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Quantizers  for  the  Gamma  Distribution and Other 
Symmetrical  Distributions 

PETER KABAL, MEMBER, IEEE 

Abstract-This paper discusses minimum mean-square error quantiza- 
tion  for symmetric distributions. If the distribution satisfies a log- 
concavity condition, the optimal quantizer is itself symmetric. For the 
gamma distribution often used to model speech signals, the log-concavity 
condition is not satisfied. It  is shown that for this distribution both the 
uniformly spaced and the nonuniformly spaced optimal quantizers are 
not symmetrical for even numbers of quantizer levels. New quantiza- 
tion tables giving the optimal levels for quantizers for the gamma distri- 
bution are presented. A simple family of symmetric distributions is 
also examined. This family shows that as the distribution gets  concen- 
trated near the point of symmetry, nonsymmetric solutions  become 
optimal. 

T 
1. INTRODUCTION 

HIS  paper  focuses  on  minimum  mean-square  error scalar 
quantizers  for  symmetric  distributions. A number of 

authors have published  tables of  quantizers  for  distributions of 
interest  in the processing  of  speech or visual signals [ l]  -[7]. 
These  quantizers have been designed for  the  most  part using 
the iterative methods  outlined  by  Lloyd  and Max [ I ]  , [2].  It 
is well known  that these design techniques  applied to  general 
probability  distributions  may  produce  quantizers  that  are  only 
locally  optimal. For symmetrical  distributions, as pointed  out 
by  Sharma [8] , the optimal  quantizer  need  not  be  symmetrical. 
Even so, it seems to be widely assumed that  for  the  symmet- 
rical distributions  encountered in practice,  the resulting  quan- 
tizers  are also symmetrical. It is shown  here  that  nonsymmet- 
ric solutions  may be optimal  for  distributions  of  more  than 
pathological  interest. 

Fleischer [9] and  more  recently  Trushkin [IO] have  shown 
that  for  the mean-square  error  criterion,  a  sufficient condition 
for uniqueness  of the Lloyd-Max solution is log-concavity of 
the  probability density  function.  The Gaussian and Laplace 
distributions have associated  with  them  unique  (and  hence 
symmetrical)  quantizers.  However, as shown  in  this  paper, 
another  commonly  encountered  distribution,  the gamma  distri- 
bution  which is often used to model speech signal statistics, 
does  not have a  unique  minimum.  In  fact,  the  optimal  quan- 
tizer  for  the gamma distribution is nonsymmetrical if the 
number  of  quantizer levels is  even.  Revised tables for  quan- 
tizers  for the gamma distribution giving both  the  optimal 
quantizers  and  the  best  symmetric  quantizers are presented. 

It is  also shown  that  the Laplace  distribution  occupies  a 
unique place in  the  continuum  of generalized gamma  distribu- 
tions-it sits on  the  boundary  between  distributions  that have 
unique  optima  and  those  which do  not. This  indicates  that 
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log-concavity is both necessary and sufficient for  this  family  of 
distributions. 

In  the  last  section, a  simple  family  of  symmetric  distributions 
is examined.  This  family  has the  property  that as the distribu- 
tion gets concentrated near the  point of symmetry,  nonsym- 
metric  solutions  become  optimal. 

11. LLOYD-MAX  QUANTIZERS 
Quantization is the process of subdividing the range  of a 

signal into nonoverlapping regions. An output level is  then 
assigned to represent  each region. Since  this output level is 
used to represent all of  the values in  the  region, it  is usually 
itself  within that region. The  quantizer as defined  here is a 
memoryless  nonlinearity (see  Fig. 1). 

Consider  an N level quantizer  with  output levels y , , y z  , . . . , 
y ~ .  The  output level y k  is associated  with  a decision region 
specified  by its  boundaries,  the decision levels, 

Yk * (Xk-1 <X<Xk}, i =  I ,  2 , .  ’ ’  , N .  (1) 

For  convenience, the xi are  in increasing order  and  the  two 
extreme decision levels are chosen to be x. = --oo and xN = 00. 
The  total mean-square  error is 

Differentiating (2) with respect to  xk andy, gives 

J X k -  1 

These  conditions,  which  must be satisfied by  aminimum  mean- 
square  error  quantizer, can be interpreted  to  mean  that  the 
decision levels should  be  midway  between output levels and 
that  the  output levels should be the  conditional  means of the 
decision regions. 

