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The Stability of Adaptive Minimum  Mean  Square  Error 
Equalizers Using Delayed Adjustment 
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Absrrucr-The necessary  and  sufficient  conditions  for  the  stability 
and  convergence  of  adaptive  minimum  mean  square  error  equalizers 
are  developed.  The  analysis  includes  the  effect  of  delays  in  the  ad- 
justment  path,  as  occur,  for  instance,  when  the  decoder  in  a  data 
transmission  system  delays  its  output  decisions. 

INTRODUCTION 

Adaptive  equalizers  have  become  a common  feature  in high- 
speed  data  modems.  The  usual  adaptation  procedure is some 
version  of the  steepest  descent  algorithm  which  minimizes  the 
mean  square  error.  These  equalizers  have  been used in  systems 
employing  threshold  detectors.  One  feature of these  detectors 
is that  no decision  delay is involved. Widrow’s analysis [ 11 
gives the  stability  and  convergence  conditions  for  these  adapt- 
ive  equalizers  used  with  symbol-by-symbol  detectors. 

More  recently,  interest  has  been  shown  in using detectors 
that  perform  better  than  symbol-by-symbol  detectors.  Two 
examples  are  maximum  likelihood  sequence  estimation using 
the  Viterbi  algorithm  [2], [ 31 and  the  sequential  detector 
described  by  Abend  and  Fritchman [4 ] .  While these  schemes 
perform  better  than  conventional  detectors,  they  also  do so at 
the  expense of complexity.  Their  complexity  grows  exponen- 
tially  with  the  system  pulse  response  duration. 

In  order  to  reduce  the  complexity of the  detector,  it  has 
been  suggested that a  transversal  equalizer  be  used t o  reduce 
the  time dispersion  of the  system  pulse  response [ 5 1 -[ 7 1 . In 
an  adaptive version in  which  the decisions from  the  detector 
involve  delays, the  stability  and  convergence  criteria  of  the 
equalizer  adjustment  procedure  must  be  examined  anew.  The 
analysis  in  this  paper gives a result  which  replaces  the  empiri- 
cally  derived bound given in [ 5 1 . 

ADAPTIVE  EQUALIZATION 

Fig.  1 shows a model  for  an  adaptive  equalizer.  The  output 
of the equalizer is given by 

where r ( k )  is the  column  vector  of received  samples on  the 
delay  line at  time k and d k )  is  the  vector of M tap coefficients 
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of the transversal filter.  The  steepest  descent  algorithm  for 
adjusting  the  equalizer t o  minimize the  mean  square  error 
takes a step  in  the  direction  opposite  to  the  direction of the 
gradient of the  error D time  units  ago,  that  is,  at  time k i- 1 
the weight vector  becomes 

where sk is a parameter  controlling  the  step size and g(k) is the 
gradient  vector 

ek is  the  error,  that  is,  the  difference  between  the desired and 
actual  response, 

ek = d k  - y k .  (4) 

The  stochastic version of this  algorithm will be  introduced 
later. 

The weight adjustment  algorithm  then  becomes 

or 

where Ak is the  step size parameter  (equal  to 2sk), A is the 
correlation  matrix of the  input  sequence  (assuming d k )  and d k  
are  stationary  sequences) 

and Q is the cross-correlation  vector 

The  optimum value  of the weight vector  (that  which  minimizes 
the  mean  square  error) is given by 

Copt  = A -  iff. ( 9 )  

In  order  to  decouple  the weight adjustments,  define  the  trans- 
formation 

( ! I  = PC (1 0 )  

where P is an  orthonormal  matrix  which diagonalizes A 

Fig.  2 shows a feedback  model  for  this  adjustment  algorithm. 
The  optimum  decoupled weight vector  can  be  written  as 

cbpt = A-’Pa. (13) 
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Fig. 1. An adaptive equaliier with  delayed  decisions. 
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Fig. 2. Feedback  model for the tap weight  adjustment. 

The  limit as k --f 00 of 1 I is  zero if and  only if all of the 
poles of H j ( z )  are  within the  unit circle  in the  complex z -  
plane [8, p. 4921. If 

lim I hi(') i = 0 for  each j ,  j = 1 ; -, M (1  7) 
k + -  

then limk,, c'(k) = 
Stability  also  requires that all of the poles of Hi(z)  be 

within  the  unit circle [9 ] .  Thus, we conclude  that  the  ad- 
justment  algorithm ( 5 )  is stable  and converges if and  only  if, 
for  each j ,  all of the  roots of the characteristic  polynomial 

F(z) = zD" - zD -k AAj ( 1  8) 

lie  within  the  unit circle. 

