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Abstract 

This paper discussea minimum mean-sqaare error quantiration 
for symmetric distributions. If the distribution satisfies a log- 
concavity condition, the optimal quantirer is itself symmetric. 
For the gamma distribution ofien used to model speech signals, 
the log-concavity condition is not satisfied. It is shown that 
for h i s  distribution both the uniformly spaced and the non- 
uniformlj spaced optimal quantisers are not symmetrical. New 
quantisation tables giving the optimal levels for quantirus for 
the gamma distribution are presented. 

1. Introduction 
This paper focusses on minimum mean-square er- 

ror scalar quantieers for symmetric distributions. A 
number of authors have published tables of quantieers 
for distributions of interest in the processing of speech 
or visual signals [1,2,3,4]. These quantieers have been 
designed for the most part using the iterative methods 
outlined by Lloyd and Max [1,2]. It is well known that 
these design techniques applied to general probability 
distributions may produce quantieers that are only lo- 
cally optimal. Even so, it seems to be widely assumed 
that for the symmetrical distributions encountered in 
practice, the resulting quantizers are also symmetri- 
cal. It is shown here that non-symmetric solutions may 
he optimal for distributions of more than pathological 
interest. 

2. Lloyd-Max Quantizers 

Quantization is the process of subdividing the 
rsuge of a signal into non-overlapping regions. An 
oulput level is then assigned to represent each region. 

Consider a N level quantieer with output levels 
~ 1 ,  ~ 2 , .  . . , y ~ .  The output level yk is associated with a 
decision region specified by its boundaries, the decision 
levels, 

For convenience, the z; are in increasing order and 
the two extreme decision levels are chosen to  be zo = 
oo and Z N  = -oo. The total mean-square error can 
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be differentiated with respect to  zk and yk to  give 
the necessary conditions that must be satisfied by a 
minimum mean-square error quantizer, 

The conditions (2) and (3) form the basis for an itera- 
tive process to determine optimal quantizers. 

4.1 Iterative One-dimensional search 
A variational technique proposed by both Lloyd 

and Max involves a one-dimensional search. An ini- 
tial guess is made as to the value of the first output 
level yl. The value of the decision level below this out- 
put level, in this case zo, is known. The next decision 
level can be determined by finding the value of zl 
which satisfies (3)) in this case for k = 1. This step 
will generally have to be carried out using iterative 
numerical techniques. The next step is to telescope 
the process to the next interval. This is done by using 
(2) to  determine y2 from y1 and z l .  The process con- 
tinues interval by interval to determine all the output 
levels. The last output level, y ~ ,  determined in this 
manner will generally not be the conditional mean of 
the last interval. The difference between YN and the 
conditional mean of the last interval can be used to  
determine an update for yl for the next iteration. The 
process of determining the output levels continues un- 
t i l  sufficient precision has been achieved. 

3. Uniqueness 

The log-concavity test for a probability density 
function given by Fleischer 15) is 

A probability density function that  satisfies this condi- 
tion has a unique stationary point in the mean-square 
error in terms of the 2 N  - 1 variables-the N - 1 
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decision levels and the N output levels. The iterative 
Lloyd-Max algorithms will find the globally optimal 
quantizer if the probability density is log-concave. 
The Gaussian distribution satisfies this condition and 
hcnce has a unique stationary point. 

Consider the generalized gamma double-sided 
probability density function, 

The parameter X sets the variance of the distribution, 

The density function (5) becomes Laplacian for a = 
1. For modelling the measured distribution of speech 
signals, the general gamma density with a = is often 
used. The log-concavity test for the general gamma 
d~lnsity gives 

For a 2 1, a unique stationary point exists. 

4. Symmetric Distributions 

Consider a distribution which is symmetric about 
its roean. For every quantieer with a given set of out- 
put levels, another with the same mean-square error 
is generated by simply reflecting the levels about the 
mean. This argument indicates that if a symmetri- 
cal distribution is log-concave, the optimal and unique 
quantizer will have levels symmetrically placed about 
the mean. 

For symmetrical distributions, a solution which 
satisfies the necessary conditions for optimality can 
be obtained by considering the density on one side 
of the mean. If the total number of levels is even, 
the problem is solved using N / 2  levels for the density 
2p(z), 3: 2 it, where Z is the mean of the distribution. 
If the total number of levels is odd, the problem can 
agsdn be solved with half the number of levels but with 
one level fked at the mean. In either case, the solution 
determined for one side of the distribution can be 
reflected about the mean to produce a symmetrical 
solution for the distribution. Thus every symmetric 
distribution has a symmetric quantieer which satisfies 
the necessary conditions for a minimum mean-square 
error quantizer. However, this solution may represent 
a local minimum or a saddle point for distributions 
which are not log-concave. 

