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Partial-Response Signaling 

Absfrucf-This  paper presents  a  unified  study of partial-response 
signaling (PRS)  systems and extends previous  work on the compari- 
son of PRS  schemes. A PRS  system model is introduced  which 
enables  the  investigation of PRS  schemes from the viewpoint of 
spectral  properties such as bandwidth, nulls, and  continuity of 
derivatives.  Several  desirable properties of PRS systems and their 
relation  to  system  functions are indicated and a number of useful 
schemes,  some of them not  previously analyzed, are presented. 
These  systems are then compared using as figures of merit  speed 
tolerance,  minimum  eye width,  and signal-to-noise  ratio  (SNR) 
degradation over  ideal binary transmission. A new definition of speed 
tolerance, which takes  into account multilevel outputs  and the  effect 
of sampling time, is introduced  and used  in  the calculation of speed- 
tolerance  figures. It is shown  that  eye width, a performance measure 
that  has  not  been  used previously in comparing PRS  systems, can be 
calculated analytically in many cases. Exact values as well as bounds 
on the  SNR degradation for the  systems under consideration are 
presented.  The  effect of precoding on system performance is also 
analyzed. 

P 
I. INTRODUCTION 

ULSE-AMPLITUDE modulation  (PARI) is often 
used to convey digital  information. The usual con- 

straint on permissible PARI signal waveforms is that  they 
should not cause intersymbol  interference. Signal design 
based on this  criterion can sometimes lead to a complete 
intolerance of timing  errors or to incompatibilities  with 
some channel  characteristics. Some of these  disadvantages 
can  be removed with  partial-response signaling (PRS) 
(also known as  correlative level coding) wherein the con- 
straint on waveforms is relaxed so as to allow a controlled 
amount of intersymbol  interference. PRS designs are 
based  on the premise that since the intersymbol  inter- 
ference is known, its effect can be removed. 

One of the  merits of PRS is that  the controlled inter- 
symbol  interference  can  be used to shape the  system 
spectrum, for instance to place nulls in  the frequency 
response. Also, this  spectral shaping  can  make the system 
less sensitive to  timing errors. This allows practical PRS 
systems  to  transmit at   the Nyquist  rate, a  feat  not possible 
with  ordinary  PAM. In addition,  a PRS spectrum  might 
be chosen to complement a nonideal characteristic in 
order to  reduce the residual undesired intersymbol  inter- 
ference. The partial-response coding format  has the 
further  advantage  that violations in  the code can  be used 
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to monitor  error performance or even to correct  errors. 
On the negative side, PRS systems using symbol by 
symbol detection possess reduced noise margins  due to 
the  fact  that  the superposition of signal waveforms causes 
the number of output levels to be  larger than  the number 
of input levels. 

Lender [l] first introduced  duobinary PRS as a data- 
transmission  method. IG-etzmer [a] categorized the 
characteristics of several PRS schemes and compared 
them on the basis of speed tolerance and signal-to-noise 
ratio  (SNR) degradation. PRS techniques  have been 
applied to various  modulation schemes such as  FM [3] 
and SSB [4] as well as  to baseband  systems.  Several 
authors [5]-[7] have  investigated  error  detection and 
control for PRS. Lender introduced precoding for duo- 
binary [l]. Gerrish and Howson [SI discussed precoding 
for multilevel inputs. Tomlinson [9] and  Harashima  and 
Miyakawa [lo] have  introduced a generalized form of 
PRS precoding. Kobayashi [ll], in  addition to comparing 
PRS with  other coding techniques,  has provided a good 
bibliography. Maximum-likelihood decoding for PRS has 
also been an active  area of research [la], [13]. The special 
problems associated with  adaptive  equalization for PRS 
have also been examined [14],  [15]. 

This  paper,  partly  tutorial  in  nature,  presents  a unified 
study of PRS and  extends previous work on the comparison 
of PRS schemes. First a cohesive framework for studying 
I’RS systems is introduced. To this  end,  a general scheme 
which separates PRS waveform generation into two parts 
is described in Section 11. This allows the investigation of 
PRS spectra  from  the viewpoint of useful properties  such 
as nulls and  continuity of derivatives. 

In  Section I11 a  number of candidate PRS systems  are 
selected by choosing ones with  desirable  spectral proper- 
ties and a small number of output levels. The  PRS 
schemes under consideration include several whose per- 
formances have  not been assessed previously. The process 
of decoding and precoding and  the effect of error  propaga- 
tion  are  then discussed in Section IV.  The rest of the  paper 
is  devoted to  a comparison of PRS systems  using three 
criteria. The sensitivity to timing  errors  is  measured by 
two  parameters, speed tolerance and  the minimum eye 
width, while the effect of an increase in  the  number of 
output levels is measured by  the  SNR  degradation over 
ideal  binary  transmission. Speed-tolerance figures are 
calculated using a new definition of speed tolerance which 
takes  into  account  multilevel  systems  and  sampling phase. 
The eye-width criterion  has not been used previously for 
comparing PRS systems.  A  procedure is given here which 
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greatly simplifies the calculation of eye widths. Com- 
parative  SNR  degradation figures are also presented. 
These include exact  values for systems  without precoding, 
figures not  previously  reported. 

11. A  GENERALIZED  PRS  SYSTEM 

The  baseband model of a  synchronous data communica- 
tions  system is shown in Fig. 1. The model is applicable to 
various  modulation  schemes.  The overall transfer func- 
tion H ( w )  encompasses the  transmitter filter (or signal 
generator  characteristic),  the  equivalent baseband channel, 
and  the receiving filter (which may include an  equalizer). 

First  the discussion will concentrate  on  an ideal, noise- 
less system  (ideal  in that  there is  no distortion  due to 
channel  imperfections  or  sampler offsets). Such  a  system 
can  be  characterized  by  the  samples of the desired im- 
pulse  response h ( t ) .  Let N be  the smallest number of 
contiguous  samples that  span all  the nonzero samples. 
Then if { fn), n = 0,1,2,...,N - 1 are  these N sample 
values, the  PRS system  polynomial is given by 

N-1 

F ( D )  = C fnDn (1) 
n=O 

where D is the  delay  operator.  For  a given input symbol 
sequence { x n  1 the  output sequence { yn  } is given by 

Y ( D )  = X ( D ) F ( D )  ( 2 )  

where 
W 03 

X ( D )  = xnDn and Y ( D )  = ynDn. 

The { xn ] will be  assumed to be  independent m-ary symbols 
taking  on  the  equally likely values { - (m  - 1) , - ( m  - 3) ,  

Though  most of the desirable properties of a PRS system 
can be stated  in  terms of the impulse  response h( t )  , many 
are  best  illuminated  by  frequency  domain considerations. 
Fig. 2 shows  a  method of generating  the  PRS  system 
function H ( w )  which gives an insight into  frequency 
domain  properties. 

The  system consists of a  tapped  delay line with coeffi- 
cients { f n }  in cascade  with  a filter with  frequency  response 
G ( w )  . The  transversal filter has  the periodic frequency 
response  (period 27r/T) 

n=O n=O 

- . , (m - 3) , (m - 1 )  1. 