The  conditions (3) and (4) form  the basis for an iterative 
process to determine  optimal  quantizers.  Two versions of  the 
iteration can be  used. 

A. MethodI 
In  the first  version, often  termed Lloyd’s method I, an  initial 

guess is made  for  the  output levels. A set of  decision bound- 
aries corresponding to these output levels is determined  from 
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rithm  can be based on  the  change in position or  the change  in 
mean-square  error. Note  that  the mean-square  error  can be 
expressed in terms of  the integrals that are  used  in (4). This 
means that  no new integrals  need be evaluated  in  order to deter- 
mine the mean-square  error  for use as a  stopping  criterion. 

The  one-dimensional  search  of method I generally  converges 
faster  than method 11. However,  the  precision to  which the 
last  intervals  are  determined by  method I may  be  poor due to  
the intervening  steps. A practical  compromise is to use method 
I to find  an  approximate  solution  and  then use method I1 to  
refine the  solution. This was the strategy adopted  to generate 
the  table of optimal  quantizers  shown  later. 

Fig. 1. Quantizer input-output  characteristic. 

(3). Then (4) can be applied to determine  a new set of output 
levels which is optimal  for  the decision  boundaries just  deter- 
mined.  These two  steps  constitute one  iteration.  At  the  end 
of  an iteration, the  mean-square  error  has  decreased or remained 
unchanged. 

A variation af this  technique  used  by  the  author  applies  both 
halves of the  iteration  to  each  output level in  turn. In  this  way 
the eff‘ect of  changing  an output level is allowed to propagate 
to  other  output levels. This  modified version of method I, 
which  uses the same number of integral  evaluations as the 
original  technique,  often  converges  faster in practice. 

B. Method 11 
A variational  technique, dubbed  method 11, proposed  by 

both Lloyd  and Max involves a  one-dimensional  search. An 
initial guess  is made as to the value of the first output  levely, . 
The value of  the decision level below  this output level, in  this 

111. UNIQUENESS 
The  log-concavity  test  for  a  probability  density function 

given by  Fleischer [9] is 

A  probability  density  function  that satisfies  this  condition  has 
a  unique  stationary  point  in  the  mean-square  error in terms  of 
the 2N- 1 variables-theN-  1  decision levels and  the  Noutput 
levels. The  iterative  Lloyd-Max  algorithms will find  the glob- 
ally optimal  quantizer  if  the  probability  density is log-concave. 
The Gaussian distribution  satisfies  this  condition  and  hence 
has a  unique  stationary  point.  The  Laplace  or  double-sided 
exponential  distribution is only  semi-log-concave,  i.e., the  in- 
equality in (5) is replaced by an  equality.  However,  Trushkin 
[ lo]  has  shown that  the Laplace  distribution  does have a 
unique  stationary  point. 

Consider the generalized gamma double-sided  probability 
density function 

case x. , is known.  The  next  decision level can be determined 
by  finding the value  of x1 which  satisfies (4), in  this case for The  parameter X sets the variance  of the  distribution 

k =  1. This  step will generally have to be carried out using 
iterative  numerical  techniques. The  next  step  is to  telescope o2 = - a(a t 1) 

h2 * the process to  the  next interval.  This is done  by using (3) to  
(7)  

determine y2 from y1 and The  process  continuesinterval The  density  function (6) becomes  Laplacian for a = 1. For 
by  interval to determine all of  the  output levels. The last modeling the measured  distribution  of  speech signals, the 
output level, yN> determined in this manner will generally not general  gamma  density  with a = 1/2 is often used [3]. Thelog- 
be the  conditional  mean  of  the  last  interval.  The  difference  concavity test for the  general gamma density gives 
between Y N  and  the  conditional  mean of the  last  interval  can 
be used to  determine  an  update €or y 1  for the  next  iteration. a2 log p ( x )  - 2(a - 1) 
The  process  of  determining the  output levels continues  until 
sufficient  precision  has  been  achieved. 

