single-view
Classification

Majid Komeili, Narges Armanfard, and Dimitrios Hatzinakos

Abstract—In many real-world scenarios, data from multiple modalities (sources) are collected during a development phase. Such data
are referred to as multiview data. While additional information from multiple views often improves the performance, collecting data from
such additional views during the testing phase may not be desired due to the high costs associated with measuring such views or,
unavailability of such additional views. Therefore, in many applications, despite having a multiview training data set, it is desired to do
performance testing using data from only one view. In this paper, we present a multiview feature selection method that leverages the
knowledge of all views and use it to guide the feature selection process in an individual view. We realize this via a multiview feature
weighting scheme such that the local margins of samples in each view are maximized and similarities of samples to some reference
points in different views are preserved. Also, the proposed formulation can be used for cross-view matching when the view-specific
feature weights are pre-computed on an auxiliary data set. Promising results have been achieved on nine real-world data sets as well
as three biometric recognition applications. On average, the proposed feature selection method has improved the classification error
rate by 31% of the error rate of the state-of-the-art.

Index Terms—Feature Selection, Multiview, Feature weighting, Multiview training single view test, Classification.
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1 INTRODUCTION

IN many real-world scenarios, data from multiple modal-
ities or multiple sources are collected during a develop-

ment phase. Such data are known as multiview data. For
example, in biomedical applications, data from MRI and
PET images, genetics, cognitive tests and blood biomarkers
collected from a set of subjects may be considered as dif-
ferent views. In general, incorporating data from multiple
views (sources) has great potential to improve an algo-
rithm’s performance e.g. for detection/prediction. However,
in many real-world scenarios, these multiple views are only
available in the development phase and only a few of them
are accessible in the test phase; because for example data col-
lection from all the views is costly and/or time-consuming.
In such cases, an algorithm is indeed appealing if it can
incorporate relevant information from the multiple views
available in the development phase to improve performance
in the testing phase where only a few views are available.
In the extreme case, only a single view is available in the
testing phase i.e. “multiview learning single-view testing”
which is the focus of this paper.

Nowadays, data are characterized by hundreds or even
thousands of features. However, there is often an insuf-
ficient number of data samples to adequately represent
the distribution of these high-dimensional feature spaces.
Hence, dimensionality reduction is crucial in a wide range
of scientific disciplines such as, e.g., the medical field, where
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oligonucleotide microarray data are used for the identifica-
tion of cancer-associated gene expression profiles [1], [2], [3].
In this case, the number of available samples is less than a
hundred, while the raw data are characterized by thousands
of features.

Multiview dimensionality reduction approaches can be
classified into two categories: dimension reduction and
feature selection. The former often transforms samples of
different views into a shared subspace [4], [5], [6], [7], [8]
through combining original features to find a new set of
features; hence extracted features lose their physical inter-
pretation in terms of the original features. Feature selec-
tion approaches perform dimensionality reduction, with no
transformation, by selecting a subset of the original features.
Hence, feature selection approaches retain the physical in-
terpretability property in terms of the selected features. In
this paper, we consider the feature selection aspect of the
dimensionality reduction for multiview data analysis.

Feature selection on multiview data has been mostly ex-
plored in an unsupervised setting with applications mainly
in clustering [9], [10], [11], [12]. Such approaches cannot
make use of data labels. There are few works on multiview
feature selection in a supervised setting [13], [14]. However,
they select a global subset across all views assuming that
all views are available during both development and testing
phases. To fit such a global feature subset in the “multiview
learning, single-view testing” scenario, trivially, one may
pick only features belonging to the single view. However
such features may not be optimal for that single view
because there might be some not-selected features which
are effective for the single view but not effective when
considering all views together when performing feature
selection. Performing feature selection on individual views
may alleviate this issue but it does not benefit from informa-
tion in other views. Therefore the existing feature selection
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methods are not suitable for the challenging problem of
multiview learning, single-view testing.

The main contributions of the paper are as follows: 1)
We propose a method for transferring knowledge from all
available views to improve the feature selection process of
a particular view. 2) The proposed approach is the first
attempt to address the problem of multiview learning for
single-view classification through feature selection. We refer
to the proposed algorithm as the MVSV method. MVSV
searches the view of interest just like conventional single-
view feature selection methods with the addition of transfer-
ring some knowledge from other views. On the other hand,
it reduces the number of variables involved in classification
just like the multiview dimension reduction methods and
yet preserves the interpretability of the input features and
hence offers the potential for improved interpretability. Un-
like the existing multiview feature selection methods, MVSV
does not return a global feature subset. It considers all views
just like the multiview feature selection methods but selects
only from the view of interest. The proposed method makes
no assumptions about the distribution of the data over the
sample space. Therefore, it allows irregular and/or disjoint
distributions of samples. The proposed MVSV algorithm is
formulated as a convex optimization problem that can be
readily solved and converge to its unique optimal solution.

The remaining portion of this paper is organized as
follows: Section 2 briefly reviews the related work. Details
of the proposed method for multiview feature selection
are presented in Section 3. In Section 4, experimental re-
sults, which demonstrate the performance of the proposed
method over a range of real-world applications, are pre-
sented. Conclusions are drawn in Section 5.

2 RELATED WORK

The proposed method is related to single-view feature se-
lection in the sense that it returns a feature subset from a
particular view. On the other hand, it is related to multiview
learning in the sense that it incorporates information from
other views. In this section, we discuss the related work in
both areas.

2.1 Single-view Feature Selection

Generally, feature selection approaches can be divided into
two categories: supervised and unsupervised. Supervised
approaches use label information to guide the selection
process whereas unsupervised approaches aim to describe
the structure of data in some feature space in the absence of
label information [15], [16], [17], [18]. In this study, we focus
on the supervised approaches.

From another perspective feature selection methods can
be roughly categorized into filters, wrappers and embedded
methods. Wrapper approaches such as sequential forward
selection and sequential backward selection [19] evaluate a
feature subset based on the accuracy of a specific classifier
on a specific data set. A model for each candidate feature
subset is trained and then tested and its performance is used
to guide the feature selection process. wrappers are com-
putationally very intensive especially if the chosen model
is complex. The other drawback of such algorithms is the

high risk of over-fitting because they are tuned to a specific
model. Embedded methods, embeds feature selection in
classification [20], [21]. Filter methods evaluate a feature
subset based on its information content instead of optimiz-
ing the performance of any specific classifier. We focus on
the filter approaches which are relatively faster as they do
not require classifier training during feature selection.

Different criterion functions have been proposed for
filter methods. Some feature selection approaches are based
on mutual information and usually use some heuristics to
handle the relevance-redundancy trade-off [22], [23], [24],
[25], [26]. Some other feature selection algorithms are based
on a maximum margin criteria [2], [27], [28], [29], [30], [31].
These methods are sample-based where the “margin” is
defined as the difference between distance to the nearest
same class sample (near-hit) and the nearest sample from
opposite classes (near-miss). Relief [28] selects features that
are statistically relevant to the target. The drawback of this
method is that the nearest miss and nearest hit samples
are computed in the original space. This was addressed
in Simba algorithm [27] by reevaluation of the margins.
However, its objective function is not convex and suffers
from many local minima. Later, in [2] a local margin-based
feature selection approach was presented in which uses a
local learning approach to decompose a complex nonlin-
ear problem into a set of locally linear problems within a
large margin framework. However, the above methods are
inherently single view and are not able to benefit from the
information available in other views. Since only one view
is available in the testing phase, the above methods can
be applied to that view during the training phase and the
resulting features can be used for model training and testing
in the test view. The drawback of such an approach is that
it has no mechanism to incorporate the other views that
are available in the training phase. We argue that involving
other views could help because they potentially contain
additional information about the classes involved in the
model training and testing.

2.2 Multiview Dimension Reduction

Multiview dimension reduction methods can be roughly
divided in two categories: multiview subspace learning and
Multiview feature selection.

Multiview subspace learning approaches often trans-
form samples of different views into a common space
where comparison is done in the common space. They can
be divided into unsupervised and supervised approaches.
Unsupervised approaches such as Canonical Correlation
Analysis (CCA) [32] and its kernel version [32] project
the views onto a common space such that the correlation
between the projected views is maximized. The work in [33]
is a deep extension of CCA based on deep neural networks
and autoencoders. Supervised methods [4], [5], [6], [7], [8]
use class labels to learn a discriminant common space. The
methods in [5] and [6] consider inter-view discriminant
information while maximizing the between-class and min-
imizing the within-class variations. In [7] a discriminative
shared Gaussian process latent variable model is used to
discover correlations between different views. The method
in [8] extracts uncorrelated features in each view and com-
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putes transformations of each view such that the extracted
features contain minimum redundancy.