% ( W )  = F ( D )  ID--exp(-jwT) 

N -1 

= fn exp (-jwnT) (3) 

where Tis the symbol spacing. It can  be easily shown that 
h ( t )  has  the sample  values { fn } if and only if G( w )  

satisfies Nyquist's first criterion,' that is 

n=O 

of the impulse response be zero, i.e., g ( k T )  = 0, k # 0, g(0) = 1 [16]. 
Nyquist's first criterion  requires that all but one of the samples 
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Fig. 1. Model for a synchronous data communications system. 
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Fig. 2. General partial-response system  model. 
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The  PRS system  has  been  separated  into  two  parts: 
%(w)  forces the desired sample  values but is periodic, 
while G ( w )  preserves the sample  values but  may  be used 
to bandlimit  the resulting system  function.  For  a given 
system  polynomial F ( D ) ,  different choices of G ( w )  
satisfying Nyquist's  first criterion result  in  different 
system  functions H ( w )  , all of which have  identical  sampled 
responses. The  advantage of this  separation will be  more 
apparent when we study  the  various desirable properties 
of H ( w )  and see how some of these  properties  (such  as 
spectral nulls) are influenced by  the choice of the  sample 
values ( fn ] and by the choice of G ( w )  . The  separation is 
of course an artifice-the actual  implementation  may  be 
organized quite differently. While Fig. 2 naturally suggests 
a  digital partial-response encoder (i?e., 5 ( w ) ) ,  it may  be 
advantageous  in some  cases to implement  the  total  system 
function H ( w )  in  an analog fashion. 

111. CHOOSING THE  PRS  SYSTEM  POLYNOMIAL 

A .  System. Bandwidth 
In  order to maximize the  data  rate  in  the  available  band- 

width,  many  PRS  systems  are designed to occupy the 
minimum  bandwidth which supports  transmission  without 
undesired  intersymbol interference, i.e., H ( w )  = 0 for 

I w I > T / T .  Such  systems also avoid the aliasing which 
occurs when the  output of a nonminimum bandwidth 
system is sampled at  the symbol rate.  This aliasing can  in 
extreme cases cause  dips in  the middle of the  Nyquist 
equivalent  channel which are difficult to  equalize. 

For minimum bandwidth  systems (see (4) ) , 

I T,  I w I 5 ?r/T 

0, elsewhere. 
G(w) = (5) 



KABAL AND PASUPATHY: PARTIAL-RESPONSE  SIGNALING 

The corresponding system  impulse response is given by 

sin - ( t  - nT) 
P 

N -1 T 
h ( t )  = C f n  (6) 

n=O P 
- ( t  - nT)  T 

Other choices for G ( w )  (occupying a larger  bandwidth) 
are possible and,  as we shall see, allow the use of system 
polynomials (such  as 1 - D) which are  unsuitable  for 
minimum  bandwidth  systems. 

B. Spectral Null at w = P / T  
It is well known that if H ( w )  and  its first K - 1 

derivatives  are  continuous and  the  Kth derivative  is 
discontinuous, 1 h ( t )  I decays  asymptotically as 1/1 t IR+1 

[17]. Continuity of the function and  its derivatives helps 
to  reduce the portion of the  total signal energy in  the tails 
of h,( t )  and hence the undesirable  intersymbol  interference 
in nonideal systems.  For  minimum  bandwidth  systems, 
5 ( w )  must  have a zero a t  PIT (where G ( w )  has a discon- 
tinuity)  for H ( w )  to be a  continuous  function. In  general 
the conditions for the  continuity of U(w) and  its deriva- 
tives  are  summed up as follows. 

Proposition 1: The first K - 1 derivatives of a minimum 
bandwidth H ( w )  are  continuous if and only if F ( D )  has 
( 1  + D ) K  as a factor. 

If F ( D )  has more than one zero a t  D = -1, the roll-off 
near w = P / T  becomes less sharp  and  thus  the design of 
practica.1 filters for the system becomes easier. On the 
other  hand, if F ( D )  has a large  multiplicity of 1 + D 
factors, the  error performance tends  to be degraded  due 
to  the increase in the number of output levels. The 
sensitivity to timing offsets also suffers because more 
controlled intersymbol  interference terms  are  introduced. 
These  affect the  timing sensitivity  more than  the  distant 
tails which decay rapidly as more  factors 1 + D are 
introduced. 

For  systems that are  not  restricted to  the minimum 
bandwidth,  a  null a t  P / T  is still useful-a pilot tone 
inserted a t  this  point  can  be used for clock recovery [lS]. 

C .  Spectral Null at w = 0 
Reduced low-frequency components in  the  spectrum 

are desirable in  systems such as transformer coupled 
circuits, dc powered cables, SSB modems, and  carrier 
systems  with  carrier pilot tones. For a null a t  w = 0, it 
can be seen from (3) that 1 - D must  be a factor of 
F ( D )  . Multiple zeros a t  D = 1 cause a  more  gradual roll- 
off  of the frequency components just above de which may 
also be desirable. 

With  combinations of just  the two  factors 1 + D and 
1 - D, most of the common partial-response systems 
can be developed. Table I shows a number of l'RS system 
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The class designations  in the first column of Table I are 
due to Kretzmer [a]. Expressions for H ( w )  and h( t )  
are given in  Table 11. In  the general formula for h ( t )  , (6),  
the sample fO occurs a t  time  zero; however a change of 
time origin often simplifies the resulting expression. In  
Table 11, the center of the nonzero samples  has been 
chosen as the  time origin, that is in (6), t = ( N  - 1) T/2 
is the new time origin. The expressions for the frequency 
response in  Table I1 also assume  this  time origin. 

The first entry  in these  tables,  duobinary, also satisfies 
Nyquist's second criterion, i.e., that  the pulsewidth should 
be  undistorted.  The second system 1 - D is not  practical 
in  the minimum  bandwidth because of the resulting dis- 
continuity  in  the  system function H ( w )  . Modified duo- 
binary, the next entry,  has  both a dc  null and a  null at 
w = ' r / T .  The  fourth  entry, 1 + 2 0  + D2, has the same 
response as a full raised cosine characteristic but sampled 
a t  twice the usual rate. Also included in  the  tables  are 
two pulse responses which have  not been analyzed  before 
in  the  literature, namely 1 + D - D2 - D3 and 1 - D - 
D2 + D3. These  two  systems  have  both  dc nulls and nulls 
a t  w = P / T .  The  last  two entries in  Table I suggest that polynomials and  the corresponding I H ( w )  I and h ( t )  . _ _  
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TABLE I1 

SYSTEMS 
CHARACTERISTICS OF MINIMUM BANDWIDTH PARTI.4L-RESPONSE 

SYSTEM POLYNOMIAL FREQUENCY RESPONSE 
F(D1 

IMPULSE RESPONSE h ( t )  NO.OF 1 H(w) for I w /  S TIT OUTPUl 

I t D  2T cos T T 4T' cos(nt /T)  

' T2 - 4 t 2  
-~ 2m-1 

1 - D  j 2 T   s i n  T T 8T t cos(nt /T)  ' 4 t Z  - T2 
2n-1 

1 - D 2  j2T s i n  UT 2T2 s i n ( n t / T )  . 
n t ?  . T2 

zm- 1 

1 + 2D + D 2  4T cos2  T ZT3 s i n ( n t / T )  
n t  T? . t 2  4m-3 

1 + D  - D2 - D 3  j4T cos s i n  wT _ _  64T3t  cos(nt1T) 4m-3 

' (4t2-gT2)  (4tZ-T2) 

1 - D - D2 1 D 3  -4T s i n   s i n w T  16T2 cos(nt /T)   (4t2-3TZ) 

TI  (4t2-9T2)(4tZ-T2) 
4- 3  

1 - 2D2 + D4 - 4 T   s i n 2  UT -__ 8T3 s i n ( n t I T 1  4m- 3 
ITt t2  . 47'' 

2 + D - D 2  T + T cos wT + j 3 T   s i n  wT $ s i n ( n t / T ) ( E )  4m- 3 
t2-T2 

2  - D 2  - D4 -T + T cos 2wT + j 3 T   s i n  2wT < s i n ( n t / T ) ( Z T - S f )  4m-3 
t2-4T2 

any  appropriate polynomial in D may be used to modify 
the basic  polynomials 1 f D. 

