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The design and implementation of vector quantizers have recently attracted considerable atten- 
tion in the speech coding field. Ln this paper, vector quantization is applied in an adaptive predictive 
coder, both to code the parameters of the linear predictor and to code the residual signal. Tradi- 
tional speech coders have applied scalar quantization, i.e. coefficient by coefficient quantization, to 
these quantities. 

1. Adaptive Predictive Coders 
Fig. 1 shows a block diagram of an adaptive predictive coder (APC) used for speech. An 

estimate of the input signal, S(z ) ,  based on the past reconstructed signal is formed by the predictor 
filter, A(z) - 1. The purpose of this (formant) predictor is to remove sample-to-sample correlations. 
This filter forms the weighted linear combination of past samples, typically using 8-16 past values. 
It is the weights or coefficients of this predictor filter which must be transmitted to the decoder. 
The figure also shows a second predictor filter, B(z) - 1, which operates over longer time lags. After 
whitening by the formant predictor, the residual speech signal still contains periodic components 
due to the pitch excited nature of speech. The pitch predictor filter removes correlations at lags 
corresponding to the pitch period of the speech. This filter typically has from 1-3 coefficients which 
must also be coded for transmission. 

The residual signal after prediction, E(z), is scaled and coded for transmission. The scaling 
parameter, u, is coded separately for transmission. 

2. Design of Vector Quantizers 
A vector quantizer takes a vector of input data, x = {z,), and h d s  an output vector, 5 

drawn from a reproduction alphabet yi of N vectors. The output vector is chosen to minimize 
some distortion criterion so that d(x1yi) < d(x,yj) for all j. Both the design (choice of the y;) 
and the coding of input data (finding the appropriate index i so that y; is the representative for 
x) is impractically complex for arbitrary configurations when the number of representative vectors 
becomes large. Instead, tree-searched codebooks are used. 

2.1 Tree-Searched Codebooks 

In the design stage of a tree-searched codebook, a set of training vecton is used. These vecton 
represent points in an N-space. The k t  step is to partition this space into a small number of 
regions, each containing a representative vector which-the the centroid (with respect to the weighting 
implied by the distortion measure) of the region. Iterative clustering techniques are applied to find 
a good partitioning of the space. The next stage in the design of the tree-searched codebook is to 
further subdivide each region (which is now considered fixed) into a small number of partitions to be 
further optimized iteratively. This process of subdivision is carried out until the desired number of 
representative vectors is reached. Using this tree structured approach, a codebook can be designed 
in reasonable times. 

The coding of a new input vector proceeds by .following the tree of partitions defined in the 
design stage. At the first level in the tree, a decision is made as to which region is to be used. At 
subsequent levels in the tree, the subpartitions of this region are identified. The decoder uses the 
index of the subpartition to determine a representative vector to use as its output. The penalty 
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Fig. 1 Adaptive Predictive Coding 

to be paid for a codebook arranged in the form of a tree ia a suboptimal. performance arising from 
the constraint on the form of the partitioning of the space. In addition, searching the codebook by 
following the tree, while reducing the compstational complexity, requires added storage in the form 
of the representative vectom at the intermediate nodes of the tree. 

2.2 Parameter Separation 

The complexity of vector quantizers grows with the dimensionality of the space of vectors. 
Simplifications at the expense of non-optimality are possible by applying separate quantieem to 
different parameters. In this way, the dimensionality of the vector quantieem can be reduced. In 
the specific case under investigation, a fully- optimal system would apply vector quantization to the 
combination of predictors and residuals-efiectively vector quantizing a block of speech samples. We 
choose instead to quantize parametere which are only slightly - coupled, -- separately. The quantizers 
which are separately formulated are those for the formant predictor (10 coefficients), the formant 
predictor gain (1 parameter), the pitch value (1 parameter), the pitch predictor coefficients (3 
coefficients) and the residual eignal itself. For the latter, a different block sizes (vector dimensions) 
and different numbere of representative vectors were used. 