Multiview feature selection approaches aim to select a
subset of features from multiview data and can be roughly
divided into supervised and unsupervised. Most of the
unsupervised feature selection methods learn features and
common cluster structures across views and enforce a con-
sensus on the cluster indicators from different views [34],
[35], [36]. Generated pseudo labels are often combined with
sparse learning. [11], [37], [38], [39]. On the other hand,
supervised multiview feature selection methods can benefit
from the class labels. The method in [13] uses Lasso and a
low-rank weight matrix to measure the weights of samples.
The method in [14] considers the importance of each view
and guides the feature selection such that more important
views contribute more to the final feature set. The impor-
tance of each view needs to be provided by an expert as
an input to the algorithm. The above methods consider the
multiview structure of data but their search space includes
all the features. Therefore, they return a feature subset that
is globally optimal. Such a feature subset, when split into
views, produces view-specific subsets that are not neces-
sarily optimal for individual views. This could happen for
example when an informative feature of a view is not in the
global feature subset because it has been considered redun-
dant due to the presence of another feature from a different
view. However, a globally redundant feature, may not be
redundant in its corresponding view. The above approaches
are unable to transfer knowledge from all available views
to guide the feature selection process in an individual view.
The proposed method is the first attempt to address this
issue. To the best of our knowledge, research on supervised
multiview feature selection has rarely been conducted [13],
[14].

3 MULTIVIEW FEATURE SELECTION FOR SINGLE-
VIEW CLASSIFICATION

3.1 Problem Definition

Let D =
{

v(i)
1 , . . . , v(i)

V , z(i)
}M

i=1
⊂ RJ1 × . . . × RJV × Z

be a multiview dataset consisting of M samples for which
V views are available. v(i)

j is the i-th sample in the j-th
view. z(i) ∈ Z is class label of the i-th sample, where
Z = {Z1, . . . , ZC} is the set of all class labels. The multiview
dataset D can be treated as a dataset with two overlapping
views: a student view X and a teacher view Y . The student
view X consists of the view that is available during both
training and testing. The teacher view Y includes all V
views available during training. Without loss of generality,
assume v1 is the view that is available during testing. There-

fore, we can reorganize D as D =
{

x(i), y(i), z(i)
}M

i=1
⊂

RJx × RJy × Z where x(i) = v(i)
1 and y(i) is defined as

concatenation of all views –i.e. y(i) =
[
v(i)
1

ᵀ
, . . . , v(i)

V

ᵀ]ᵀ
.

Therefore X ⊂ Y , Jx = J1 and Jy = J1 + . . . + JV . The
goal is to incorporate the information in the teacher view Y
to guide the feature selection process in the student view X .
Classification is then performed on the student view feature
subset selected with the guidance of the teacher view. The
student view is included in the teacher view to ensure the

teacher view is at least as good as the student view in terms
of having informative features. All mathematical symbols
are listed in Table 16 in Appendix.

3.2 Proposed Method

3.2.1 Overview

MVSV seeks to select a subset of features in the student
view X by incorporating the information in the teacher
view Y . We realize this by introducing a feature weight
vector for each of the student and teacher views such that
the more informative features will receive higher weights.
Real-valued feature weight vectors have some advantages
over binary weight vectors: the number of features does not
need to be specified in advance and optimization can be
done using standard methods such as gradient descent. The
proposed method jointly learns the feature weight vector of
both views. It has two main components, one for encour-
aging cross-view matching and another one for maximizing
class separability.

The cross-view matching term couples the views to each
other. It encourages the feature selection process of student
view to follow that of the teacher view, so that it may
have a better generalization on test samples for which only
view X is provided. Since X and Y views have different
length, direct comparison does not help. To alleviate this,
we represent samples by their distance to some reference
points in the weighted space of each view.

The class separability term maximizes the sample mar-
gins in both views. For every sample, we consider its two
nearest samples, one with the same label (nearest hit) and
the other one with a different label (nearest miss). The
margin for a sample is defined as the difference between the
distance to its nearest miss and distance to its nearest hit.
The margin can be seen as how much a sample can wander
in the weighted space while still is correctly classified using
a 1-nearest neighbour classifier. This term implicitly mini-
mizes the upper bound of the leave-one-out classification
error rate of 1-nearest neighbour classifier in the weighted
space of each view. In the original space, finding the nearest
miss and nearest hit is known to be challenging because
of the curse of dimensionality [40]. MVSV iteratively finds
the nearest samples in the weighted space and updates
feature weights. Since finding the nearest sample at the
problem outset may not be reliable, we adopt a probabilistic
approach and estimate the margin as expectation over all
possible candidates for being the nearest sample. In the re-
mainder of this section, we will describe details of the cross-
view matching and class separability components, followed
by problem reformulation and final objective function.

3.2.2 Cross-view Matching

Considering the i-th sample, we represent x(i) and y(i) by
their distances toN reference points in each view as follows:

φ(x(i)) =
(
d(i,1)x , . . . , d(i,n)x , . . . , d(i,N)

x

)
(1)

φ(y(i)) =
(
d(i,1)y , . . . , d(i,n)y , . . . , d(i,N)

y

)
(2)
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where φ(x(i)) and φ(y(i)) are N dimensional vectors. Con-
sidering l1 distance, d(i,n)x and d(i,n)y , n ∈ {1, . . . , N}, can be
computed as follows:

d(i,n)x = 1Td(i,n)
x d(i,n)y = 1Td(i,n)

y (3)

where (·)T is transpose operator and

d(i,n)
x = |x(i) − r(n)x | d(i,n)

y = |y(i) − r(n)y |. (4)

The reference points r
(n)
x and r

(n)
y , n = 1, . . . , N can be

defined as the class centres or simply all samples. For
example in the X view, in the former, φ(x(i)) is a C − 1
dimensional vector corresponding to the distance from x(i)

to the centre of C−1 other classes with a class label different
than z(i). In the latter, φ(x(i)) is a M − 1 dimensional vector
corresponding to the distance from x(i) to M − 1 all other
samples. However, in both cases, φ(x(i)) and φ(y(i)) have
the same dimension. |.| is element-wise absolute operator.
While other options are possible (e.g. Euclidean distance by
substituting |.| with (.)2 in (4)), throughout this study we
use l1 distance.

Since x(i) and y(i) different views of the same sample,
we want their representations φ(x(i)) and φ(y(i)) be similar.
We realize this goal by “weighting” the feature space such
that the cross-view matching error ||φ(x(i)) − φ(y(i))||2 be
minimized. Equation (3) defines the distances in the original
space. Similarly, we can compute distances in the weighted
space as follows:

d(i,n)x = fTx d(i,n)
x d(i,n)y = fTy d(i,n)

y (5)

where fx and fy are nonnegative weight vectors. Hence, the
problem of minimizing the cross-view error in the weighted
spaces can be stated as follows:

min
fx,fy

M∑
i=1

||fTx D(i)
x − fTy D(i)

y ||22 s.t. fx, fy ≥ 0 (6)

D
(i)
x and D

(i)
y are difference matrices where their columns

are the difference vectors with respect to the i-th sample and
are computed as follows:

D(i)
x =

(
d(i,1)
x , . . . ,d(i,n)

x , . . . ,d(i,N)
x

)
(7)

D(i)
y =

(
d(i,1)
y , . . . ,d(i,n)

y , . . . ,d(i,N)
y

)
. (8)

Our formulation builds on the second-order distances
[40] and extend it to multiview settings. Second-order dis-
tances are characterized in [40], in the context of distribution
clustering where they proved that the distance between
samples almost always depends only on the mean and vari-
ances of the underlying distributions and not on samples
values. The second-order features are defined as columns
of the affinity matrix and they showed that if ith and jth

samples are from the same distribution-cluster, then ith and
jth rows/columns of the affinity matrix will be near identi-
cal. In the proposed method, (1) and (2) may be seen as the
second-order distances in the induced spaces parametrized
by feature weights.

3.2.3 Class Separability
In addition to minimizing the cross-view match error, we
want to maximize the class separability. To this end, we
maximize the margin around each sample. For the sake of
brevity, in the following, only equations for X view are de-
scribed. Driving the equations for Y view is straightforward.
Let `(i)x be the margin of the i-th sample:

`(i)x = fTx d(i)
x (9)

where d
(i)
x = d

(i)
NMx

− d
(i)
NHx

and d
(i)
NMx

and d
(i)
NHx

are
absolute difference vectors determined as follows:

d
(i)
NMx

=
∣∣x(i) −NM(x(i))

∣∣ , d
(i)
NHx

=
∣∣x(i) −NH(x(i))

∣∣
(10)

where NM(x(i)) is the nearest neighbor of x(i) with a dif-
ferent class label (nearest miss) and NH(x(i)) is the nearest
neighbor of x(i) with the same class label as x(i) (nearest hit).
Intuitively, a positive margin allows the sample to wander in
the sample space and still be correctly classified by a nearest
neighbor classifier in a leave-one-out fashion, i.e. a better
generalization on unseen data.