5. Gamma Distribution 
Consider the general gamma distribution with 

a = h ,  henceforth referred to simply as the gamma 
distribution. For the gamma distribution, more than 
one stationary point may exist. 

The optimal one level quantizer has an output 
level a t  the mean and is symmetric. For the two level 
quantizer, we can determine the optimal output levels 
given a decision level zl using (3). Because of the 
symmetry, consider only zl 2 0, 

where u = h z 1  and Q(z)  is the integral of the 
tail of the unit variance Gaussian density function. 
Combining these terms using (2) gives a single equa- 
tion, 

(9 
Equation (9) has a solution zl = 0, the symmetric 
solution, as well as solutions at z1 = f0.622. For the 
symmetric two level quantizer, 

The non-symmetric solutions give a mean-square error 
which is less than for the symmetric solution. For 
zl = +0.822, 

Fig. 1 is a contour plot of the signal-to-noise ratio 
(SNR) as a function of yl and y ~ .  In this plot, the 
decision level is constrained to lie midway between 
the output levels (see (2) ) .  The contour plot shows 
two-fold symmetry, since the quantizers (a,  b), ( b ,  a), 
(-a, -6) and ( - b ,  -a)  all have the same mean-square 
error. A symmetric quantizer is restricted to lie on the 
diagonal line, yl = -y2. The optimal non-symmetric 
and symmetric quantizers are shown as crosses on the 
contour plot. This view shows that the best symmetric 
quantizer lies a t  a saddle point in the ~~-112 space. This 
point is also a saddle point in the bspace ~ 1 - ~ 2 - 2 ~  

since the decision level cl is chosen optimally in the 
view shown. 
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Fig.  1 Contour Plot of the SNR for a Iko k l  Quantirer 

For a three level quantizer, Fig. 2 gives a contour 
plot of the SNR as a function of the two decision 
Iei~els, zl and 2 2 .  The output levels are constrained to 
be the conditional means of the decision regions (see 
(3)) In this case, the optimal solution corresponds to 
a s? rnmetric quantizer. 

~ e c i s i o a  Level zl 

Flg. 13 SNR for s Three Level Quantiser 

For higher numbers of levels, a tack suggested by 
the iterative method given above was adopted. Given 
an initial output level yl, subsequent output levels up 

to YN are found. The difference between YN and ON, 
the conditional mean of the last decision region, is 
plotted. When this difference is zero, the entire quan- 
tizer satisfies the necessary conditions for a minimum 
mean-square error quantizer. The minimum of the 
mean-square error corresponding to the zero crossings 
of this difTerence determines the global minimum. Fig. 
3 shows such a plot for a six level quanticer. The plot 
also shows the SNR as a function of the first output 
level. Three zero crossings appear. The middle one cor- 
responds to a symmetric soluhon with yl = -4.773. 
The other two correspond to a non-symmetric solu- 
tion with yl = -3.111 or yl = -3.818. The quan- 
tizers corresponding to these last two values of ~1 are 
reflections about zero of each other. A non-symmetric 
solution gives the best SNR. 

I 
-5 -4 -3 -2 - 1 0 

Firs1 Oulpul 1,rvel y l  

Flg. I l a 1  lolerval DiRcrcnce and SNR for a Six Level Quantiwr 

Previously published tables for the gamma dis- 
tribution have given only symmetric solutions. Table 
I compares the best symmetric solution with the o p  
timal solution for selected values of N .  The three 
numbers below the quantizer output levels are the 
mean-square error (for a unit variance distribution), 
the SNR (in dB) and the entropy of the quantizer. For 
odd values of N ,  the symmetric solution is optimal, 
although non-optimal non-symmetric solutions satis- 
fying (2) and (3) are possible for N 2 5. For even 
values of N, both symmetric and non-symmetric solu- 
tions are shown. For the larger values of N, several 
quantizers (apart from those obtained by reflecting the 
levels about zero) satisfy the necessary conditions of 
(2) and (3). For example for N = 14, three distinct 
non-symmetric and one symmetric configurations can 
be found. 

For uniformly spaced quanticers, the optimal 
quantizers are not necessarily symmetrically placed 



with respect t o  the mean. This is clear from the two 
level example above, for in this case the uniform and 
nou-uniform quantizers are the same. Table I1 com- 
pares symmetric and non-symmetric uniformly spaced 
q~~antixers. The table entries are the interval between 
levels, A and the offset of the quantizer relative to 
a symmetrical quantizer, c. Specifically, the output 
levels are given by 

The three numbers at the bottom of each entry in the 
tabk are the mean-square error (for a unit variance 
distribution), the SNR (in dB) and the entropy of the 
quantizer. Note that for the symmetric case, adding 
a,, dditioual output level to a quantizer with an odd 
number of levels actually increases the mean-square 
crror. 