3. Vector Quantization in  APC 
3.1 Formant Predictor 

In this study, the formant predictor coefficients were quantized using a vector quantizer. Fol- 
lowing Gray and Linde 111, the vector quantizer was designed wing a tree-searched codebook.' The 



optimality criterion is the Itakura-Saito distortion measure, 

A 
where (XI2 % I ~ ( e j ~ ) I 2  is the energy density of the input signal and IAI2 = IA(ejw)12 is the response 
of the predictor filter. For the purposes of calculation, this distortion measure can be expressed as 

where a is the residual energy, a, is the residual energy in the limit as the number of predictor 
coefficients grows, and o is the filter gain. We choose to use a gain-separated quantizer; the coeffi- 
cients and the gain are quantized separately. The coefficient quantizer is designed to minimize a and 
then the gain is quantized using a scalar Lloyd-Max quantizer designed to minimize the mean-square 
error based on a tabulated distribution obtained from the training sequence. The filter coefficients 
were quantized using 10 bits and the filter gain using 6 or 7 bits. The coefficients are updated every 
240 samples (30 ms for 8 kHz sampling rate). 

3.2 Pitch Predictor 
The pitch predictor has three coefficients. The vector quantizer for these coeflicients was de- 

signed using a mean-square error distortion measure. The quantizer uses 4 bits at the first and 
second levels of the tree, and two bits at the third level, for a total of 10 bits. The pitch value itself 
is coded with 7 bits. The pitch predictor is updated every 240 samples. 

3.3 Residual Signal 
The main focus of this work is the vector quantization of the residual signal. The complexity of 

the quantizer was limited to 8 bits or 256 representative vectors. These bits were allocated to code 
various block lengths of the residual signal. For instance, 8 bits over a block length of 4 samples 
corresponds to an average of 2 bits/sample. The quantizers use 4 bits at the first and second levels 
of the tree, and the remaining bits (if any) at the third level. Mean-square error was used as the 
optimality criterion. 

t i  

4. Experimental Results 

Training sequences containing over 25 000 vectors were used. For &bit quantizers, this is roughly 
100 vectors per quantizer region. The vector quantizers were designed using the procedures described 
earlier. Experience showed that around 10 iterations were needed to perform the clustering used in 
partitioning a region, to obtain near asymptotic results. 

An important case for establishing the performance of the vector quantizer for the residual signal 
is that for which the number of bits per residual sample is fixed. The performance as a function of 
block length can then be studied. This result is shown in Fig. 2 for two bits/sample. Significant 
improvements in signal-to-noise ratio (SNR) are obtained as the block length is increased. As a 
check, the vector quantizer with 1 sample per block haapthe same performance as the corresponding 
Lloyd-Max quantizer designed using a completely different procedure. This performance is in turn 
better than that obtained for a quantizer with uniformly spaced steps. 

Several comments can be made on the results shown in the figure. The formant predictor 
parameter quantization is relatively effective in that with the small number of bits assigned, little 
performance loss is seen in quantizing the filter coefficients. The performance in terms of SNR 
decreases slightly with pitch prediction. The SNR increases with incressing block size for a constant 
bit rate. Coding blocks of 5 samples increases the SNR about 2.6 dB over that for scalar quantization 
at the same bit rate. 

Subjective evaluation tests were carried out. Based on these tests, the pitch predictor did offer an 
improved subjective quality, but probably not enough to warrant the computational effort required 
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Fig. 2 Two-Bit/Sample-Vector Quantizers 

to implement it. In subjective quality, a two-bit per sample vector quantieer with 5 samples/block 
was rated to be around the same quality as a three-bit per sample Lloyd-Max quantizer. In terms 
of absolute numbers, this quality is about the same as 6 bit/sample log companded PCM. 

Vector quantization of the residual at  1 bitlsample was also evaluated. Similar gains with 
respect to scalar quantization were noted. 

The present study has investigated vector quantizers of limited complexity. Even so, the design 
time for some of the configurations severely taxes computer resources. However, with the rapid 
progress in the capabilities of digital signal processing hardware, vector quantization may soon 
become an important practical technique for speech coding at low bit rates. 
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