C. Convergence given by  Trushkin’s  argument. 

converge to a fixed point which  is  a  stationary point,  a min- IV. SYMMETRIC DISTRIBUTIONS 
imum, or possibly  a  saddle  point  of  the  mean-square  error. Consider  a  distribution  which  is  symmetric  about  its  mean. 
For  general  probability  distributions  which  include  discrete For every quantizer  with  a given set of output levels, another 
probability masses, the decision  boundaries found will never with  the same  mean-square  error is generated by simply  re- 
coincide  with the  points of  discrete  probability [ l]  . In  addi- flecting  the levels about  the mean.  This  argument  indicates 
tion,  a practical  version  of  these  algorithms  can be structured that if  a  symmetrical  distribution is log-concave, the  optimal 
so as to avoid  converging to  a  solution  which  has  zero  proba- and  unique  quantizer will have levels symmetrically  placed 
bility  decision  regions.  The  stopping  criterion  for  either algo- about  the mean. 

_ -  - 
ax2 x2 ’ 

x f 0. (8) 

For a > 1,  a  unique  stationary  point  exists-the  equality  being 

The iterative  techniques  for  determining  the  quantizer levels 
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For  symmetrical  distributions, a solution  which  satisfies  the 
necessary conditions  for  optimality can be  obtained  by  con- 
sidering the density  on one side  of  the  mean. If the  total 
number  of levels is even, the problem is solved usingN/2 levels 
for  the density 2p(x), x >:, where x is the mean  of the dis- 
tribution.  If  the  total  number  of levels is odd,  the  problem 
can again be solved with  half the  number  of levels but  with 
one level fixed at  the  mean.  In  either case, the  solution  deter- 
mined for  one side of  the  distribution can be reflected  about 
the mean to produce  a  symmetrical  solution  for  the  distribu- 
tion.  Thus,  every  symmetric  distribution  has a symmetric 
quantizer  which  satisfies  the  necessary  conditions  for  a  min- 
imum  mean-square  error  quantizer.  However, this  solution 
may  represent  a  local  minimum or a  saddle  point  for  distribu- 
tions  which are not log-concave. 

V. GAMMA DISTRIBUTION 
Consider the general gamma distribution  with a = 1 /2, hence- 

forth referred to simply as the gamma  distribution.  For  the 
gamma  distribution,  more  than  one  stationary  point  may  exist. 

The  optimal one-level quantizer  has an output level at  the 
mean  and is symmetric.  For  the two-level quantizer, we can 
determine the optimal  output levels given a  decision level x1 
using (4) and  then  combine these using (3) to give a single 
equation  to be  solved for u = &xl. Because of  the  symmetry, 
consider only u 2 0. 

where Q(x) is the integral of  the tail  of the  unit variance  Gauss- 
ian  density  function 

Equation (10) has  a  solution x1 = 0, the  symmetric  solution, 
as well  as solutions at x ,  = f 0.622. For  the  symmetric  two- 
level quantizer 

The  nonsymmetric  solutions give a  mean-square  error  which is 
less than  for  the  symmetric  solution.  For x1 = + 0.622 

y1 = - 0.266 ~2 = + 1 SO9 (14) 

e2 = 0.599. (1 5) 
Fig. 2 shows the signal-to-noise ratio (SNR) as a function  of 

x, when  the  output levels are  chosen  optimally  according to 
(10). As a function of x1 alone,  the  SNR shows a minimum  at 

- 

0 
-2 -1 0 1 2 

Decision Level x, 

Fig. 2. SNR for a two-level quantizer. 

level quantizer is given in Fig. 3, which is a contour  plot  of  the 
SNR as a function  of y ,  and y,. In  this plot,  the decision level 
is constrained to lie  midway  between  the  output levels [see 
(3)].  The  contour  plot shows  two-fold  symmetry, since the 
quantizers (a, b),  (b,  a), (--a, -b), and (-b, -a) all have the 
same  mean-square  error. A symmetric  quantizer  is  restricted 
to lie on the diagonal line, y1 = - y,. The  optimal  nonsym- 
metric  and  symmetric  quantizers are shown as crosses on the 
contour  plot.  This view shows that  the best  symmetric  quan- 
tizer lies at a  saddle  point in the y1 - y, space. This point  is 
also a  saddle point  in  the three-space yl  - y z  - x 1  since the 
decision level x1 is chosen  optimally in the view shown. 