Another issue of interest is the convexity of the 
mean-square error as a function of the number of 
bits, log, N. For integral numbers of bits, the mean- 
square error for the non-symmetric quantizers (both 
unil'ormly and non-uniformly spaced) is convex while 
fw llle symmetric quantizers it is not. 

Non-convexity of the mean-square error can have 
ir~~ercsting consequences. For instance, consider cod- 
ing a gamma distributed signal with 1 bit per sample. 
I;(-r symmetric quantizers, a lower mean-square error 
is ubtained if saniplcs are coding alternately using a 2 
l i t  and a 0 bit quantieer, than if a 1 bit quantizer is 
ilsed for every sample. 

6. General Gamma Distribution 

Plots of the difference between y~ and tN, the 
couditional mean of the last decision region, were 
also generated for the generalized gamma distribu- 
tion. Fig. 4 shows such a plot for two level quantizer 
acting on a density with parameter a = 0.9. The 
plot s11ows that a non-symmetric solution is optimal 
for this case. As the parameter a approaches unity, 
the three zero crossings evident in the plot coalesce 
to give a single, unique solution for the Laplace den- 
sity. For values of the parameter a below unity, a 
wrt-symmetric solution is optimal. This then indicates 
that the Laplace distribution occupies a unique place 
amougst the family of general gamma distributions- 
o n  t.hc houndary separating those distributions which 
hsve unique minima and those which do not. For the 
general gamma distribution, log-concavity seems to be 
both a necessary and sufficient condition for unique- 
ness. 

References 

1. S.P. Lloyd, 'Least squares quantization in PCM", 
Bell Telephone Laboratory Memorandum, 1957, 

reprinted in IEEE lkans. Inform. Theory, vol. IT- 
28, pp. 129-137, March 1982. 
J. Max, "Quantization for minimum distortionn, 
IRE Bans. Inform. Theory, vol. IT-6, pp. 7-12, 
March 1960. 
M.D. Paez and T.H. Glisson, "Minimum mean- 
squared-error quantization in speech PCM 
and DPCM systemsn, IEEE 22ans. Commun. 
Technol., vol. COM-20, pp. 225-230, April 1972. 
W.C. Adams and C.E. Giesler, "Quantizing 
characteristics for signals having Laplacian 
amplitude probability density function", IEEE 
Trans. Commun., vol. COM-26, pp. 1295-1297, 
August 1978. 
P.E. Fleischer, "Sufficient conditions for achiev- 
ing minimum distortion in a quantizer", IEEE Int. 
Conv. Rec., 1964, part 1, pp. 104-111. 

Firs t  O u t p u t  Level y, 

Flg. 4 Last lnterral Direrenee and SNR for a Central 
Gamma Distribution (a = 0.9) 



6.29 dB 8.35 dB 8.72 dB 
0.94 b i b  1.68 bib 1.27 b ib  

10.93dB 11.52dB 11.78dB 
1.90 b ib  2.31 b ib  2.08 bib 

2.48 bib 

16.76 dB 
2.89 b ib  

2.79 b ib  I 2.69 bib 

N - 16 
f0.073 1 -8.100 0.243 

Table I Output Levels for Non-Uniform Camma Quant ien  

N = l  
- 

0.000 
1.000 

0.00 dB 
0.00 b ib  

7.97 dB 7.14 dB 1 1.35bib 1 1.94 bits 

N = 3  
1.851 

0.CMg 
0.2B6l 

5.29 dB 
0.94 b ib  

(3 b i b  I 2.28 bit. 1 1.91 b ib  

N = 1 3  1 N = 14 
0.712 1 0.585 1 0.681 

a b l e  II S k p  Sirc and Ofbet for Uniform Gamma Qusntisen 

N = 2  

8.71 dB 
1.48 bib 

13.34 dB 
2.15 b ib  

1.155 

O l  
0.8687 

1.78 dB 
1.00 bib 

N - 4  7 

2.00 b i b  

N = 15 
0.845 

1.775 
*0.622 
0.5990 

2.23 dB 
0.81 b ib  

1.066 
0.000 
0.3200 

4.95 dB 
1.67 bib 

9.81 dB 
1.62 b ib  

2.40 b ib  I 2.07 bit. 

N = 16 
0.540 1 0.820 

12.17 dB 
2.52 b i b  

1.580 
f 0.710 
0.2330 

8.33 dB 
1.14 bib 

8.78 dB 
2.13 b ib  

13.71 dB 
2.21 b ib  

10.40 dB 
1.72 bib 

14.18 dB 
2.27 b i b  

13.00 dB 
2.82 b ib  

14.61 dB 
2.32 b i b  