If the system  bandwidth is allowed to increase  beyond 
s / T ,  the  Nyquist  filter G(w) need not  have discontinuities. 
In  this case, it is permissible for S(W) to be  nonzero a t  
w = s/T. Fig. 3 shows an example of a  nonminimum 
bandwidth  PRS  spectrum for  a pulse  response 1 - D 
and a raised cosine Nyquist filter. For  this example it is 
the  Nyquist filter G(w) which controls the spectral 
properties at   the high  end, while the system polynomial 
F ( D )  controls the low-end response. 

D. The  Number of Output Levels 

A PRS system  with M nonzero pulse  samples will 
have mM output levels for m-ary input unless there  are 
special relationships  between the sample  values. The 
number of output levels L lies in  the  range 

M ( m - l ) + l < L < m M  . (7) 

with the minimum  value being obtained when the pulse 
samples  have the same  magnitude.  The  number of output 
levels for a  practical PRS system is limited both  by  the 
complexity of implementation  and the inevitable  distor- 
tions  present  in  real  systems. In addition  there is a 
tendency  for the error  performance a t  a  given SNR  to 
degrade  with  a  large  number of output levels. It can easily 
be shown that if the system polynomial has 1 D as 
a factor, some of the  output levels coalesce. Thus  these 
factors  are also desirable  from the viewpoint of reducing 
the number of output levels. 

If we restrict the number of output levels to  be less 
than 5 for binary  inputs  (multilevel  inputs will result in 
considerably  more output  levels),  the  task of searching 
for  candidate  systems  approaches  manageability. If in 
addition we require that 1 + D and/or 1 - D be  a  factor 
of F ( D )  and  that  there be  no  nulls or severe ripples in  the 

w 

Fig. 3. Partial-response  system using a raised cosine filter. (a) 
Raised cosine filter (50 percent excess bandwidth). (b) Partial- 
response spectrum for 1 - D pulse response. 

middle of the passband, an investigation of the possible 
systems shows that all the suitable ones have  already 
been listed in  Tables I and 11. For  binary  input  these 
systems  have  either 3 or 5 output levels. 

IV.  DECODING AND PROBABILITY  OF ERROR 

A .  Decoding 

The  output of an ideal noiseless system  is given by 
N -1 

Y n  = f G n  + C fixn-i. (8) 
i=l 

The receiver can recover the  data x, by  subtracting  out 
the effect of previous input symbols. In practice the 
receiver makes  estimates of the  data  and  then uses these 
to cancel the tails of the pulse response. The  detector 
structure  (Fig. 4) is the same as  that of a decision feedback 
equalizer [19]; indeed the  tasks of decoding and equaliza- 
tion for  deviations  from the desired pulse  response  could 
be combined. 

When additive noise is present, the  input  to  the slicer 
(Fig. 4) is given by 

where {, is a noise sample. r, is  then  quantized to  the 
nearest allowable data level to give the next data  estimate 
2,. If we define a decision error  as e, = x, - 2,, then 
from (S) and (9), 

(10) 

We see from (10) that  past decision errors can  adversely 
affect  subsequent decisions. A technique  for  preventing 
this  error  propagation  phenomenon,  namely precoding, 
will be discussed later. 

B. Probability of Error (No Precoding) 

The  probability of (symbol) error for the system 
shown in Fig. 4 is given by2 

log, m times the  bit error rate. 
For Gray coded input,  the symbol error rate is  approximately 
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Fig. 4. Partial-response decoder (no precoding). 

( 1 5 )  
N-1 

P[I ln + fie,-; I > f o ]  ( 11 )  For a  larger  number of states,  an  analytic solution becomes 
i=l unwieldy and  a  numerical  approach becomes more  ap- 

where for simplicity fo is assumed to be positive. This 
expression is difficult to evaluate  in  its full generality. 
However, with  suitable  assumptions, some results  can 
be  obtained. 

A lower bound  on P, can be  found by ignoring error 
propagation,  i.e.,  setting e, = 0. Then if the noise is 
Gaussian, the lower bound is 

For white  Gaussian noise Duttweiler,  Mazo,  and 
Messerschnlitt [20] have given a simple upper  bound on P, 
for binary  inputs.  This bound,  extended to consider m-ary 
input symbols, is 

m 
m - 1  

P,L(mN-l - 1 )  + 1 

Equation ( 1 4 )  shows that error  propagation increases the 
error  probability  by at  most  a  factor w P 1 .  For small m. 
and N this effect is modest. 

If the noise is white, the exact  probability of error  can 
be  obtained for small m and N by modeling the system as 
a Markov chain [ a l l  with  states where 1 is the  number 
of distinct  values the error e, can  assume (1 = 2m - 1 ) .  
Analytically for m = 2 and N = 3, 

pealing. 
Increases in  the  probability of error due  to  the propaga- 

tion of errors  (i.e., P,/PeL) for the various PRS systems 
were calculated and  appear  in  Table 111. The values have 
essentially reached their  asymptotic values a t  P e L  = lo+. 
It can be seen that  the effect of error  propagation  can 
increase drastically  with the number of input levels in 
some cases. 

C .  Equivalent  Systems 
The probability of error  remains  unchanged for certain 

transformations of system polynomials (assuming un- 
correlated noise samples).  Kobayashi's proof of the  duality 
between 1 + D and 1 - D   [ l a ]  can  be  extended to show 
that  the systems F ( D )  and F (  - D )  have  identical  error 
rates. 

The systems F ( D )  and F ( D h )  also have  equivalent 
performances since the  latter is a Ic-fold interleaved  version 
of the former. Then  the system polynomial may for the 
purposes of error  analysis  be reduced in order, if the 
greatest common divisor of the exponents of D is greater 
than  unity.  This order  reduction  tightens the upper  bound 
( 1 4 )  and  greatly reduces the number of states in the 
Markov chain model. 

The PRS systems  under  consideration  fall  into the fol- 
lowing four groups, with  all responses within  a  group 
having  the same error performance. (These equivalences 
do  not  carry over to timing  sensitivity.) 