For a  three-level  quantizer, Fig. 4 gives a contour  plot  of  the 
signal-to-noise  ratio as a function  of  the  two decision levels, 
x1 and x,. The  output levels are  again constrained to  be the 
conditional  means  of  the  decision regions [see (4)] . This  plot 
is the  next higher  dimension  analog to Fig. 2. In  this case, the 
optimal  solution  corresponds to a  symmetric  quantizer. 

For higher  numbers of levels, the dimensionality  of  plots 
corresponding  to Figs. 2 or 4 is such  that  they  defy visualiza- 
tion.  Instead,  a  tack suggested by the one-dimensional  search 
algorithm (method 11) was adopted. Given an  initial output 
level y l ,  subsequent  output levels up  to y~ are  found.  The 
difference  between Y N  and j j ~ ,  the  conditional  mean  of  the 
last  decision  region, is plotted. When this  difference is zero, 
the  entire  quantizer satisfies the necessary conditions  for  a 
minimum  mean-square  error  quantizer.  The  minimum  of the 
mean-square  error  corresponding to  the zero crossings of  this 
difference  determines the global minimum. Fig. 5 shows  such  a 
plot  for a six-level quantizer.  The  plot also shows the  SNR as 
a function  of  the first output level. Three  zero crossings ap- 
pear. The  middle  one  corresponds to a  symmetric  solution 
with y ,  = -4.773.  The  other  two  correspond  to  a  nonsym- 
metric  solution  with y1 = -3.111  or y1  = -3.818.l  The 
quantizers  corresponding to these  last  two values  of y1 are 
reflections about zero  of  each  other. Again, a  nonsymmetric 
solution gives the best  signal-to-noise  ratio. 

Previously published  tables [3],  [7] for  the gamma  distribu- 
tion have  given only  symmetric  solutions.  Table  I  compares 
the best  symmetric  solution  with  the  optimal  solution  for 
selected values of N .  The  three  numbers below the  quantizer 
output levels are  the mean-square  error  (for  a unit variance 

the  symmetric  solution. A more illuminating view of the two-  distribution), the  SNR (in decibels), and  the  entropy  of  the 
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Fig. 3. Contour  plot of the SNR for a two-level  quantizer. 
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Fig. 4. SNR for a three-level  quantizcr. 
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Fig. 5. Last  interval  difference  and SNR for a six-level quantizer. 

quantizer. For odd values of N ,  the  symmetric  solution is 
optimal,  although  nonoptimal  nonsymmetric  solutions  satis- 
fying (3) and (4) are possible  for N 2  5 .  For even values ofN,  
both  symmetric  and  nonsymmetric  solutions are  shown.  For 

TABLE I 
OUTPUT LEVELS FOR NONUNIFORM  GAMMA  QUANTIZERS 

N = l  
0.000 

0.2318 I 0.2127 0.2961 
-0.108  2.881 12.223 f1.851 
-1.981 0,899 10.313 

N = 2   N = 3  N = 4  

5.29 dB 
1.27  bits 1.58 bits 0.94 bits 
6.72 dB 6.35 dB 

N = 5  1 N = 6  1 N = 7  I N = 8  
0.000 

-1,901 1.274 i0.899 -1.110 1.7701 f0.710 11.291  11.039 
-3.956 0.487 i0.155 0.000 -3.111  0.635 10.210 

12.057 

-' 1 7.047 x lo-' I 6.632 x lo-' 

