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Abstract 
A general estimation model is defined in which t w o  observations are available; 
one being a noisy version o f  the transmitted signal, while the other is a noisy 
filtered and delayed version o f  the same transmitted signal. T h e  time-varying 
delay and the filter are unknown quantities that  must be estimated. A jo in t  
estimator is proposed. I t  is composed o f  an adaptive delay element in conjunc- 
t ion w i th  a transversal adaptive filter. T h e  same error signal is used by  the 
two adaptive algorithms t o  adjust the delay element and the filter such t h a t  the 
min imum mean squared error is attained. T w o  jo in t  gradient-based adaptation 
algorithms are studied. T h e  jo in t  steepest-descent (SD) algori thm is first inves- 
tigated. T h e  possibility o f  convergence t o  a mult i tude o f  solutions is established 
and a condition o f  convergence is presented. A stochastic implementation o f  
the joint SD algorithm, under the form o f  a joint least mean square (LMS) algc- 
r i thm, is then investigated. I t  is analyzed i n  terms o f  convergence in the mean 
and in the mean square o f  both  the delay estimate and the adaptive filter weight 
vector estimate. The conditions o f  convergence o f  the jo in t  L M S  algori thm are 
established as functions o f  the power spectral densities o f  the observed signals 
and the min imum mean squared error. 

1. Introduction 
Estimating the t ime delay between t w o  continuous versions o f  the same 

signal, each corrupted by uncorrelated noise components, has been the subject 

o f  many research efforts over recent years. In this paper, we consider the more 
d i f f~cu l t  model in which the delayed path is subject t o  frequency dependent 
attenuation T h e  corresponding discrete-time model is o f  the form 

YI (n )  = 471) + w ( n )  

~ 2 ( 7 l )  = LD.,h(n)[~(11)] + w(n) ,  
(1) 

where s(11) is the transmitted signal, D,, is a delay, possibly time-varying, and 
1 , , > , , , ~ ( ~  , [ ~ ( n ) ]  is an U ~ ~ I L O U ~ I I  linear operator, taking the form o f  a f i l ter ing 
operation, w i th  the filter impulse response h(n) ,  o f  a delayed by  D,, version 
o f  ~ ( r l ) .  The signals ~ ~ ( 1 1 )  and u2(n) are zer-mean noise signals, assumed 
uncorrelated wi th  each other as well as w i th  s(n) and LD,,~(,)[s(~)]. Examples 
o f  such systems are encountered i n  system modelling problems, where the 
unknown system often has an impulse response that  can be modelled as a pure 
t ime delay in series with a linear filter, as is the case in geophysical exploration. 
echo cancelling or mult ipath communication channels. 

This paper presents an analysis o f  jo in t  delay estimation and system esti- 
mation based o n  the min imum mean squared error (MMSE) performance index, 
when the system estimation is specifically performed by an adaptive transversal 
f ~ l t e r  and the delay estimation is accomplished independently f rom this filter, by 
an adaptive delay element. A jo in t  steepest-descent algorithm and a jo in t  L M S  
algori thm are investigated i n  tracking mode. The assumption o f  tracking mode 
is important because i t  is then assumed acquisition was initially performed, in 
order t o  br ing the estimate close t o  its opt imum value. 

The principal contributions o f  this paper are the generalization o f  existing 
gradient-based t ime delay estimation wi thout  reference filtering 11(n), as pro- 
posed in [I] and the analysis o f  a new jo in t  algori thm for the synchronization 
o f  the input and the reference signals used by an adaptive filter. T h e  jo in t  

steepest-descent and L M S  algorithms that we investigate in this paper are gen- 
eralizations o f  joint clock phase recovery and adaptive equalization based o n  
L M S  ~ h a s e  tracking, as ~ r o p o s e d  in [2] (see also [3]), since we allow not  only 
the sampling phase, but  also the sampling period t o  be tracked and since we 
consider general signals. Our  joint algorithms are not based on the assumption 
that the input signal and the reference signal fed t o  an adaptive filter are sam- 
pled with the same clock ~ e r i o d  They also allow the tracking o f  time-varying 

delays in the reference ~ a t h  by a process separated f rom the adaptive filter. 
which itself is free t o  ~ e r f o r m  the task of modeling the linear filter h (n)  or  i ts  
inverse. 

2. The General Theory 
Depending o n  the problem a t  hand, the operator L~~,h(,) [s(n)]  can take 

the f o r m  o f  the f i l ter ing o f  a delayed version o f  s(n) or  the form o f  a filter 
followed by a delay. T h e  former configuration is defined as a Type I system and 
the latter as a Type II system. These t w o  definitions also apply t o  the jo in t  
adaptive estimator. Note  that  the t w o  types o f  systems are equivalent i f  the 
corresponding delay is constant w i th  t ime. 