1)  1 + D,1 - D,l  - D2 
2) 1 + 2 0  + D2,1 - 20' + D4 
3) 2 + D - D2,2 - D2 - D4 

where 

A,  = [ l  - tQ(f  0 + 2f l+  2 f2)]  [ (fa - 2fl + 2f2)]  4 )  1 + D - 0 2  - D3,l - D - D2 + D3.  (16) 
U 

1 - $Q 
U 

D.  Precoding 

- 4Q (" 0 - 2fl - 2f2) & (fa + 2fl - 2f2)  Precoding  is used to alleviate the error-propagation 
U U problems of the previous decoder. The precoder eliminates 
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TABLE I11 
INCREASE IN PROBABILITY OF ERROR DUE TO E R R O R  PROPAGATION 

SYSTEM PeL = 10-2 

m=2 4 8 

1 + D ,  

1 - D, 1 .9  3 . 8  7.1 

1 - D2 

1 + 2D + D2,  

1 - 2D2 + D 4  
3 . 7  11 28 

- .-.~ 

2 + D - D 2 ,  

2 - D2 - D4 
1 . 9  3 . 7  7 . 1  

1 + D - D 2  - D3, 

1 - D - D 2 + D 3  
4 . 5  16  41 

=====I peL =  IO-^ 
m=2 8 4 

2 . 0  8.0  4 . 0  

4 . 0  43  1 3  

2 . 0  8.0 4.0 

5 . 0  96 21 

the effect of previous  symbols at  the source where they 
are known precisely. Consider a new data sequence (w,} 
defined by3,4 

1 N -1 

wn = - [x, - C fiW,-i]. (17) 
f n  kl  

However wn can  take  on more than m  values. By  inter- 
preting w, modulo m, the redundancy  in  the values of w, 
is  eliminated. The coefficients ( f n )  must  then  be integer 
valued.  For convenience let  them be normalized so that 
they  have a  greatest common divisor of unity.  The 
precoded symbols (w,} are  the m-ary values which satisfy 

WRfO = xn - fiw,-i(mod m) . (18) 

A  solution  exists and is unique if and only if fo and m 
are relatively  prime [22]. Equation (18) can  be modified 
slightly if j n ,  - - , fl-1 are zero modulo m and f i  is  relatively 
prime to  m, 

N -1 

i=l 

N-1 

Wn-ljl = X,, - fiwn-i (mod  m) . (19) 
i=l+l 

This form  is useful for PRS systems for which (18) is  not 
applicable, e.g., 2 + D - D2  with  binary  input. 

Equations (18) or (19)  can be rearranged to become 
N-1 

x, = jiw,-i (mod m) . ( 20) 

This indicates that  in  the absence of noise the original 
data can  be recovered by interpreting the received signal 
modulo m, a memoryless operation. A real  (noisy)  system 
would in addition  employ a slicer to resolve the channel 
output  to  the nearest allowable level. 

id 

The precoder formulation follows Gerrish and Howson [8]. 
The  alphabet  ,(O,l,***,m - 1)  will be used in  this  subsection 

metic. 
to simplify t.he subsequent equations which involve modulo arith- 

A precoder also acts to  some extent as a scrambler. The 
source data  may  contain long runs or have some periodic 
subsequences. The precoder tends  to break  these  up, 
especially in  systems  with the more complicated system 
polynomials. 

The  statistics of the precoded sequence { w,) are needed 
to evaluate  system performance. It can  be shown that if 
the  input  data (x,} are  equally likely and  statistically 
independent, the precoded sequence will also have equi- 
probable  independent symbols [23]. In  other words, 
precoding replaces one data sequence by another  with the 
same  statistics.  The equally  likely nature of the precoded 
data will be used in  the calculation of the probability of 
error;  their independence will be needed for computing 
the  SNR degradation. 

The restrictions imposed on  (19)  mean that  not all 
PRS systems  can be precoded (though precoding is 
possible in most  circumstances for the systems  under 
consideration here). A generalized precoding scheme [SI, 
[lo] can be formulated for any  PRS system, specifically 
the coefficients { f,,) need not be integers. The .precoder 
has  a  form similar to (18) but with  a modulo operation 
defined on real numbers. The precoded digits are  not  in 
general integers  and  span  a  range 0 to  m  (cf., 0 to m - 1 
for ordinary  precoding).  The  ordinary precoder is imple- 
mented easily with  digital logic, while the generalized 
form needs much  more complicated circuitry. Any refer- 
ences to precoding in  the sequel will mean  ordinary 
precoding although some of the results  carry over t o  
generalized precoding. A major  obstacle to  the analysis 
of systems using generalized precoding is that  the statistics 
of the precoded sequence are difficult to obtain. 

E. Probability of Error with Precoding 

In order to keep the  error  rate expressions simple, it 
will be assumed that  the  output levels are evenly spaced. 
The  output levels of a PRS system  are  not  equiprobable 
if a,ny of the levels coale~ce.~ However, the outer levels 
always  have  probabilities of l/mM.  The  probability of 
error of a precoded system  is  then approximately 

where u2 is the noise variance at   the decoder and d is the 
decision distance (half the level separation,  equal to  unity 
for all of the specific examples considered here). Since 
the  output  data  are  taken modulo m from the slicer 
output,  errors which carry  the slicer output m levels 
away  may still  be  correct modulo m. The  probability of 
error  (21)  is an approximation in  that  this effect is 
ignored. 

F. Error Detection and Optimal Decoding 

The  output of a PRS system  has a built-in redundancy 
since the number of output levels is  larger than  the 

1/4; for M = 3, L = 5, the probabilities are 1/8, 1/4, 1/4,  1/4, and 
For M = 2, L = 3, the  outputs  have probabilities  1/4, 1/2,  and 

1/8;  and for M = 4, L = 5, the probabilities are 1/16, 1/4, 3/8, 
1/4,  and 1/16. 
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number of input levels. This  redundancy can be used to 
detect  errors  and hence monitor  performance [7]. 

Maximum-likelihood sequence estimation is a decoding 
technique which makes  full use of the correlations between 
signal levels a t  different  sampling  times [la], [13]. Much 
of the penalty imposed by symbol-by-symbol decoding of 
PRS is thus recovered. This improved performance is, 
however, at  the expense of a substantially increased com- 
plexity and a decoding delay. 

V. SPEED  TOLERANCE 
One of the reasons for using PRS is that  it can allow 

signaling at  the Nyquist  rate.  Ordinary PAM signaling is 
not practical a t  this  rate since the resulting  system is 
intolerant of timing  perturbations. Some measures  are 
then needed to gauge the timing  sensitivity of a  particular 
system or to compare  one  system  with  another. Speed 
tolerance and minimum eye width  are two such figures 
of merit. While speed tolerance  measures the  sensitivity 
of a system to changes in the signaling rate, eye width 
is a measure of sensitivity to changes in  the sampler 
phase. (It is assumed that when the  rate changes, the 
synchronous nature of the system allows the receiver to 
sample the  output  at  the changed rate.) 

A .  Speed  Tolerance  and  Peak  Eye  Closure 

Speed-tolerance figures for some PRS systems  appear 
in  the  literature [a]. They seem to have been based on 
a definition of speed tolerance as t.he increase in transmis- 
sion rate  at which the peak eye closure just becomes unity 
[24, p. 901. 

Lucky, Salz, and Weldon [24] offer two definitions for 
three-level systems, the zero level, and  outer level peak 
eye closures. These definitions depend on specific  choices 
for the decision thresholds.  Corresponding definitions for 
more than  three  output levels have  not been given and  it 
is not clear from the  literature  what criterion  has been 
used in such cases to  determine the speed-tolerance figures. 