At the problem outset, fx and fy are unknown. There-
fore, determining the nearest miss and nearest hit in the
weighted space defined by fx and fy is a challenging issue.
To overcome this issue, we use an iterative approach for
computing fx and fy , where at each iteration fx and fy
are determined based on the distances in the weighted
space defined at the previous iteration. However, due to
presence of lots of noisy features, determining NMx(x(i))
and NHx(x(i)) in the original space, may not be accurate.
To address this issue, margin is estimated as the expectation
of `(i)x (fx) over all possible candidates for NMx(x(i)) and
NHx(x(i)) as follows:

¯̀(i)
x (fx) = fTx d̄(i)

x (11)

where
d̄(i)
x = d̄

(i)
NMx

− d̄
(i)
NHx

(12)

and

d̄
(i)
NMx

= D
(i)
NMx

p
(i)T

NMx
d̄
(i)
NHx

= D
(i)
NHx

p
(i)T

NHx
(13)

D
(i)
NMx

and D
(i)
NHx

are matrices whose columns are absolute
difference vectors with respect to x(i):

D
(i)
NMx

=
(∣∣∣x(i) − x(Mi(1))

∣∣∣ , . . . , ∣∣∣x(i) − x(Mi(p))
∣∣∣) (14)

D
(i)
NHx

=
(∣∣∣x(i) − x(Hi(1))

∣∣∣ , . . . , ∣∣∣x(i) − x(Hi(q))
∣∣∣) . (15)

Mi and Hi with cardinality of p and q denote set of all
possible candidates for NM(x(i)) and NH(x(i)) respectively
and are defined as:

Mi =
{
j ∈ {1, . . . ,M} | z(j) 6= z(i)

}
(16)

Hi =
{
j ∈ {1, . . . ,M} | z(j) = z(i), j 6= i

}
. (17)

p
(i)
NMx

(p(i)
NHx

) in eq. (13) is an p-dimensional (q-
dimensional) row vector indicates the probability of sam-
ples in Mi (Hi) being NMx(x(i)) (NHx(x(i))). Within the
weighted space, samples situated closer to x(i) are more
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probable to be the nearest sample. So the probabilities are
determined as follows:

p
(i)
NMx

= exp

(
−fTx D

(i)
NMx

σ

)
, (18)

p
(i)
NHx

= exp

(
−fTx D

(i)
NHx

σ

)
, (19)

where σ is a user settable parameter. p
(i)
NMx

and p
(i)
NHx

are then normalized to sum to one to be the probabilities
utilized in (13).

Having 2×M margins of the form ¯̀(i)
x (fx) = fTx d̄

(i)
x and

¯̀(i)
y (fy) = fTy d̄

(i)
y , it is desired to maximize all margins. Con-

sidering a logistic regression formulation, the optimization
problem can be expressed as follows:

max
fx,fy

M∑
i=1

G
(
fTx d̄(i)

x

)
+

M∑
i=1

G
(
fTy d̄(i)

y

)
, s.t. fx, fy ≥ 0,

(20)
where G(·) is a logistic function.

G(b) = log

(
1

1 + exp (−b)

)
(21)

G is a strictly increasing function, therefore maximizing
G
(
fTx d̄

(i)
x

)
indeed implies maximizing fTx d̄

(i)
x . However, G

is useful because it can take an input that can vary from
negative to positive infinity whereas the output always
ranges between 0 and 1. Equation (20) can be simplified as
follows:

min
fx,fy

M∑
i=1

log
(

1 + exp
(
−fTx d̄(i)

x

))
+log

(
1 + exp

(
−fTy d̄(i)

y

))
s.t. fx, fy ≥ 0. (22)

3.2.4 Problem Reformulation and Objective Function

We define f =
(
fTx , f

T
y

)T
and rewrite (22) in terms of f as

follows:

min
f

2M∑
i=1

log
(

1 + exp
(
−fTr(i)

))
, s.t. f ≥ 0 (23)

where r(i), i = 1, . . . , 2M are columns of the following
matrix:

R =

(
d̄
(1)
x

0
, · · · , d̄

(M)
x

0
,

0

d̄
(1)
y

, · · · ,
0

d̄
(M)
y

)
(24)

and 0 is a zero matrix of appropriate size. We also rewrite
(6) in terms of f . As shown in Appendix A, the cross-view
matching error in (6) can be expressed as follows:

M∑
i=1

||fTx D(i)
x − fTy D(i)

y ||22 =
M∑
i=1

fTD(i)f = fTDf (25)

where

D(i) =

(
D

(i)
x D

(i)T

x −D(i)
x D

(i)T

y

−D(i)
y D

(i)T

x D
(i)
y D

(i)T

y

)
(26)

and D =
∑M

i=1 D(i). The final objective function consists of
a terms for maximizing the sample margins as in (23), a term

Input: D =
{

x(i), y(i), z(i)
}M

i=1
, σ, λ, γ

Output: {fx, fy}

1 Initialization: Set f = (1, . . . , 1)
T;

2 repeat
3 fprev. = f ;
4 for i← 1 to M do
5 Compute D

(i)
x and D

(i)
y as in (7) and (8);

Compute D(i) as in (26);
6 Compute D

(i)
NMx

and D
(i)
NMy

as in (14);

7 Compute p
(i)
NMx

,p(i)
NMy

using fprev. as in
(18);

8 Compute d̄
(i)
NMx

and d̄
(i)
NMy

as in (13);

9 Compute D
(i)
NHx

and D
(i)
NHy

as in (15);

10 Compute p
(i)
NHx

, p
(i)
NHy

using fprev. as in
(19);

11 Compute d̄
(i)
NHx

and d̄
(i)
NHy

as in (13);

12 Compute d̄
(i)
x and d̄

(i)
y as in (12);

13 end
14 Compute R as in (24) ;
15 Compute D =

∑M
i=1 D(i) ;

16 Compute f through solving (27);
17 until ‖f − fprev.‖2 < ε;
18 Get fx and fy form f .
Algorithm 1: Pseudo code of the proposed algo-
rithm.

for minimizing the cross-view matching error as in (25) and,
an additional term to encourage sparsity:

min
f

1

2M

2M∑
i=1

log
(

1 + exp
(
−fTr(i)

))
+ λfTDf + γ|f |1

s.t. f ≥ 0 (27)

where λ and γ are user settable parameters. Equation (27)
is a constrained convex optimization problem with respect
to f. We convert it to an unconstrained problem so it can be
solved via gradient descent. To reformulate the problem as
an unconstrained problem, we replace f with a new vector
a such that fj = a2j , 1 ≤ j ≤ J where J = Jx + Jy .
Therefore, the problem is reformulated as follows:

min
a

1

2M

2M∑
i=1

log

1 + exp

− J∑
j=1

a2jr
(i)(j)


+ λ

J∑
i,j=1

a2i dija
2
j + γ

J∑
i=1

a2i (28)

r(i)(j) is the j-th element of vector r(i) and dij denotes
elements of matrix D. Equation (28) can be solved via
gradient decent with step size of τ and updated as follows:

a← a− τ∆

∆ = a⊗

γ1 + λ
∑
j

a2jdij −
2M∑
i=1

exp
(
−
∑

j a
2
jr

(i)(j)
)

1 + exp
(
−
∑

j a
2
jr

(i)(j)
)r(i)


(29)
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where ⊗ is Hadamard operator and τ is the learning rate
determined by the standard line search. f is initialized to
1, so that all weights are the same at the beginning and
then will be updated using (29) until a stopping criterion
is satisfied. In this study, the algorithm stops when the
difference between the weights in two successive iterations
is less than a threshold ε which is set to 0.01. The pseudo-
code of the proposed method is presented in Algorithm 1.

The proposed method offers the potential for improv-
ing the performance in a particular view by incorporating
the information from other views. The teacher view may
contain additional information about the involved classes,
and hence can help to guide the feature selection process
of a particular view which in turn could improve the
performance in that view. This has been examined through
extensive experiments in section 4. Besides, the cross-view
matching term of our objective function allows comparing
two samples from different views using their second-order
features. We will further study this in section 4.3.

4 EXPERIMENTAL RESULTS

The performance of the proposed method MVSV is demon-
strated by performing a large-scale experiment on ten
real-world binary classification problems and is compared
against eight well-known feature selection algorithms in-
cluding Logo [2], FMS [41], MetaDistance [42], JMI [22],
CIFE [24], ICAP [23], RELEIF [28], and KCSM [43].