STABILITY  AND  CONVERGENCE  CRITERIA 

The  particular  form of F ( z )  allows  us tb  determine  the  loca- 
tion of its  roots. Define 

The  values of p for which F ( z )  has  roots  ori'the  unit circle  can 
be determined by  setting 

= e j @ .  (20) 

Since 0 is real,  from (1 8), 

~ = c O S D @ - C O S ( D +  I)@ (21 1 

sinDq5-sin(D+ 1)$=0. (22) 

The values of @ satisfying the  latter  equation  define  the  points 
at which roots can  lie on  the  unit circle, namely 

hi 
@=- 

2 0  i- 1 

where I is odd  and 1 11 < 2 0  f 1 or I = 0. 

unit circle  can  be determined  from  (21)  and  (23), 
The values of 0 corresponding to  F(z )  having roots  on  the 

0 = 2  sin 
IT 

2(20 + 1) 
(24) 

The overall  behavior of the  system can  be  ascertained  by  using 
root  locus  techniques [ 101.  For = 0, D  rdots  lie  at  the origin 
and  one  root lies at z = 1 .,As 0 is increased, the  root  at,z = 1 
and  one of the  other  roots move toward  each  other  on  the real 
axis to meet  at z = D/(D -I- 1).  The  other  roots  fiove radially 
from  the origin. For larger  values of 0, the  two real axis roots 
split to  form a  complex  conjugate pair  which  cross the  unit 
circle at 

n 
($=?----- 

2 0  -I- 1 

The values of p for w.hich al1,roots  lie  inside the unit  circle  cor- 
respond to the interval (0, where Omax cofresponds to  
I = 1  in  (24). In terms of A and hj this  interval is 

2 R 
O < A < -  sin 

xj 2(2D + 1) 

The  step size A must  satisfy (26)  for  each hi. Thus,  the  system 
is stable  and converges if and  only if 
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where bmax is the largest  eigenvalue of the  correlation  matrix 
A .  

CONVERGENCE OF A  PRACTICAL  ALGORITHM 

In  practice, the weight adjustment  algorithm of (5) must be 
modified. Since a large  observation  time is  necessary  in order 
t o  get a good estimate of the gradient  vector,  the  algorithm is 
modified to become 

In  the  stochastic version of the  algorithm,  a noisy  unbiased 
estimate  replaces  the  gradient.  For  this  algorithm,  it will be 
shown  that  (27) also guarantees  that 

if the vector  of weights d k )  (now  a  random  vector) is  inde- 
pendent of the received  vector d k ) .  The  independence  assump- 
tion  has  been  justified  by Mazo [ l  11 using a  perturbation 
solution.  From (28), taking  expected values and  fixing Ak = A ,  

This  set of equations can be decoupled as before  to give an 
equation of the  same  form as (1 2). 

Thus,  applying  the  same  reasoning,  the weight  vector con- 
verges in  the  mean  to  the  optimum value  if and  only if the  step 
size A satisfies (27). 

DISCUSSION 

It  has  been  shown  that (27) gives the necessary and  sufficient 
conditions  to  ensure convergence o f  the  mean  tap weights. 
This  condition  reduces to  that given by  Widrow [ 101 for  no 
delay.  The  delay  in  the  update  procedure can be seen to  re- 
duce  the  maximum  allowable  step size  by a  factor sin (n/(4D i- 

In  the  models  depicted  in Figs. 1  and 2, the delay  has  been 
lumped  at  one  point. However, the  characteristic  polynomial 
for  the  system is not  affected if the delay  is  moved to  anather 
point  or even distributed  in  the  adjustment  loop. Thus, the 
same  analysis  applies if, for  instance,  the  equalizer is remote 
from  the decision  unit  (resulting  in delay both  in  the  decision 
path  and  the  update  path). 

The  convergence  condition  shows  the  tradeoff  between 
convergence  rate  and  stability even with  delayed  adjustments. 
As the  loop gain or delay  is  varied, the  root  loci ‘will give in- 
sight into  the  system  behavior.  For very  small step sizes the 
system  has  an  exponential  response  with tim’e constant 

2)). 

1 
T = h -  

1 -u 

where u i s  the position of the real  axis  root  nearest  the  unit 
circle,  satisfying 

Ah,,, = #(I -a). (32) 

This exponential behavior  is valid for Ahma, Q 1/(D + 1).  For 

larger  values of u, the  response  becomes  oscillatory as more 
than  one  root begins to  affect  the  response. 

Since  oscillatory  behavior is usually  undesirable  and  because 
of  the  uncertainty  in  estimating Amax , the  step size parameter 
will  generally  be  small enough to give an exponential conver- 
gence. A small step size  also  assures ’ that  the  fluctuations 
about  the  optimal values will  be small. 

The analysis  has examined  the mean tap weights. The  real 
performance  measure is mean square  error. Ungerboeck’s 
work [ 121  indicates  that  (for  no  delay)  the  same  paths closely 
follow  the mean  values if the step-size parameter is reduced 
from  the  maximum value given here  by  a  factor M .  

Other  algorithms have  been  suggested that vary the  step 
size parameter Ak dynamically to  speed  convergence  (e.g., 
[ 13 I , [ 12 I ). These  schemes attempt  to achieve  rapid  conver- 
gence (by using a relatively  large  initial step  size)  and  a small 
excess error  due  to  tap weight fluctuations  around  the  optimal 
values (by using a small final  step size). For  these  schemes,  the 
given stability  criterion  remains  a  sufficient  condition if it is 
applied  at  each  time  instant  to Ak’. 

I n  some  circumstances,  .the  adjustment  delay  may  be  re- 
duced to  allow for stability  along  with  a  reasonable  rate of 
convergence. For  instance,  in  the  Viterbi  detector,  premature 
decisions are available. These,  although  they  contain  more 
errors  than  the  final  decision, might  be suitable  for  equalizer 
adjustment. In the case of  other  detectors,  an  auxiliary 
detector  with  no delay or less  delay  might  be  used  expressly 
t o  adjust the equalizer.  The  stability  aqd  ‘convergence  limits 
presented  here allow one  to evaluate  such  alternatives. 
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