The basic problem with  the above definitions is that 
a unity value for the peak eye closure merely indicates 
that  the distortion  has exceeded an  arbitrary threshold 
and not  whether the eye pattern is open or closed. Also, 
when the transmission rate is no longer the nominal value, 
the problem of finding the  “best” sampling  phase must 
also be considered in calculating speed tolerance. 

B. Speed  Tolerance  and  Zero  Eye  Opening 
In  order to avoid the ambiguities  associated  with the 

previous definitions of speed tolerance, we will consider 
the conditions under which a noiseless system ‘Yails.” 
The corresponding rate will then define the speed tolerance. 

Most PRS systems  operate  such that some of the mM 
output levels coalesce. When the signaling rate is larger 
than  the design value  (with the transmission  characteristic 
being kept  fixed), the  output levels generally split  into mM 
levels again. In  addition,  intersymbol  interference  from 
samples that  are nominally zero (at the nominal trans- 
mission rate  and nominal  sampling  phase) will cause the 

LEVELS AT 
CENTRE OF 

%{% (lhol+lh11)/2 

Ihol+Ihll 

SAMPLING TIME 

THE 
THE 

EYE 

LEVELS AT THE 
CENTRE OF EYE 

Ihol+Ihl I  

Fig. 5. Received levels for a three-level partial-response system. 
(a) Undistorted reception. (b) Distorted reception. 

levels to spread  out  around  these mM levels6 (Fig. 5 ) .  
If the decision thresholds  are placed midway in the 

gaps between the levels’ and  the sampler phase is kept a t  
the point where the eye opening is the  largest, a noiseless 
system will not  make  errors  until  the levels overlap  in  one 
of the eyes (i.e., the eye closes). In  general, the threshold 
positions as well as the sampler phase will have to be 
constantly  readjusted  as  the signaling rate is varied, in 
order to keep the thresholds in  the middle of the gaps and 
the sampling instant  at  the point of maximum eye height. 
Above the  rate  at which one of the eyes closes, some data 
sequences will cause errors even in  the absence of noise. 
When  this  happens, we  will deem the system to have 
failed. For  other threshold locations, the system will fail 
a t  even lower transmission rates  in  the absence of noise. 
Thus  it is clear that this  rate is an upper  bound on per- 
missible transmission  rate, the  actual thresholds will 
dictate how  close to  this  maximum rate  the speed may 
approach. 

We shall define speed tolerance as the increase in  trans- 
mission rate at which the smallest eye opening is zero (the 
eye opening being the maximum height of an  eye).  The 

symmetrical about zero. In addition, the probability  distribution of 
6 For equiprobable bipolar data,  the probability of the  output is 

the unwanted  intersymbol inteference is  symmetric about. each of 
the mM levels individually. 

7 It should be noted that  this placement of the thresholds does 
not minimize the average probability of error  in the presence of 
Gausslan nolse. 
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distortion  from the nominally zero pulse samples at time 
to + nT, is given by 

m 5 s,-h(to + iT,) 5 ( m  - 1 )  I h(t0 + iT,) I 
+m 2=- m 

i Q l I N Z )  i $ f r N Z l  

- - fl D,, (22) 

where T,  is the sampling  interval (not necessarily equal 
to  the nominal  symbol spacing T )  , to represents the sampler 
phase ( I  to I 5 T,/2)  , (INZ) is the  set of subscripts i for 
which h ( i T )  # 0, and D, is the peak (or worst case) 
distortion  from the nominally zero pulse samples. 

For a three-level system  (only possible with  binary in- 
puts),  the eye opening is given by  (Fig. 5) 

p =  I h o I  + I h l l  - (IhoI - I h J l  -2D,, (23) 

where ho and hl are samples of the impulse response cor- 
responding to  the two  nonzero pulse coefficients. The 
condition p = 0 can  be  rewritten  as 

DP 
( I  ho I + I hl I - I /  ho I - I hl Il)/2 

= 1. (24) 

This is  analogous to  the peak eye closure criteria [24]. 

C .  Inner  and  Outer  Eye  Openings 

For  systems  with more than  three  output levels, speed 
tolerance is derived  from the signaling rate which causes 
at least one of the eyes to  be closed. 

Consider a five-level PRS system  with  three nonzero 
pulse coefficients. Let  the corresponding  impulse response 
samples  be ho, hl, and hz ordered  such that I ho I 2 I hl I 2 
I hz I .  The positive received levels due to just  these samples, 
for binary f l  input,  are shown in Fig. 6. 

The  outer eye opening is 

PO' ( I h o I + l h l I + I h z l - D p )  

- ( I h o l  + I h l l  - IhzI +D,) 

= 2 I h2 I - 2Dp, (25) 

while the inner eye opening is 

pr = ( I  ho I - I hl I + I hz I - D,) 

- ( ( I  ho I - I hl I - I h2 1 1  + D,) 
2 I hz I - 2Dp, forIhoI  2 I h l l  + Ih21 = I  21hol - 2 I h l l  -2D, ,  forIhoI  5 I h l l + l h z I .  

(26) 
From (25) and (26) we see that 

pr 5 2 I hp I - 2 0 ,  = PO. (27) 

Similarly it can  be  shown that for all five-level systems, 
the inner  eye opening is  always less than or equal to  the 
outer opening. Then for  binary  input,  the speed tolerance 
of the systems  under  consideration  is the increase in 
transmission rate which causes the  central eye to close. 

; AT THE 
f OF  THE  EYE 

Fig. 6.  Received levels for a five-level partial-response system. 

D. Conditions for Nonzero  Speed  Tolerance 
Before calculating the speed tolerance for various PRS 

systems on the basis of the zero eye opening criterion, the 
conditions  under which the speed tolerance  is nonzero 
will be determined. From  the definitions of eye openings, 
it is clear that speed tolerance is nonzero only if D, is 
bounded. 

For  a  minimum  bandwidth PRS system the expression 
for h ( t )  , ( 6 ) ,  can  be substituted  into (22) to give 

i $ ( r N Z )  

(28) 

It can  be shown that  the series (28) defining the peak 
distortion D, converges if and only if [23] 

and/or 

- 2 )  to = k T  and T,  = IT, for k, 1 integers. (30) 

The condition (29) is  equivalent to  requiring that 
1 + D be a  factor of the  system polynomial F ( D )  . This 
requirement is not  surprising  in  light of the discussion in 
Section I11 on how 1 + D affects the asymptotic  decay of 
the impulse response. The second condition (30) is that 
the sampling instants should occur at   the nominal  points. 
These  conditions  lead to  the conclusion that for minimum 
bandwidth  systems, if 1 + D is not a  factor of the  system 
polynomial, the speed tolerance  is zero since any change 
in speed ( l / T , )  will cause the peak  distortion to be 
unbounded. 

E. Comparison of PRS Systems  on the Basis of Speed 
Tolerance 

Speed tolera,nce figures for PRS systems of interest 
were calculated  on a digital  computer. The problem was 
programmed as a  two-variable  optimization; the speed 
was increased to close the eye while the sampler  phase was 
adjusted to maximize the eye opening. This procedure was 
repeated  until an equilibrium was reached. 