Details of real-world data sets are summarized in Table
1. The total number of available samples in each case is
the sum of entries in columns 2 (# train) and 3 (# test).
Following [2], [44], [45], the performance of the various
feature selection algorithms on each data set is evaluated
using a bootstrapping algorithm. To this end, each algorithm
is run 10 times on each data set. For each run, the number
of data points as shown in column 2 of Table 1 is randomly
selected to be the training set, and the remaining samples
(whose number is indicated in the third column of Table
1) are used as test samples for that run. The proposed
method is most appropriate for challenging problems where
only a small number of samples are available for training.
Instead of demanding more training samples, MVSV seeks
to improve the generalization by incorporating additional
views available during training. Since some of the data sets
are imbalanced, the percentage of the minority class per data
set is indicated in the last column of Table 1.

All data sets (except “DNA”) presented in Table 1 are
microarray data sets where in each case the number of
features is significantly larger than the number of samples.
Each feature variable in all the real-world data sets have
been transformed into their z-score values. These real data
sets represent applications where expensive feature selec-
tion methods such as an exhaustive search cannot be used
directly.

To evaluate the performance of the proposed multiview
feature selection method, at each run, we simulate for each
data set a multiview data set by randomly selecting P% of
the available features to be used as the student view (to
form RJx discussed in Section 3), where all available Jy
features are used to form the teacher view. The average
performance over 10 runs, for a value of P, is recorded.

TABLE 1
Characteristics of the real-world data sets used in the experiments. The

last column is the percentage of the samples in the minority class.

Data set #Train #Test #Features (Jy) %Minority
ALLAML [46] 50 22 7129 35
BreastColon [47] 50 580 10936 45
BreastKidney [47] 50 554 10936 43
BreastOvary [47] 50 492 10936 37
ColonKidney [47] 50 496 10936 48
Lukemi [48] 50 72 7070 35
ProstateCancer [49] 50 136 12600 43
ProstateGE [46] 50 102 5966 49
Ovarian [50] 50 253 15154 36
DNA [43] 50 3186 280 48

For a fair comparison between feature selection algorithms,
the training and test sets for each run is common for all
algorithms.

The code for our comparison feature selection methods
are all available on the respective author’s websites, with
the exception of KCSM, which was obtained directly from
the author. The default settings for each algorithm are used:
In FMS, the parameter γ is set to -0.5. In MetaDistance,
the number of the nearest neighbour samples k and the
parameter λ are set to 3 and 200 respectively. Also p is set
to 1 which corresponds to l1 distance. In Logo σ and the
regularization parameter λ are set to 2 and 1 respectively. In
KCSM, the regularization parameters λ and µ are set to 0.99
and 0.001 respectively.

The proposed method has three user-defined parame-
ters: σ, λ and γ (see Section 3). The parameter σ controls
the local behavior of the proposed algorithm. A large value
of σ increases the effect of far samples in determining the
nearest sample. If σ goes to infinity, all samples will have
an equal probability to be the nearest. Therefore the nearest
sample would be the average of all other samples i.e no
localization. On the other side, if σ goes to zero, we ex-
perimentally realized that the algorithm will not converge.
The second parameter λ controls the trade-off between
maximum margin criterion and cross-matching error. A
large value of λ emphasizes reducing cross-matching error
while a small value of λ emphasizes maximizing margins
i.e. better discrimination. The third parameter γ controls
sparsity of the solutions, i.e. optimal feature weights. Gen-
erally, these parameters can be estimated through cross-
validation and be tuned for each data set to provide the
most accurate classification results. However, in this case,
for a fair comparison, they are not tuned and set respectively
to 2, 10−4, 10−2, i.e. default values. These values are fixed
during all the experiments discussed in this section, on
all data sets. The proposed algorithm is implemented in
MATLAB and executed on a desktop with an Intel Core
i7-2600 CPU @ 3.4 GHz and 16 GB RAM.

4.1 Classification accuracy
An SVM classifier with an RBF kernel is used to estimate
the classification accuracy corresponding to the features
selected by each feature selection algorithm on each data
set. To this end, after performing feature selection on the
training samples, an SVM classifier with the top-α features
is trained with training data and tested on the test data.
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Default values for the SVM classifier are used for both the
training and the test phase. In our experiments, α ranges
from 1 to 30 since there is no performance improvement for
larger values.

The minimum classification error and the corresponding
standard deviation as determined by the bootstrapping
procedure described earlier is presented in Tables 2 to 5
where the parameter P is respectively set to 2%, 3%, 10% and
25%. The classification error rate in Tables 2 to 5 is a micro
measure i.e. misclassifications over all samples. However,
for imbalanced data sets, this micro measure implicitly gives
more weight to the majority class. For example, consider an
imbalanced binary test set where the split of classes is 20%
vs 80%. Assume that all test samples are classified as the
majority class. Although the classifier has learned nothing
useful, the error rate would be 20% which does not reflect
the poor performance on the minority class. To reflect the
performance in the presence of imbalanced data, a macro
classification error rate which is the average of the error rate
of individual classes is also reported in Tables 6 to 9. In
macro error, both classes have equal weights. In the above
example, the macro error rate would be (0+100)/2=50%,
which for a binary classification problem means the model
has learned nothing useful. This reflects the poor perfor-
mance on the minority class.

Among the nine algorithms, the proposed multiview
feature selection algorithm MVSV provides the best results
in all data sets, where P={2%, 3%, 5% 25%}. The best result
for each data set is shown in bold. The last row of Tables 2-9
shows the classification error rates averaged over all data
sets followed by the win/tie/loss of each algorithm when
compared to ours at the 0.05 p-value level. The results are
based on Student’s paired two-tailed t-test. On average the
proposed method outperforms the best of the comparison
methods in each experiment by 31%. For reference, the
classification error rate of the SVM classifier performed on
the data sets without any feature selection is also reported
in Tables 10 and 11. To help SVM perform better, samples
are first projected into a lower-dimensional space using
PCA, normalized and then fed to SVM. We considered both
lossless and lossy dimension reductions. In the lossless case,
all the energy is preserved –i.e. the resulting dimension is
M − 1 = 49. In the lossy case, only the top 5 directions
corresponding to the largest eigenvalues are preserved. Our
method outperforms PCA+SVM combination on average by
a margin of about 10%. Note that PCA mixes the input di-
mensions and therefore the physical interpretation in terms
of the original features is lost.

4.2 Correct feature selection

The data set “DNA”, presented in the last row of Table 1,
is generally used for detecting the “presence” or “absence”
of a splice junction in a given deoxyribonucleic acid (DNA)
sequence [43]. It has been previously shown that improved
performance in most cases is observed if the attributes
closest to the junctions are used [43], [51]. These attributes
correspond to features indexed from 61 to 120. Furthermore,
the last 100 features of this data set are artificial irrelevant
features independently sampled from a zero-mean and unit-
variance Gaussian distribution. We, therefore, have a good
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Feature index in the student view

Fig. 1. Feature weights for “DNA” data set in the student view. The height
corresponding to each index indicates the average of the corresponding
weights over the 10 experimental trials. In this figure, indexes 1 to 89 are
corresponding to features 1 to 179. Indexes 91 to 190 are corresponding
to the artificially added irrelevant features.

idea beforehand what the good features are, and thus have
an available “ground truth” for this example [45].

Fig. 1 shows the result of applying our MVSV method to
the data set “DNA”, where the height of each feature index
indicates the average of the corresponding weights over
the 10 experimental runs. For illustrative purposes, features
with odd indexes between 1 to 180 (i.e. 90 features) besides
all the 100 artificially added irrelevant features (indexes
181 to 280) are employed in the student view while all
available features Jy = 280 are considered for the teacher
view. The results demonstrate that the proposed method
mostly identifies features with indexes between 70 to 106
(i.e. indexes 35 to 53 in the student view). Thus they are
well-matched to the ”ground truth”. The proposed method
also performs very well in discarding the artificially added
irrelevant features, i.e. features with indexes between 181 to
280 (i.e. indexes 91 to 190 in the student view).

The reader may be interested to know the classification
performance of the proposed MVSV method on the “DNA”
data set. To answer this question, the minimum classifi-
cation error of the proposed MVSV and our comparison
algorithms are shown in Table 12. These results indicate
higher classification accuracy of the MVSV in the “DNA”
data set.

4.3 Additional Experiments - Cross-view Matching

The proposed formulation involves a cross-view matching
error term. Therefore, one may be interested to know if it
can be used for matching samples across different views.
In this section, we aim to measure the similarity between
two samples situated in different views and decide whether
they match? In this context, a view may refer to facial pose
in cross pose face recognition, imaging spectrum in near-
infrared versus visible light face recognition or heart rate in
ECG recognition where heart rate of gallery and probe are
different.