-0.755  2.457 
-0.036  4.538 14.121 

10.93 dB 
2.08 bits 2.31 bits 1.90 bits 
11.78 dB 11.52 dB 

N = 9  1 N = l l  N =  10 
0.000 f0.122 

-1.877  1.435 f1.159 &LO25 -1.359 1.815 f1.488 f1.326 
-3.087 0.806 10.548  f0.424 -2.546  0.990 f0.684  i0.534 
-5.193  0.327 10.100 0.000 -4.631  0.393 

N =  12 

i f2.511 I i2.682 1-0.564  3.023 -1.049 2.281 fl.993  f1.852 

i5.317 
-0.466  3.505 f3.207 
-0.017 5.624 

-' 1 3.362 x lo-' I 3.208 x lo-' 
14.33 dB 

2.59 bits 2.79 bits 2.48 bits 
14.94 dB 14.73 dB 

N = l 3  1 N = 14 
0.000 1 10.084 1-5.675  0.2801 0.000 I 

I N = 1 5  I 
i0.073 1-6.100 0.243 

N = 1 6  

10.350 

11.462 
+0.831 

-3.968  0.582 50.387  f0.297 -3.554  0.677 10.455 
f0.945 -2.329  1.183 f0.696  10.795 

f2.308 

-2.730  1.004 

, -0.711  3.053 f2.822 
-1.219 2.184 f1.959 

32.711 -0.367  6.056 13.662 
f1.851 -0.850  3.925 i2.433 

f3.533 

-1.869  1.525 f1.307  f1.203 -1.481 2.690 f1.582 

16.195 
i4.061 

-0.010 6.437 
-'I 1.961 x I 1.888 x lo-' 

-0.310  4.298 

16.76 dB 
2.97 bits 3.14 bits 2.89 bits 
17.24 dB 17.08 dB 

the  larger values of N ,  several quantizers  (apart  from  those 
obtained  by  reflecting  the levels about zero)  satisfy the neces- 
sary  conditions of (3) and (4). For  example, f o r N =  14 three 
distinct nonsymmetric  and  one symmetric  configurations  can 
be found.  The  table shows that each  of the  optimal  quan- 
tizers  has  an output level close to  the  central  portion  of  the 
distribution. 

For uniformly  spaced  quantizers, the optimal  quantizers  are 
not necessarily  symmetrically  placed  with  respect to  the mean. 
This is clear from  the two-level  example  above,  for  in  this case 
the uniform  and nonuniform quantizers are the same.  Table I1 
compares  symmetric  and nonsymmetric uniformly  spaced 
quantizers.  The  table  entries  are the interval between levels, A 
and  the offset of  the  quantizer relative to a  symmetrical  quan- 
tizer, e. Specifically, the  output levels are given by 

y.= ( i-- A + e ,  i = l , 2 ; . . , N .  

The  step size and  offset  were  calculated using a  two-dimen- 
sional  minimization  with  the  mean-square  error as the objec- 
tive function.  The  three  numbers  at  the  bottom  of  each  entry 
in  the  table are the mean-square  error  (for  a  unit  variance dis- 
tribution),  the SNR (in  decibels), and  the  entropy of the  quan- 
tizer.  This  table  shows that  for N even, the  offset for  non- 
symmetric  quantizers is nearly  equal to one  half of  the  step 

'The  example  chosen  for Pig. 1 is the optimal six-level quantizer  for 
the gamma  distribution. 



840 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH,  AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 4, AUGUST 1984 

TABLE I1 
STEP  SIZE AND OFFSET FOR UUlFORM GAMMA QUANTIZERS 

N = l  

0.2330 
~k0.710 

0.3200 I 
0.000 

0.2961 
0.000 

0.5990 
2~0.622 0.000 

1.560 
0.000 

1.066 1.851 1.775 1.155 - 
N = 3   N = 2  N = 4  

1.000 0.6667 I 

0.00 dB 1 1.76 dB 1 2.23 dB 1.14 bits 1.67 bits 0.94 bits 0.00 bits 1.00 bits 0.61 bits 
6.33 dB 1 4.95 dB 5.29 dB 