Table IV shows the speed-tolerance figures for the 
various  systems  under  consideration for binary  inputs. 
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TABLE IV 
SPEED TOLERANCE AND MINIMIJM EYE WIDTH FOR MINIMUM 

BANDWIDTH PRS WITH BINARY INPUTS 

929 
20 t 

SYSTEM 

I 

SPEED TOLERANCE 
% 

4 2 . 5  

2 6 . 6  

7 . 4 3  

1 5 . 5  

7 . 4 2  

1 4 . 1  

4 . 8 1  

2 . 9 6  

MINIMUM 
EYE WIDTH 

0.667T 

0 .689T 

0 .243T 

0 . 3 5 7 T  

0 . 2 4 9 T  

0 .363T 

0 .200T 

0 .164T 

Comparison  with figures previously published by  Iiretzmer 
[218 shows significant differences in two cases, namely 
1 + 2D + D2 and 2 + D - D2. 

One of the systems that has  not been previously 
analyzed, 1 + D - D2 - D3, has  nearly the same speed 
tolerance as  the well known 1 - D2 system.  The two sys- 
tems are closely related, but 1 + D - 02 - 0 3  has an 
additional  null at  the Nyquist  frequency which makes the 
high-end roll-off more  gradual. 

F.  Eflect of Sampler  Phase 
The  optimum sampler phase remained unchanged with 

respect to  the center of the impulse response for all  the 
systems  with  symmetry (or  antisymmetry)  in  their 
impulse responses. This is  not unexpected since the eye 
patterns for these  systems  are  symmetrical about  the 
center of the impulse response. Fig. 7 shows how the'zero 
eye opening criterion  relates to  the sampler  phase and 
excess speed for the two  systems  with  unsymmetrical 
responses. The  optimum times were offset by -2.7 X 
lO+T and -2.9 X 1OP2T from  their nominal points for 
the systems 2 + D - D2 and 2 - D2 - D4, respectively. 
The speed tolerances for these  systems are 7.4 and 3 
percent, respectively. For 2 + D - D2, the often-quoted 
speed  tolerance  is 38 percent [a]. Fig. 7(a)  shows clearly 
that  both pairs of eyes are completely closed a t  transmis- 
sion  rates more than 8 percent over the nominal rate. 

G. Nonminimum  Bandwidth  Systems 
As noted  in Section 111-C, PRS is possible with  systems 

not  having 1 + D as a  factor of the system polynomial if 
the system  bandwidth  is allowed t o  increase beyond the 
Nyquist  bandwidth. As an example, we will consider using 
the 1 - D response in  conjunct'ion  with a Nyquist filter 
having a gradual  cutoff. The  particular filter chosen 
belongs to  the class of raised cosine filters [24] 

2 + D - D2, 1 - D2, and 1 - 2D2 + D4 are 43, 40, 38, 15, and 
8Kretzmer's speed-tolerance  figures for 1 + D, 1 + 2 0  + 02, 

8 percent,  respectively. 

10 

0 
-2.7 

-10 

-20 

RATE) 

- s? 
(b) 

Fig. 7. Eye closure as a  function of sampling  time and tra.nsmission 
rate. (a) 3 + D - D2. (h) 2 - D2 - 0 4 .  

~ ( l  - a ) / T  5 I w I 5 ~ ( l  + a ) / T  
0, 4 1  + a ) / T  5 I W I 

(31) 

where a is the roll-off parameter, 0 5 a 5 1. Fig. 3 
illustrates  the  spectrum of the 1 - D response used with 
a  raised cosine filter ( CY = 1/2). Fig. 8 shows how the speed 
tolerance of this  system  varies  with a. For comparison, 
this  graph also shows the curves for the  binary 1 + D 
and 1 - D2 responses. At CY = 1 /2  the 1 - D system has 
a speed tolerance of 20 percent. This is better  than  any 
of the minimum  bandwidth  systems considered earlier 
which also have  dc nulls. This  improved speed tolerance  is 
of course at  the expense of more bandwidth; however, the 
tradeoff may be useful. This example serves to illustrate 
that Nyquist filters other than  the minimum  bandwidth 
one can be useful for generating PRS spectra. 

H .  Speed  Tolerance for a General PRS Systenz 
The calculation of the eye opening which is used to 

arrive at  the speed-tolerance figure can be generalized 
for PRS systems  other than those considered in  detail 
here. For a general PRS system, the  output  due  just  to  the 
nominally nonzero pulse samples is given by (cf. (22) ) 

u(to + ?&T8) = z,-ih (to + i T B ) .  (32) 
i E ( z N Z 1  

For  a fixed value of to + nT,, only M input digits con- 
tribute  to  the  sum.  The worst-case excursions of each of 
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Fig. 8. Speed  tolerance as a  function of t8he roll-off  parameter of 
a  raised  cosine Nyquist filter. -I 

the  total of mjy possible values  can be calculated by adding 
+Dp to  each of the m M  values. (Note  that D, varies  with 
to ,  see ( 2 2 )  .) As t o  is  varied  and the M 2:s which affect 
( 3 2 )  take on all  combinations of 'values,  the worst case % to '512 

excursions trace  out  the outline of the eye pattern. Fig. 9. Duobinary eye pattern. 

-2  

-T 0 - 
The nominal output levels result when to = 0 and 

T ,  = T.  For each of these  nominal levels there ~ i 1 1  be  nomid (see (29)  and ( 3 0 )  ). For the rest of the section, 
corresponding M-tuples of input symbols { zn-i}, i E {Inz}. we shall that such is the case. 
The  gap corresponding to a  particular eye can  be  found The impulse response of a genera.l PRS (6) can 
by  taking  the difference between the minimum of the  be written as 
values of u(tn + nT.) f D, caused by  M-tuples which T N-l ( - 1) n j n  

correspond to  the nominal level above the eye and  the h ( t )  = -sin (Pt /T)  ~. (35 )  
maximum of the values caused by M-tuples which cor- 
resporld to the nominal level belom the eye. F~~ the  The sine factor  inserts  the regularly spaced zero crossings. 
general case, several. eye openings must be examined, The second factor (i*e.j the sum) has at lnost 

since the inner eye is not necessarily the smallest.  roots and hence a t  most N - 1 sign changes. Let T L  and 

the duobinary eye pattern for binary input sylnbols The peak  distortion  can  be  split into  three  terms  with  the 
( ~ i ~ .  9).  The four 2-tuples { 1,1}, 1, - 1 1 ,  { - 1,1) ,  and real roots of the second factor of ( 3 5 )  contained  within 
{ - 1, - l }  correspond to  the.  nominal output levels the range Of the term, 
2, 0, 0, and -2, respectively. Consider the  upper  eye;  the IL I " 4  

lower eye boundary,  due to  the { 1, - 1 } or { - 1,1} input DP = (m  - 1) I h (to -I- i T )  1 + I h(to i T )  I 
pair,  is given by 

P ,L=o t - nT 

- 

To help clarify the procedure, consider, for example, Tu be  the smallest and largest  real  roots, 

i-- 00 i=IL+l 

i Q ( r N 2 )  

max Ch,(to) - h(tn + T.),-h(to) + h(t0 + T.)] + Dp 

( 3 3 )  + 5 I h(t0 + i T )  I }  (36) 

where h ( t )  is the duobinary response given in  Table 11. where I L  is the greatest  integer i satisfying to + iT  5 TL 
The upper  boundary,  in  this case due only to  the { 1 , l )  and i 5 - 1 and Iu is the smallest  integer k satisfying 
input symbol  pair, is given by to + kT 5 TU and k 2 N .  