In the “multiview feature selection, singe-view testing”
problem discussed before, we assumed that different views
of a set of samples are given and the goal was to find the
feature weight vectors fx and fy . Here, we assume that fx
and fy are given and the goal is to measure the similarity
of two unseen samples (e.g. x and y) situated in different
views through evaluating the cross-view matching error
||φ(x) − φ(y)||2 in the weighted spaces. More precisely, fx
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TABLE 2
Micro classification error (in percent) of the different algorithms where 2% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 8.2(6.2) 13.2(11.8) 12.3(6.4) 16.4(10.3) 20.0(10.5) 22.3(10.6) 17.3(10.9) 15.0(11.3) 15.0(6.8)
BreastColon 7.1(1.6) 15.4(6.4) 15.2(4.4) 9.5(1.7) 9.9(3.2) 11.0(3.6) 10.2(3.2) 12.7(5.2) 7.8(0.8)
BreastKidney 6.1(1.0) 14.0(6.8) 17.4(4.1) 8.4(2.3) 7.5(2.2) 8.7(2.9) 8.6(3.0) 9.4(2.1) 8.1(2.8)
BreastOvary 10.8(2.8) 18.0(5.8) 22.6(6.8) 15.5(2.1) 14.9(6.4) 18.7(6.4) 17.5(7.1) 18.6(7.2) 13.4(3.0)
ColonKidney 5.6(1.7) 10.6(2.5) 12.5(3.3) 6.3(1.4) 7.6(1.8) 9.7(4.2) 8.8(3.1) 11.4(4.9) 6.6(1.6)
Lukemi 10.9(5.3) 16.4(4.4) 13.2(4.5) 13.6(7.1) 12.3(5.7) 13.2(5.0) 15.5(5.3) 13.2(8.1) 16.8(6.8)
ProstateCancer 30.2(8.7) 36.6(6.5) 38.3(6.2) 40.1(6.0) 38.1(3.3) 37.9(3.2) 38.4(5.7) 38.3(6.6) 37.7(8.3)
ProstateGE 20.2(3.3) 30.8(7.1) 28.3(2.7) 26.2(4.2) 26.3(6.0) 30.4(4.9) 25.4(6.2) 30.0(7.2) 26.0(4.2)
Ovarian 9.7(3.0) 19.1(6.3) 19.4(4.2) 22.9(3.0) 16.0(4.9) 17.4(6.6) 15.0(4.4) 13.2(6.5) 15.2(4.8)
Average 12.1 19.3 19.9 17.7 17.0 18.8 17.4 18.0 16.3
(win/tie/loss) / (0/2/7) (0/2/7) (0/2/7) (0/3/6) (0/1/8) (0/1/8) (0/3/6) (0/4/5)

TABLE 3
Micro classification error (in percent) of the different algorithms where 3% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 8.2(9.4) 10.5(5.7) 13.2(9.2) 16.4(8.9) 15.5(12.5) 22.7(11.5) 17.7(12.2) 13.6(11.9) 12.3(9.4)
BreastColon 7.6(1.1) 12.6(7.0) 18.4(7.5) 18.5(3.8) 8.3(2.5) 10.9(5.4) 10.9(4.9) 9.1(3.7) 9.1(1.7)
BreastKidney 7.5(1.8) 14.0(5.5) 19.0(6.6) 13.1(3.3) 9.3(2.4) 13.1(4.0) 11.4(3.5) 12.3(3.2) 10.3(3.0)
BreastOvary 10.0(4.0) 16.9(3.6) 23.5(6.4) 22.6(4.5) 11.8(4.7) 15.7(3.4) 13.3(4.1) 15.7(6.1) 12.8(3.2)
ColonKidney 5.3(1.7) 11.5(6.3) 12.3(6.6) 11.1(3.4) 7.1(2.2) 11.6(2.4) 9.9(2.5) 11.6(6.2) 6.9(2.0)
Lukemi 7.7(5.2) 10.0(2.9) 8.2(4.7) 15.0(9.8) 11.4(2.4) 13.2(3.4) 10.9(3.2) 13.6(5.7) 11.4(5.8)
ProstateCancer 25.5(7.6) 29.1(7.4) 35.5(8.3) 37.1(6.0) 35.9(7.1) 36.4(8.6) 35.5(9.0) 36.0(7.7) 37.9(7.6)
ProstateGE 17.7(4.9) 29.2(8.5) 26.3(6.0) 21.5(3.5) 24.0(5.0) 24.0(7.7) 20.8(4.1) 25.4(2.8) 27.3(5.4)
Ovarian 4.7(3.0) 14.7(6.3) 18.6(4.4) 18.5(5.2) 11.2(5.4) 16.1(4.4) 15.0(6.3) 11.2(5.9) 16.5(5.4)
Average 10.5 16.5 19.4 19.3 14.9 18.2 16.2 16.5 16.0
(win/tie/loss) / (0/3/6) (0/2/7) (0/3/6) (0/6/3) (0/1/8) (0/4/5) (0/2/7) (0/4/5)

TABLE 4
Micro classification error (in percent) of the different algorithms where 10% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 2.3(2.9) 6.8(5.8) 11.4(11.6) 12.7(8.2) 7.3(6.8) 7.7(6.4) 7.7(6.4) 10.9(14.9) 7.3(4.4)
BreastColon 7.2(1.6) 16.4(7.1) 18.1(5.3) 22.6(3.0) 9.8(3.5) 12.6(5.5) 12.8(5.6) 11.3(4.3) 7.8(1.8)
BreastKidney 6.4(0.9) 17.5(6.5) 18.2(4.8) 16.7(3.2) 7.4(2.0) 10.8(4.2) 9.9(4.0) 13.4(2.8) 7.3(2.8)
BreastOvary 10.0(3.3) 12.6(5.5) 26.5(5.8) 23.6(5.3) 12.2(3.6) 18.6(4.7) 16.1(5.1) 21.7(7.2) 15.2(5.3)
ColonKidney 5.6(1.6) 10.6(3.6) 12.4(3.8) 12.5(2.6) 7.5(1.9) 9.9(2.3) 9.5(2.2) 11.2(4.7) 7.3(1.9)
Lukemi 6.8(8.2) 19.5(14.2) 10.9(10.1) 23.2(9.4) 9.1(10.3) 9.1(10.3) 10.0(6.7) 10.5(7.1) 9.5(9.4)
ProstateCancer 20.6(7.1) 29.4(6.7) 36.6(7.6) 33.3(9.2) 36.9(9.8) 39.1(8.8) 38.5(6.9) 37.7(6.7) 36.9(9.7)
ProstateGE 10.2(4.1) 22.5(7.7) 20.2(9.2) 33.7(6.5) 13.8(2.8) 17.3(5.7) 17.9(5.9) 23.8(9.6) 13.3(2.5)
ovarian 1.8(1.2) 6.0(1.8) 9.7(3.7) 18.4(8.0) 4.3(3.4) 8.1(2.3) 7.2(2.8) 5.9(3.2) 6.0(2.0)
Average 7.9 15.7 18.2 21.8 12.0 14.8 14.4 16.3 12.3
(win/tie/loss) / (0/1/8) (0/1/8) (0/0/9) (0/3/6) (0/1/8) (0/1/8) (0/2/7) (0/3/6)