N = 5  
1.342 

N = 6  

0.000 
1.208 ~ 1.079  0.912 

1 N = 7  

*0.480 0.000 
0.1323 1 9.130 x 

0.000 
0.1934 I 0.1346 1 0.1045 0.1597 

0.998 
i0 .571 1 0.000 

0.796 
N = 8 

I 7.97 dB 7.14 dB 8.71 dB 9.81 dB 8.78 dB 10.40 dB I 
I 1.35 bits i 1.94 bits 1.48 bits I 1.62 bits 1 2.13 bits 1 1.72 bits 

N = 9 
0.913 0.708 
0.000 

N =  10 1 N =  11 N =  12 
0.858 0.798  0.640 ' 0.757 

7.551 x lo-' 9.756 x lo-' 6.747 x lo-' 5.795 x lo-' 7.560 x lo-' 

2.07 bits 2.40 bits 2.00 bits 1.91 bits 1.83 bits , 2.28 bits 
12.79 dB 11.21 dB 12.37 dB 11.71 dB 10.11 dB 11.22 dB 

5.260 x lo-' 
- *0.369 0.000 k0.416 0.000 0.000 

hr = 13 ______ 
0.712 

0.000 0.000 
0.585 

2.32 bits 2.62 bits 2.27 bits 2.21 bits 2.52 bits 2.15 bits 
14.51 dB 13.00 dB 13.71 dB 14.18 dB 12.17 dB 13.34 dB 