Expanding  the first term of (36) using ( 3 5 )  and  then 
(34) interchanging the  summation  and  magnitude operations, 

+I" 

h(to) + / & ( t o  + T,) - D p .  

The eye opening may  then  be calculat,ed as  the difference IL 

between (34) and ( 3 3 ) .  I h(to + i T )  I 
6- m 

VI. EYE  WIDTH T I L  N-1 

To simplify the calculation of the eye width,  a new = - li- sin (li- I to I/'') 
i=-OO n4 t~ + (i - n) T 

formula for peak  distortion is first developed. 

A .  Peak Distortion 
T IL N--l ( - 1) n jn  

= -sin ( T I  to I/T) ___ 
li- i--- n=O to + i T  

To measure eye width,  only  the sampler  phase to is 
varied;  the symbol spacing T,  assumes the nominal 
value T .  Thus,  the peak  distortion  due to  the nominally 
zero pulse samples is given by (28) with T ,  = T.  Minimum 

(37) 

bandm'dth systems have bounded D p  and hence nonzero 9 If there  are no real roots, TL and Tu may  be set to zero to be 
eye widths  only if 1 f D is  a  factor of the system poly- consistent  with the sequel. 
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The first part of the result (37) is zero since 1 + D is 
a factor of the system polynomial. Similar manipulation 
of the  last  term of (36) is possible. Then for minimum 
bandwidth systems  with  bounded  peak  distortion, the 
peak  distortion  can be written  as  a  finite series, 

The lower outline  is  generated  by 

1 ( m .  - l),  t o  2 0 

- ( m  - I), to  < 0. 
5, = 5n-1 = (42) 

The  upper  and lower outlines of the smallest eye then  are 

For  all the specific PRS systems  introduced previously 
T L  and Tu lie in  the  interval [0, ( N  - 1)  T I  giving IL = 

-1 and Iv = N in (3s). 

B. Eye Width 
The eye opening as a  function of t o  can  be  calculated by 

adding &D, to  the levels generated by  the M nominally 
nonzero pulse samples. The width of the eyes can be cal- 
culated  from  the values of to a t  which the eyes just close. 

As a performance measure for PRS systems, we  mill use 
the smallest of the  widths of the eyes. In  the simpler 
cases, the M-tuples of input which result in  the boundaries 
of the smallest eye can be determined analytically.1° The 
upper  and lower edges of the eye can be equated to give 
a polynomial in to from whose root's the eye width  can  be 
determined. 

To illustrate  the procedure, the duobinary (1 + D) 
eye  width will be  determined.  From (35)) 

and 

Substituting for D, from (39) and  equating  (43)  and  (44) , 
we can solve for the two  values of to at  which the edges 
of the eye  meet.  The eye width is then  just  the difference 
between  them, 

nrn 

eye width = ~ 

L1 
(45) 4m - 5 '  

The results of Section V-C can be applied directly- 
for binary  input  and  the systems  under consideration the 
central eye widths  are the smallest. The minimum  eye 
widths  are given in  Table  IV. 

The speed tolerance and eye width  criteria  have some 
common ground  in that  they measure the sensitivities to 
timing  perturbations,  albeit  not of the same type.  The 
results show' that  the systems  with  nearly  equal speed 
tolerances  have  nearly  equal eye widths. The major change 
in ordering of the  PRS systems on the basis of these  two 
measures occurs with the interchange of 1 + D and 
1 + 3 0  + 0 2 ,  the system 1 + 2 0  + D2 has  the  best eye 

2 ( m  - I) sin (P I t o  l / T )  
D, = (39) 

From ( 3 2 )  the  output from just  the two main pulses is 

width while 1 + D has the  best speed tolerance. 
P 1 - ( ~ O / T ) ~  ' 

VII.  SNR  DEGRADATION 

In this  section, the  SNR degradation over ideal binary 
transmission is used to gauge the system performance 

(ato/T) (1 - (to/TI2) T with  additive  white  Gaussian noise present. We will 
again  concentrate on minimum  bandwidth  PRS. 

sin ( d o /  T )  (2 (2, + 5%-1) + 5, - .c,1-1 . ) 
(40) 

Fig. 9 shows these levels as a  function of to  for binary 
valued 5,'s. If to = 0, (40)  takes on the value - x,--l. 
The  term zn + zlL-l adds  distortion when to # 0. It can 
be verified that this  distortion  is  worst for the  inner eyes 
for m-ary input symbols. The  upper  boundary of the 
(upper)  inner eye is generated by 

- ( m  - 3 ) )  to  2 0 
xn = lm - 1, t o  < 0 

- ( m  - l),  to 2 0 
5,-1 = (41) 

[m - 37 t o  < 0. 

(1 - 0 2 )  in this manner. More recently work by Craig [26] has 
10 Smith [25] has found the eye width for modified duobinary 

come to our attention. 

A .  Xystem Model 

In  order to calculate the SNR degradation, we must 
specify how the filtering is apportioned between the  trans- 
mitter  and  the receiver. Two  system models are shown in 
Fig. 10. The  arrangement  in Fig. 10(a) (which will be 
called model 1) optimally  distributes the shaping between 
the  transmitter  and receiver for a perfect channel. The 
phase response of the system  function may be arbitrarily 
distributed since it does not  affect the system performance 
in  the presence of noise. The noise at  the decoder is cor- 
related at   the sample  times  meaning that  the expressions 
for error  probability which assume independence of noise 
samples at  the detector  cannot be applied for model 1. 
However the lower bound (12) still holds. 

In  Fig. 10(b) (model 2 )  , the  transmitter filter and  the 
channel determine the shape of the frequency response 
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NOISE For model 1, (49) becomes 

71 = [" @ ' ( P E / K )  jm I H ( w )  I d u l l .  (50) 
t =nT 2ad -m 

I TRANSMITTER  FILTER RECEIVER For model 2, using Parseval's relationship and (6), the 
( 4  

NOISE SNR can  be  written as 
SAMPLER 

2 N-l 

1 Iwl<TI/T DECODER V Z  = [: & - I ( P E / K ) ]  f n 2 .  (51) 
IN n=O 

TRANSMITTER FILTER 
AND CHANNEL 

RECEIVER The PRS system will be compared with  ideal binary 

(b) signaling which has an  SNR (see (12) ) 

Fig. 10. Partial-response system models. (a) Model 1. (b) Model 2. 17b = [ Q - ' ( ~ E ) ] ' .  (52) 

while the receiver filter merely bandlimits the noise. The 
noise samples will be independent since the noise has 
been bandlimited to  the Nyquist  frequency r / T .  Thus 
the expressions for the exact  error rate  as well as the 
bounds  can  be  applied to model 2.  

The  error  bounds (12) and (14) as well as  the  error 
rate  with precoding (21) can  be expressed by  the general 
form 

PE = KQ(d /u )  (46) 

where the value of K is suitably chosen, u2 is the noise 
variance at  the detector,  and d is the decision distance 
(either fo or half the signal level separation).  The general 
form (46) is applicable  even for exact  error  rates in 
systems  without precoding provided K includes the  relative 
increase in  error  rate  due  to  error  propagation which 
results  in a given value of PE. 

The noise variance at   the detector is given by 

where No is the noise power spectral  density  and HR (w)  
is the frequency response of the receiver filter (different 
for models 1 and 2) .  

B. SNR 

The SNR degradation will then  be V l / V b  or IJ2/?p, for 
models 1 and 2, respectively. 