TABLE 5
Micro classification error (in percent) of the different algorithms where 25% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 1.8(3.2) 10.5(8.8) 10.5(12.7) 15.0(6.8) 10.0(6.7) 15.9(6.2) 11.4(4.9) 19.5(11.3) 4.1(5.4)
BreastColon 6.6(1.8) 18.8(6.6) 24.6(5.6) 25.2(8.3) 7.5(1.9) 11.2(4.8) 9.8(4.5) 14.5(4.5) 6.7(0.6)
BreastKidney 6.4(1.9) 15.7(6.5) 21.0(4.2) 27.9(8.7) 6.6(2.0) 11.6(3.4) 10.6(2.5) 13.7(4.1) 6.9(1.9)
BreastOvary 11.7(4.0) 17.6(5.0) 25.4(6.2) 34.1(2.8) 13.8(4.2) 18.8(6.5) 17.3(6.6) 22.7(6.7) 14.9(5.9)
ColonKidney 4.3(0.9) 11.1(3.9) 15.7(5.0) 17.0(6.9) 6.2(2.0) 10.6(3.6) 10.4(3.6) 12.7(3.9) 5.6(1.7)
Lukemi 8.6(4.0) 21.4(9.1) 10.5(8.6) 25.5(10.1) 9.5(6.9) 13.2(7.6) 10.9(7.2) 13.6(6.8) 9.1(6.4)
ProstateCancer 17.4(5.3) 29.3(7.4) 36.7(6.9) 35.3(8.2) 29.1(5.1) 30.7(5.6) 31.7(5.7) 34.5(8.1) 34.5(10.9)
ProstateGE 7.3(3.4) 21.7(9.7) 13.7(6.2) 42.3(5.9) 11.9(3.5) 13.3(6.2) 12.3(4.8) 12.9(6.0) 10.0(2.5)
Ovarian 0.6(0.6) 3.1(1.7) 8.0(8.5) 6.4(5.3) 1.8(1.6) 3.9(0.9) 4.4(1.4) 3.0(1.0) 3.4(0.9)
Average 7.2 16.6 18.4 25.4 10.7 14.4 13.2 16.4 10.6
(win/tie/loss) / (0/0/9) (0/1/8) (0/0/9) (0/4/5) (0/1/8) (0/2/7) (0/1/8) (0/6/3)
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TABLE 6
Macro classification error (in percent) of the different algorithms where 2% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 9.5 (5.4) 15.6(10.6) 14.1(4.9) 17.5(9.1) 21.0 (11.2) 24.4(10.4) 17.3(11.8) 15.1(10.5) 16.5(5.4)
BreastColon 7.2 (1.3) 15.6(6.6) 15.3(5.2) 10.0(1.4) 10.1(3.3) 11.3(3.9) 10.4(3.0) 12.8(6.1) 8.4 (0.9)
BreastKidney 6.2 (0.8) 14.9(8.3) 18.3(3.5) 8.8 (2.2) 7.9(2.5) 9.6(2.9) 9.4 (3.1) 9.4(2.3) 8.5 (3.3)
BreastOvary 11.7(2.4) 21.1 (6.1) 27.6(6.2) 18.3(2.1) 16.4(6.0) 21.5(6.7) 20.2(8.0) 23.0(7.2) 15.9(3.1)
ColonKidney 5.6 (2.0) 10.5(2.7) 12.4(3.7) 6.2 (1.7) 7.5(2.0) 9.6(3.5) 8.7 (3.1) 11.3(4.3) 6.5 (1.4)
Lukemi 13.2(4.4) 18.7 (3.8) 15.5(3.4) 15.5(7.3) 14.6(5.9) 15.7(5.9) 18.2(4.2) 15.2(8.9) 20.5(7.6)
ProstateCancer 33.4(7.7) 36.1 (5.9) 37.9(7.1) 41.3(4.9) 40.4(3.9) 41.5(4.1) 43.0(5.8) 39.1(5.9) 39.5(10.2)
ProstateGE 20.8(4.1) 29.5 (7.2) 27.8(3.2) 25.9(4.1) 25.9(5.7) 29.7(5.0) 24.8(5.0) 29.4(6.6) 25.4(3.9)
Ovarian 10.3(3.5) 22.9 (6.6) 23.0(4.2) 27.5(2.6) 17.9(3.7) 19.6(6.7) 17.1(4.2) 14.8(5.9) 16.5(5.0)
Average 13.1 20.5 21.3 19.0 18.0 20.3 18.8 18.9 17.5
(win/tie/loss) / (0/2/7) (0/3/6) (0/2/7) (0/1/8) (0/1/8) (0/2/7) (0/4/5) (0/2/7)

TABLE 7
Macro classification error (in percent) of the different algorithms where 3% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 8.7 (7.6) 10.5(5.8) 14.7(9.0) 19.6(7.7) 17.7(10.9) 25.0(10.6) 19.9(12.8) 13.7(10.4) 13.7(11.7)
BreastColon 7.7 (1.3) 12.5(8.1) 19.1(7.5) 19.4(4.6) 8.4 (3.1) 11.4(5.8) 11.4(5.1) 9.1 (3.4) 9.4 (2.7)
BreastKidney 7.9 (1.6) 14.4(4.7) 20.1(5.9) 12.5(2.5) 9.1 (2.5) 14.1(3.3) 12.1(3.2) 12.6(3.1) 10.6(3.1)
BreastOvary 10.9(3.7) 19.6(3.6) 28.1(5.2) 27.2(3.7) 13.3(5.8) 18.8(3.0) 16.0(3.9) 17.9(5.2) 14.7(2.9)
ColonKidney 5.2 (1.3) 11.5(7.5) 12.4(6.0) 11.0(3.2) 7.1 (2.5) 11.5(2.2) 9.9 (2.2) 11.5(7.5) 6.8 (2.0)
Lukemi 9.0 (5.1) 10.5(2.8) 9.1 (4.2) 17.0(11.8) 12.8(2.3) 14.3(3.3) 12.0(2.6) 16.0(6.7) 12.6(4.6)
ProstateCancer 26.4(6.5) 30.5(9.2) 37.3(7.4) 39.7(5.5) 37.6(7.5) 38.1(8.4) 36.4(11.0) 38.0(8.2) 39.8(8.5)
ProstateGE 17.3(5.3) 28.6(7.5) 25.7(6.4) 21.3(4.2) 23.1(3.8) 23.3(6.1) 20.5(5.0) 24.8(3.6) 26.4(4.3)
Ovarian 5.6 (3.3) 17.9(7.5) 21.5(4.8) 22.3(6.1) 11.9(5.1) 18.2(3.8) 16.8(6.2) 12.9(5.0) 17.6(5.3)
Average 11.0 17.3 20.9 21.1 15.7 19.4 17.2 17.4 16.9
(win/tie/loss) / (0/4/5) (0/2/7) (0/2/7) (0/3/6) (0/1/8) (0/1/8) (0/2/7) (0/3/6)

TABLE 8
Macro classification error (in percent) of the different algorithms where 10% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 3.9 (3.2) 8.1 (5.7) 12.2(12.7) 12.3(9.1) 8.5 (7.3) 8.6 (6.3) 9.2(6.0) 11.3(11.3) 9.2 (3.6)
BreastColon 7.4 (1.6) 17.0(7.6) 18.6(5.6) 23.1(4.2) 9.7 (3.3) 12.7(5.4) 12.9(6.7) 11.4(3.6) 8.1 (1.9)
BreastKidney 6.5 (0.7) 18.6(7.8) 19.6(4.5) 17.6(2.5) 7.4 (2.0) 11.6(3.6) 10.5(4.4) 13.3(3.1) 7.8 (2.6)
BreastOvary 10.6(3.6) 14.7(6.5) 32.1(5.1) 26.7(4.8) 13.0(3.8) 20.9(4.4) 18.6(4.9) 25.9(7.8) 16.2(4.9)
ColonKidney 5.6 (1.7) 10.6(3.0) 12.3(4.0) 12.2(2.0) 7.5 (1.9) 9.8 (1.9) 9.4(1.8) 11.3(3.7) 7.3 (2.0)
Lukemi 7.3 (8.1) 20.9(12.4) 11.9(11.5) 25.7(8.6) 10.0(11.7) 9.7 (7.5) 11.5(6.4) 11.5(7.4) 10.1(11.1)
ProstateCancer 22.1(5.8) 31.6(7.1) 38.2(6.9) 33.8(10.8) 38.1(12.0) 40.6(9.4) 39.9(6.2) 40.2(7.1) 38.4(9.5)
ProstateGE 10.0(3.5) 21.7(9.1) 19.4(7.8) 32.4(9.5) 13.5(2.8) 17.0(5.4) 17.1(7.2) 23.2(9.5) 13.4(2.3)
ovarian 2.0 (0.9) 6.8 (1.8) 9.9 (3.4) 20.6(8.1) 4.5 (3.1) 9.3 (2.8) 7.8(2.5) 6.3 (2.5) 6.2 (1.9)
Average 8.4 16.7 19.4 22.7 12.5 15.6 15.2 17.2 13.0
(win/tie/loss) / (0/2/7) (0/2/7) (0/0/9) (0/5/4) (0/1/8) (0/1/8) (0/2/7) (0/4/5)

TABLE 9
Macro classification error (in percent) of the different algorithms where 25% of features are considered for the student view. The corresponding

standard deviation (in percent) is reported in parenthesis.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM
ALLAML 1.3 (3.4) 10.6(9.7) 10.5(14.3) 18.9(8.0) 11.7(7.6) 18.1(6.3) 12.4(3.9) 21.6(8.5) 3.8 (5.6)
BreastColon 6.7 (1.4) 19.2(7.7) 24.9(4.7) 25.7(9.7) 7.6 (2.1) 11.6(5.2) 10.2(5.1) 14.9(4.1) 7.0 (0.6)
BreastKidney 6.5 (1.9) 16.5(6.9) 22.8(4.2) 30.5(10.8) 6.6 (2.4) 12.3(2.9) 11.0(2.3) 14.2(4.1) 7.2 (1.7)
BreastOvary 13.6(4.8) 20.2(4.4) 30.5(6.6) 45.0(2.8) 14.8(3.8) 22.0(6.0) 20.1(6.7) 26.1(8.3) 16.4(4.9)
ColonKidney 4.3 (0.7) 11.2(3.8) 15.6(5.8) 16.6(5.4) 6.2 (1.6) 10.6(3.3) 10.4(4.2) 12.8(3.5) 5.6 (2.0)
Lukemi 10.5(4.4) 22.8(7.9) 11.5(10.1) 28.6(9.2) 11.2(7.7) 15.5(6.5) 12.5(8.7) 15.3(8.1) 10.8(6.9)
ProstateCancer 18.1(4.3) 30.9(5.8) 38.2(7.2) 36.4(8.5) 30.8(6.3) 31.4(5.2) 32.8(5.2) 36.3(9.8) 36.8(8.2)
ProstateGE 7.3 (2.9) 20.8(9.0) 13.4(7.6) 41.4(6.1) 11.4(3.5) 13.0(5.0) 12.2(3.8) 12.8(4.8) 10.1(3.0)
Ovarian 0.6 (0.5) 3.6 (2.0) 9.1(8.9) 7.4 (4.0) 2.0 (1.7) 4.6 (0.9) 5.0 (1.1) 3.2 (1.1) 3.8 (0.8)
Average 7.7 17.3 19.6 27.8 11.4 15.4 14.0 17.5 11.3
(win/tie/loss) / (0/0/9) (0/2/7) (0/0/9) (0/4/5) (0/1/8) (0/2/7) (0/1/8) (0/6/3)
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Auxiliary data set

?