f0 .305 0.000 0.000 -40.334 
0.620 0.540 0.645  0.681 

N =  14 N =  16 N =  15 

~~~~ 

4.633 x lo-' 3.536 x 5.008 x lo-' 4.255 x lo-' 3.816 x IO-' 6.071 x lo-' 

size. Note also that for  the  symmetric case, adding  an  addi- 
tional  output level to a  quantizer  with an odd  number  of levels 
actually  increases the mean-square  error. 

Another issue of  interest is the  convexity of the mean-square 
error as a function  of  the  number of bits, log,N. The bit 
assignment  procedures  used for  the  optimal allocation  of  a 
quota  of available bits to  the  components o f  a  vector  source 
assume convexity  of  the  distortion  function [ l l ]  . For an 
integral number  of bits, the  mean-square  error  for  the  non- 
symmetric  quantizers  (both  uniformly  and  nonunifomly 
spaced) is convex while for  the  symmetric  quantizers  it is not. 
However,  even for  the  nonsymmetric  quantizers,  the  mean- 
square  error is locally not  convex as a  function  of log,N, 
when  only N is required to be  an integer.  This  can be seen 
from  the  fact  that  if  the  number of output levels is  odd,  add- 
ing one  more level results  in  a  relatively small  decrease in  mean- 
square  error,  but adding yet  another  output level to give  an 
odd  number of levels results  in  a relatively larger decrease in 
mean-square  error. 

Nonconvexity  of  the  mean-square  error can  have interesting 
consequences. For  instance,  consider  coding  a  gamma  distrib- 
uted signal with 1 bit per sample. For  symmetric  quantizers, 
a  lower average mean-square error is obtained if samples  are 
coded  alternately using a 2 bit and a 0 bit  quantizer,  than  if a 
1 bit  quantizer is  used for every  sample. 

VI. GENERAL GAMMA DISTRIBUTION 
Plots  of  the  difference  between YN and j&, the  conditional 

mean  of  the last  decision  region, were  also generated for  the 
generalized gamma  distribution. Fig. 6 shows such  a  plot  for a 
two-level quantizer  for a  density  with  parameter a = 0.9. The 
plot  shows that a  nonsymmetric  solution is optimal  for  this 
case. As the  parameter a approaches  unity,  the  three  zero 
crossings evident  in the  plot coalesce to give a single unique 
solution  for  the Laplace  density. For values of  the  parameter 
a below unity, a  nonsymmetric  solution is optimal.  This  then 

I I I I I I I I I I l l 3  

SN R 
dB 

-2 -1.6 -1.2  -0.8  -0.4 0 
First Output Level y1 

Fig. 6. Last  interval  difference  and SNR for a general  gamma distribu- 
tion (a = 0.9). 

indicates  that  the Laplace  distribution  occupies  a  unique place 
amongst the family  of general gamma  distributions-on the 
boundary  separating  those  distributions  which  have  unique 
minima  and  those  which  do  not.  For  the general gamma dis- 
tribution, log-concavity seems to be both a necessary and 
sufficient  condition for uniqueness. 

VII. A FAMILY OF SYMMETRIC DISTRIBUTIONS 
In  order to  better understand  the  phenomena which  account 

for the  multiple  stationary  points, a simple distribution was 
contrived. This distribution  consists of two  superimposed 
uniform  densities (Fig. 7). The underlying  density extends 
between - 1 and +l. The  superimposed  density is parameterized 
by r, the  fraction  of  the  probability in the superimposed  density 
and  by b, the  extent of the superimposed  density. For b = 1, 
Y = 0, or r =  1, the overall density  degenerates into a simple 
uniform  density  with no nontrivial  stationary  points. 

For a two-level quantizer, we can  adopt  a  procedure  analo- 
gous to (9) and (10) and solve for x l .  Because of  the sym- 
metry, consider  only x1 > 0. For 0 <xl  < b,  a  symmetric 
and possibly a  nonsymmetric  solution  appear: 

x 1  = o  

b(b - v ( l  - b)2(1 - v) )  
x; = 

(b + r(l - b)j2 ' 

The  nonsymmetric  solution  appears  for b' < b < 6 where 

b'=l- '  1 + 4 4 1  - Y)- 1 
2r(l - rj 

m - 1 - 2 ~  
2(1 - r) . 

b =  - 

The  nonsymmetric  solution given in  (16)  corresponds to a  local 
maximum  of  the mean-square  error  with  respect to changes in 
x l .  It is a  saddle point  in  the y1 - y ,  - x1 space. For b < 
x1 < I  

gives a  local  minimum  of the mean-square  error,  corresponding 
to a  nonsymmetrical  solution.  The  situation is summarized in 
Fig. 8 which  plots the various regions in the 6-v plane. The 
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Fig. 8. Quantizer  solutions  in  the b-r plane. 

region above b gives only  a single symmetrical  solution. The 
region  below b admits  two or three  solutions.  Between 6 and 
b’ there are two minima  in the mean-square  error (x1 = 0 and 
x1 = b) separated by a  local  maximum  [whose  location is 
given by (16)] . An additional  dashed  line is shown  in Fig. 8. 
For b below the dashed  line, the nonsymmetrical  solution has 
a  lower  mean-square  error than  the symmetrical  solution. Fig. 
9 shows the SNR in  decibels as a  function  of x1 for  the  three 
points  shown  as  crosses  in Fig. 8 to illustrate  three  different 
regions. This example  shows that as the  probability  tends to 
get concentrated  near  the  origin,  specifically in the area of the 
b-r plane  below the dashed  line of Fig. 8, nonsymmetrical 
solutions  become  optimal.  This  particular  example  has  a 
probability  concentration  near  the  point of symmetry such 
that  optimal  quantizers  with even numbers  of levels will be 
nonsymmetrical while those  with  odd  numbers  of  levels will 
be symmetrical.  Other  examples  with  probability  concentra- 
tions  symmetrically  placed  about  the mean would  lead to  the 
situation  in  which  optimal  quantizers  with  odd  numbers  of 
levels would be nonsymmetric while  those  with even numbers 
of levels would be symmetric. 

VIII. SUMMARY 
We have shown that symmetrical  distributions of practical 

interest  can have nonsymmetrical  optimal  minimum  mean- 
square  error  quantizers. New  revised quantizer  tables have 
been given for the gamma density  function.  Generalized 
gamma  densities  with a< 1 also  admit  nonsymmetrical  optimal 

3 
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Fig. 9. SNR  for  a  symmetric  density  function. 

quantizers. A simple  family  of  probability  density  functions 
has  been  studied to examine the  conditions  undepwhich local 
stationary  points  appear. 
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