We  shall now investigate how certain  factors  such as 
error  rate,  number of output levels, and precoding affect 
the  SNR degradation. 

1) Equivalent Systems: The  transformations of the 
system polynomials, F ( D )  to  F (  -D) and F (   D )  t.o 
F ( D k ) ,  do  not change the SNR degradation  values  for 
moclels 1 and 2. (This  can  be shown easily by  substituting 
(5) .and ( 3 )  into (50) or (51) .) Thus  the equivalences 
introduced  in  Section IV-C for error  rate  apply  to SNR 
degradation also (see (16) ) . 

2) Precoding: When precoding is  applied to  a PRS 
system, the decision distance d may decrease from the 
value it assumes with no precoding. This occurs if fo is 
not  the smallest  magnitude pulse coefficient (e.g., 2 + 
D - 0 2  and 2 - D2 - D 4 ) .  This decrease in decision 
distance  means that  the SNR degradation will increase 
when precoding is applied to  such  systems. 

3 )  Probability of Error: We also note  from (50)-(52) 
that  the SNR degradation  varies  with the error  rate, 
unless K in (46) is equal to  unity.  The effect of K on the 
SNlt degradation  vanishes for low error  rates, i.e., 
&-I ( P E / K )  --+ &-' ( PE) as PB --+ 0. Hence the SNR degra- 
dation becomes asymptotically  independent of PE, 

The SNR of interest  is  a,t the receiver input  (point A 171 

in Fig. 10 (a)  and  (b) ) and is given by 
- 2 lim - = 
"lb PE+O 17b 

- 2 lim - = - 172 qz az2 
f n 2 .  

N-l 

(54) 

4) Number of Output Levels: Generally,  one feels that 

176 PE+O 17b d2 
t =  No/ T (48) 

where uz2 is the variance of the  input symbols [uZ2 = 
(nz2 - 1)/3], and No/T is the noise power in  the  Nyquist 
band [ - r / T , r / T ] .  

The SNR required to  achieve a given probability of 
error PE can be obtained  from (46)-(48), 

an increase in  the  number of output levels should  result in 
an increase in  the SNR degradation. However (54) 
indicates that  this need not  be so and  in  fact indicates how 
to choose a PRS system  with  a  small SNR degradation. 
Consider the class of PRS systems  with  system polynomial 

(49) Fk(D)  has 1 + D as a factor  and  has 2k + 1 output 
where Q-' ( p )  is the solution x, of p = & (x,). levels. With no precoding, the decision distance for this 
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SNR DEGRADATION (dB) at PE = IO-' 

Model 1 Model 2 

* The three figures i n  each entry represent  the lower and upper bounds and the  actual SNR degradation 

class of systems  is d = k. Hence the  asymptotic  SNR 
degradation  from (54) is 

lim - = u,2 (1 + i) . 
For large k (and hence large  number of output levels) 
this limit  approaches the lower bound  on SNR degradation 
for m-ary input symbols. (The lower bound is achieved 
by ordinary PAM.) This class of systems  demonstrates 
that  SNR degradation need not necessarily increase with 
an increase  in the  number of output levels. 

The effect of error  propagation on the  SNR degradation 
(as  manifested in  the value of K )  will also tend  to  be 
small for this class as compared to other  systems  with the 
same  number of pulse coefficients (for k > 1) .  This is 
due to  the  fact  that  the feedback coefficients are  small 
relative to  the main pulse sample on which the decision 
is based.  On the other  hand, when precoding is applied 
to  systems in this' class, the decision distance decreases 
to  unity.  The  SNR  degradation  then increases with k ,  

712 

PE-o 716 
(56 )  

112 712 

9 b  pE+o 71b 
- 2 lim - = aZ2(k2 + k ) .  (57) 

Two of the  PRS systems  under consideration here fall 
into  the category specified by ( 5 5 ) ,  1 + D ( k  = 1)  and 
2 + D - D ' ( k = 2 ) .  

C. Comparison on  the Basis of SNR Degradation 

Table V lists the  SNR  degradation  in decibels for PRS 
systems  with  binary  inputs  and at  the representative 
error  rate of loF5. ICretzmer [a] lists  values of SNR 
degradation  for some of the systems considered here 
using model 1 and the asymptotic  formula (53).  Qureshi 
and Newhall [27] use a  discrete  channel model which 
corresponds to  model 2 for SNR degradation  calculations 
for the same  systems  Kretzmer considered. 

Q 

Table V lists  a lower bound on the  SNR degradation, 
corresponding to  the lower bound on the error rate (12), 
for model 1. For model 2, the  SNR  degradation correspond- 
ing to  the bounds  on the  probability of error, (12) and( 14), 
as well as  the exact SNR degradation  from the Markov 
chain model are given. For precoded systems the degrada- 
tion values corresponding to  the error  rate of (21) are 
given for both  system models. 

Previous  results  have included only lower bounds  on 
the  SNR degradation for systems  without precoding and 
thus  it has  not been possible to ascertain how seriously 
the error-propagation phenomenon affects the system 
performance. The results given here (for  binary  input) 
show that precoding does not decrease the  SNR degrada- 
tion significantly and  in  fact increases it for some systems. 
(For 2 + D - D2 and 2 - D2 - D4 a 6-dB penalty  is 
incurred.) 

The error-propagation phenomenon is  more serious for 
multilevel input,  though  the worst-case systeh  in Table I1 
(nz = 8, P,/P,L = 96) requires only 1.6 dB more SNR 
without precoding than  the same system precoded to 
maintain an error rate of 

VIII. CONCLUSIONS 
Five useful PRS systems  have been studied previously 

[a]. This  study  has analyzed some additional ones. Of 
these  systems 1 + D - D2 - D3 deserves more attention 
since its performance rates  above some of the previously 
studied PRS systems, for instance  Kretzmer's class 
5 system [a]. The  two systems which still  stand  out  on 
the basis of the performance measures used here are 
duobinary 1 + D and modified duobinary 1 - D2. These 
are also the ones that have  in  the  past been put  to practice 
both because of their  simplicity and  their useful spectral 
shapes. 

The exact figures for probability of error and hence 
SNR degradation  have been presented for one system 
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model. This allows us  to  evaluate  the  true  effect of 
precoding. The results show that for reasonable error 
rates (lop5 or below for instance)) precoding does not 
decrease the  SNR degradation  greatly and in some cases 
actually increases it.  (This is due  in  part  to  the  fact  that 
error  propagation affects the error rate  by  at most  a 
multiplicative  factor.) However, since precoding is rela- 
tively easy to  implement, it serves a useful purpose for 
many PltS systems. 

I n  real systems since the  data  are  not  truly  random, 
selected input sequences could conceivably suffer severe 
error  propagation.  Precoding does offer protection  against 
this  and  in  addition  tends  to scramble some repeated data 
patterns, especially in  the case of systems  with the more 
complicated system polynomials. 

Detectors  such  as  the  maximum likelihood sequence 
estimator were not emphasized here.  Until the’high cost 
of implementing  these  types of detectors decreases sub- 
stantially. PRS systems will continue to use decoding 
schemes as described here.  Presently, PRS systems  still 
tend  to be applied where simplicity o f  processing and 
detecting  is  important. However, in  the  future, we can 
look forward to achieving better performance for PRS 
with  more  optimal decoding schemes. 
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