Fig. 2. Illustration of the cross-view matching problem in human recognition using ECG. Two rows correspond to heartbeats in different heart rates
(views). The goal is to determine whether the two unseen test samples on the left belong to the same subject. While, direct comparison of samples
from different views is not appropriate, their similarities to subjects in the auxiliary data set can be used to compare the two test samples.

TABLE 10
Micro classification error (in percent) using PCA followed by SVM for

different values of P. In the second row, All refers to the case where all
the energy is preserved after applying PCA, and Top5 refers to the

case where only top 5 PCA directions are preserved.

P=2% P=3% P=10% P=25%
Data set All Top5 All Top5 All Top5 All Top5
ALLAML 35.9 23.6 35.9 22.7 35.9 20.9 35.9 15.5
BreastColon 49.0 8.3 48.7 8.2 46.0 7.3 46.0 6.9
BreastKidney 46.1 7.6 41.7 9.3 41.3 7.7 43.5 6.9
BreastOvary 36.7 15.3 36.7 14.9 36.6 14.4 36.6 13.6
ColonKidney 49.7 6.4 49.7 7.0 49.7 7.1 49.7 5.6
Lukemi 41.8 26.4 41.8 25.0 41.8 20.5 41.8 16.8
ProstateCancer 46.4 40.1 40.6 40.6 46.4 39.4 46.4 39.2
ProstateGE 51.2 28.3 52.5 31.9 50.6 23.1 51.5 26.5
Ovarian 35.6 20.8 35.6 20.1 35.6 18.1 35.6 19.2
Average 43.6 19.7 42.6 20.0 42.7 17.6 43.0 16.7

TABLE 11
Macro classification error (in percent) using PCA followed by SVM for
different values of P. In the second row, All refers to the case where all

the energy is preserved after applying PCA, and Top5 refers to the
case where only top 5 PCA directions are preserved.

P=2% P=3% P=10% P=25%
Data set All Top5 All Top5 All Top5 All Top5
ALLAML 50.0 29.4 50.0 27.0 50.0 26.2 50.0 17.9
BreastColon 49.7 8.5 49.3 8.3 46.1 7.6 46.1 7.2
BreastKidney 49.9 7.5 46.2 9.1 45.8 8.4 48.6 7.6
BreastOvary 50.0 17.8 50.0 17.6 49.9 16.5 49.9 14.5
ColonKidney 50.0 6.3 50.0 6.9 50.0 7.1 50.0 5.6
Lukemi 50.0 30.9 50.0 29.7 50.0 23.9 50.0 19.2
ProstateCancer 50.0 43.5 43.1 43.1 50.0 41.6 50.0 41.4
ProstateGE 47.1 27.6 49.2 31.1 46.9 22.5 48.4 26.1
Ovarian 50.0 26.7 50.0 25.8 50.0 23.1 50.0 24.5
Average 49.6 22.0 48.6 22.1 48.8 19.7 49.2 18.2

and fy are pre-computed on an auxiliary multiview data set
using (27) and the resulting weights are used to verify if
the two new samples situated in different views match. This
can be seen as using the proposed formulation in reverse –
i.e. a matcher that computes the similarity of two samples
situated in different views.

We focus on a challenging scenario where testing has
to be done on some new classes not seen during training.
This is more challenging than the conventional classification
problems where testing is done on some samples that al-
though are new but belong to known classes that have been
seen during training. This may arise in a biometric system
where training is done on an auxiliary dataset consists of
some generic subjects but is intended to recognize subjects
not been seen during training –i.e. using the system for new
subjects without retraining the system. In this section, we
focus on cross-view matching for biometric recognition.

The auxiliary dataset consists of some generic subjects
for which samples of all views are available. The auxiliary
dataset is used to pre-compute the view-specific feature
weights. Testing involves computing the distance between
a pair of samples from different views and decide if they
belong to the same person. Figure 2 illustrates this problem
in the context of human recognition using ECG. Heart-
beats in different heart rates (views) have different lengths.
Therefore they cannot be directly compared across views.
Instead, they can be compared using their similarities to
some generic subjects in an auxiliary set in the weighted
space. In addition to the cross heart rate ECG recognition,
we examine two other applications: near-infrared versus
visible light face recognition and cross-pose face recognition.
Performance of the proposed method is compared against
state-of-the-art methods in multiview dimention reduction
including MULDA, MLDA-m, MULDA-m presented in [8],
MvDA [6] and GMA [5].
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TABLE 12
Minimum classification error (in percent) of the different algorithms on the “DNA” data set where 50% of features 1 to 180 besides 100 irrelevant
features (i.e. features 181 to 280) are employed in the student view. The last column corresponds to the classification results using SVM with no

feature selection.

Data set MVSV Logo FMS MetaDist JMI CIFE ICAP RELEIF KCSM SVM
DNA 16.8 21.5 18.2 26.9 23.8 23.8 20.7 50.1 45.1 47.8

Since the goal of the experiments in this section is cross-
view matching rather than feature selection, we set γ to 0
(–i.e. no sparsity constraint). The other two parameters i.e.
σ and λ are set to 3 and 10−3 respectively for all three appli-
cations. For all comparison methods, the input dimension in
each view is reduced using Principal Component Analysis
(PCA) such that 95% of energy is preserved. The output
dimension of the comparison methods is also tuned with a
step size of 50 and the best results are reported. For GMA,
as suggested in [5] and [6], µ and γ are set to 1 and the trace
ratio respectively, and λ is tuned in [1 100]. For MULDA,
MULDA-m and MLDA-m methods, as suggested in [8], γ
is tuned among [1,5,10,15,20]. The codes for all comparison
methods have been provided by the respective authors.

4.3.1 Experiments of ECG recognition
In this experiment, we use the ECG database collected at
the BioSec lab at the University of Toronto [52]. There are
82 subjects that have recordings in up to 5 sessions in rest
and after exercise conditions. We take the first 40 subjects as
auxiliary dataset and the rest goes for enrollment and testing
(i.e. test set). ECG signals were recorded using Vernier EKG
sensor and Go!Link interface [53] with 12 bits resolution and
a sampling rate of 200 Hz using three dry AgCl electrodes
from fingertips. We consider the heart rate between 66 to
100 beats per minute which is equivalent to an RR interval
of 120 to 180 samples and this interval is uniformly divided
into 15 non-overlapping bins (views). We pick the middle
view for enrollment and the remaining 14 views go for
testing –i.e 7 views with higher heart rate and 7 views
with lower heart rats compare with the enrollment heart
rate. In other words, we assume that the subjects in the test
set are enrolled by providing ECG samples in the middle
view, and testing is performed by comparing enrollment
samples against samples with heart rated other than the
one used for the enrollment. Therefore, we solve 14 pairs of
multiview problems on the auxiliary data set, each consists
of the middle view and one of the other 14 views. There
is no overlap between the auxiliary set and the test set.
In the auxiliary dataset, we randomly select 15 samples to
represent each bin. In the test dataset, we randomly pick 20
samples for enrollment and 5 samples for testing.

The length of samples within each view is the same. We
consider a window centered at R peak where the length
of the window is twice the length of the corresponding
bin and compute Continues Wavelet Transform (CWT) with
Daubechies 5 as mother wavelet. We also consider six
frequency bands: 8-13Hz, 13-18Hz, 18-25Hz, 25-30Hz, 30-
35Hz, 35-50Hz and for each band, mean of power, standard
deviation of power, maximum amplitude, standard devia-
tion of amplitude, kurtosis and skewness were computed.
Maximum, standard deviation, kurtosis and skewness are
also computed from the signal itself. The signal amplitude,

i.e. a window centered around R peak, is also considered.
Autocorrelation of the samples is also computed and the
number of lags is 80% of the corresponding bin length. The
above features are concatenated. The length of the feature
vector of the first view i.e. the slowest heart rate is 6252
and for the last view i.e. the fastest heart rate is 4304.
Features are normalized such that they have zero mean and
unit variance. To account for the randomness in selecting
samples in each view, experiments are repeated 5 times and
the average Equal Error Rate (EER) is reported in Table 13. It
can be seen that the proposed method significantly performs
better than the comparison methods.

4.3.2 Experiments of near-infrared versus visible light face
recognition

In this experiment, we use the NIR-VIS database in [54]
which consists of 202 subjects for which both near-infrared
and visible light samples are provided. We randomly select
4 samples per subject. The auxiliary dataset consists of
the first 100 subjects and the testing set consists of the
rest of the subjects. Face images are aligned by an affine
transform on the center of eyes and center of mouth such
that the distance between the center of the eyes is 100 pixels.
Illumination is normalized by the method suggested in [55].
SURF features [56] are computed on 64 landmarks detected
by the method in [57]. SURF features are also computed
from 36 points uniformly distributed in a square area on the
inner face area. Also, holistic representation is obtained by
cropping and resizing the images to 41 × 36 pixels. These
features are concatenated to form a final feature vector of
the length 8132. Features are normalized such that they
have zero mean and unit variance. The recognition rate
of the proposed method and 5 comparison methods are
reported in Table 14. It can be seen that the proposed method
significantly performs better than the comparison methods.
Note that since the recognition rate is the most widely used
performance measure in face recognition, we use it in our
face experiments.

4.3.3 Experiments of cross pose face recognition

In this experiment, we use the MultiPie face database [58]
which consists of 337 subjects for which face images in
15 different poses, 20 illuminations, 6 expressions and 4
sessions are provided. We use the first 100 subjects for
auxiliary dataset and the rest goes for testing. We consider
images from 4 different sessions and 5 illuminations i.e.
1, 4, 7, 12, 17. Enrolment is done on frontal lighting i.e.
illumination 7 and testing is done on the aforementioned
5 lightings. Similar to the NIR-VIS experiment, face images
are aligned according to eyes and center of mouth by
an affine transform and illumination is normalized by the
method suggested in [55]. SURF features are computed on
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TABLE 13
ECG recognition across different heart rates. EER (in percent) and standard deviation (in percent) are reported for different methods. Standard

deviations are presented in parentheses.

Heart Rate MULDA MLDA-m MULDA-m GMA MvDA MVSV
67.4 13.0(1.3) 13.0(1.5) 13.3(1.1) 14.3(0.0) 16.6(2.4) 12.7(1.1)
69.0 16.0(0.9) 16.6(0.1) 16.5(0.4) 16.7(0.1) 22.9(1.5) 12.5(1.6)
70.6 14.5(0.8) 13.2(1.4) 13.3(1.4) 12.1(1.9) 15.8(0.8) 10.7(1.1)
72.3 13.0(1.7) 13.8(1.9) 13.9(1.7) 11.6(1.4) 13.6(2.2) 10.0(1.0)
74.1 8.2(0.7) 8.8(1.5) 8.8(1.5) 8.6(0.6) 11.9(2.4) 10.2(1.6)
76.0 11.9(1.8) 12.8(1.9) 13.0(1.8) 11.0(0.5) 12.7(2.0) 11.2(1.4)
77.9 12.8(1.9) 13.4(1.4) 13.5(1.4) 13.6(1.3) 15.6(1.2) 8.5(1.4)
82.2 16.5(0.4) 11.8(1.1) 11.6(0.9) 13.0(0.7) 15.3(0.9) 8.1(1.4)
84.5 13.9(2.2) 12.4(2.5) 12.4(2.5) 9.9(0.6) 12.1(0.4) 11.6(1.5)
87.0 16.1(1.7) 17.8(3.8) 17.2(3.8) 11.7(1.1) 14.2(1.8) 10.2(1.7)
89.6 8.8(0.6) 10.3(1.1) 10.5(1.1) 11.4(1.0) 12.6(1.1) 11.1(0.6)
92.3 17.3(1.9) 15.8(2.6) 15.0(2.6) 12.1(0.5) 18.8(5.6) 12.9(1.1)
95.3 25.1(2.4) 21.3(3.0) 21.4(3.0) 20.3(2.2) 20.2(1.7) 11.5(2.3)
98.4 24.6(1.7) 24.4(2.6) 25.0(2.6) 16.2(0.7) 12.9(1.0) 10.6(1.7)

Average 15.1 14.7 14.7 13 15.4 10.8
(win/tie/loss) (2/3/9) (0/6/8) (0/6/8) (1/7/6) (0/3/11) /

100 points uniformly distributed on the face area. Holistic
features are obtained by cropping and resizing the face
images to 45 × 56 pixels. These features are concatenated
to form a final feature vector of the length 8920. Features
are normalized such that they have zero mean and unit
variance. The recognition rate of the proposed method and
5 comparison methods are reported in Table 15. It can be
seen that the proposed method significantly performs better
than the comparison methods.

4.3.4 Relation to Few-shot learning and one-shot learning
Cross-view matching problem discussed in section 4.3 is
related to few-shot learning in that they both perform test-
ing on unseen classes rather than seen classes. However,
they are different in that in few-shot learning, training
and testing samples of the unseen classes are in the same
space whereas in the cross-view matching problem training
and testing samples are in different spaces with possibly
different numbers of dimensions and therefore direct com-
parison does not help. Zero-shot-learning is a special case
of few-shot learning where there is no training sample for
unseen test classes. Instead, unseen classes are described
in a semantic space, usually an attribute space [59] or a
continuous embedding space [60]. Therefore, there is no
training sample in the space of the test samples. The method
for cross-view matching discussed in section 4.3 is closer to
the projection-based approaches in zero-shot learning [61],
[62]. The method in [61] is based on sparse coding and [62]
is based on matrix tri-factorization whereas our method is
based on second-order similarity and joint feature weighting
which preserves the interpretability of the input features.
Also, such methods require the unlabeled test samples from
the unseen classes as well as the class representation of
the unseen classes to be available during training. In our

TABLE 14
Near-infrared versus visible light face recognition. Recognition rate (in

percent) for different methods are reported.

MULDA MLDA-m MULDA-m GMA MvDA MVSV
79.26 69.33 69.33 61.14 66.05 84.6

experimental setup in section 4.3 neither of them is available
during training.

5 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel method for feature
selection on multiview data such that the information in all
views is used to guide the feature selection in an individual
view. We realized this via a multiview feature weighting
scheme such that the local margins of samples in each view
are maximized and similarities of samples with respect to
some reference points in different views are preserved. We
also examined the application of the proposed method as a
matcher where it computes the similarity of two samples
situated in different views. The proposed approach has
several advantages. First, it makes no assumptions about
the distribution of data over the sample space. Therefore,
it allows irregular and/or disjoint distributions of samples.
In addition, the underlying optimization problem is convex
and converges to the optimal solution regardless of the
initialization point.

As a future direction of research, we would like to
extend the proposed method and equip it with a built-in
mechanism for handling missing data. Another direction
of interest is to extend the proposed method to multi-task
learning where labels for multiple tasks are available which
in turn may improve the generalization on unseen data
especially when the number of training samples is small.

APPENDIX
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TABLE 15
Cross pose face recognition. Recognition rate (in percent) for different methods are reported. ah refers to the two additional cameras (08-1 and

19-1) located above the subject, simulating a typical surveillance camera view.

Angle MULDA MLDA-m MULDA-m GMA MvDA MVSV
−ah 22.1 19.7 19.6 32.0 47.0 59.6
-90 10.1 9.4 9.5 15.2 22.2 26.5
-75 13.1 12.5 12.6 20.3 34.3 37.1
-60 16.0 15.3 15.3 28.3 45.7 58.6
-45 32.2 29.2 29.0 38.2 62.0 78.6
-30 53.1 47.9 47.5 55.6 80.2 81.8
-15 59.1 55.3 55.2 66.2 87.6 93.6
15 64.5 59.9 60.0 70.4 85.0 93.4
30 38.0 37.0 36.9 47.1 74.2 85.3
45 27.0 24.6 24.5 35.3 60.1 76.1
60 19.5 18.3 18.2 25.8 44.7 62.7
75 14.1 12.3 12.4 17.7 32.2 42.0
90 10.0 9.3 9.0 16.2 24.5 33.8
ah 25.6 22.7 22.8 31.8 47.4 64.6

Average 28.9 26.7 26.6 35.7 53.4 63.8
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