T h e  adaptive filter is a finite length transversal filter, w i th  weight vector 

w,. It is desired that  the reference delay value Dn be estimated separately 
f r o m  the adaptive filter, by  an adaptive delay element dn cascaded wi th  the 
filter in Type I or  Type Il form. In jo in t  M M S E  delay estimation and adaptive 
filtering, the mean squared error (MSE) surface is searched by both  the adaptive 
filter estimation algori thm and the delay estimation one. In  system identifica- 
t ion (cancellation) scenarios, yl(n) is filtered by an estimate o f  LDn,,,(,)[s(n)] 
and the resulting signal is subtracted f rom yz(n) i n  order t o  fo rm the error 
signal. In inverse filtering (equalization), y2(n) is passed through an estimate 
o f  L-D,,h-l(n)[s(n)] and compared t o  y l ( n ) .  Th is  illustrated in Figs. 1 and 2 .  
Figs. 3 and 4 give respectively a detailed form o f  Type I and Type I1 systems in 
cancellation configuration. 

In general, the output  o f  the adaptive branch can be defined as y(n) and 
the reference signal as r ( n ) .  Then the error signal is defined as 

and the MSE function, a t  t ime n ,  as 

T h e  jo in t  estimation can be thought o f  as taking place in to  a vector space made 
of a weight vector subspace and a delay subspace. T h e  M S E  function can take 
the fol lowing t w o  forms, depending on the type o f  system 

where the superscript H denotes complex conjugate transpose and Re(.) is the 
real value operator, T is the sampling period, &(n, m) is the autocorrelation 
funct ion o f  the reference signal for the specific problem at  hand. In a Type I 
system, R, is the autocorrelation matr ix o f  u ( n T  - d,), the delayed adaptive 
branch input.  In  a Type II system. R is the autocorrelation matr ix o f  the 
adaptive filter input  u(n).  T h e  vector p, is the cross-correlation vector between 
the same inputs and the reference signal. In  a Type I system, each component 
o f  the adaptive filter input vector can experience a different delay, and the 
autocorrelation matr ix is time-varying. In a Type II system, the delay d,, is 
assumed transferred t o  the reference branch, such that there is no delay between 
the adaptive filter output  and the error signal. Note also that  the vector p,, 
depends o n  d, in both  types o f  systems. 

In  the weight vector subspace, the MSE function is a quadratic surface [4]. 
T h e  delay subspace is one-dimensional and, i n  general, the MSE function is not  
unimodal w i th  respect t o  d,. In order t o  see this, note t h a t  6, depends on t w o  
correlation functions that  vary according t o  the adaptive filter and the operator 
L[s(n)], as well as the autocorrelation funct ion o f  the signal u(n) Al l  o f  these 
t ime functions are mult imodal w i th  respect t o  d,, which i n  tu rn  causes the MSE 
function t o  behave similarly and produce a mult i tude o f  local extrema. 

3. The Joint Steepest-Descent Algorithm 
The simplest jo in t  gradient algori thm is the first order one, which takes the 

general fo rm 

wn+l = w n  - P Vw., En 

where 11 and cu are small positive adaptation constants. This algori thm is referred 
t o  as the jo in t  steepest-descent (SD) algorithm. It is composed o f  the usual SD 

CH2868-8/90/0000-3165$1.00 0 1990 IEEE 

Proc. IEEE Int. Symp. Circuits, Systems (New Orleans, LA), pp. 3165-3169, June 1990



adaptivef i l ter and the S D  adaptive delay element, each one adapted, a t  iteration 

n+ 1, using the M S E  funct ion a t  iteration n .  T h e  t w o  adaptive systems can be 
cascaded i n  either Type I or Type II ,  and a system identification or an inverse 
f i l ter ing configuration can be used. 

3.1 Convergence o f  t h e  A l g o r i t h m  

A necessary condition for a specific d, and w, t o  be a stationary solution 
o f  (5) is t h a t  both o f  the fol lowing equations be satisfied [5] 

Assuming that  both  the adaptive and the reference systems are Type II ,  a 
necessary condition for (d,, w,) t o  be a stationary solution o f  (5) is 

i.e. the stationary weight vector solution is the Wiener solution when the delay 
d, is such that w-, is o r lhogonn l  t o  p, or the product w,p, is purely imaginary 
Note t h a t  the solution o f  (7) is not  unique. 

Assume, for general systems, tha t  the adaptation constants can be time- 
varying and denote them as 11, and a,. Express also the MSE as an explicit 
funct ion o f  d, and w,, i.e. as [{d,,~,). Define a slatzonc~ry p o ~ l ~ l  o f  

[{d,,w,) as a solution (d,,w,) o f  the necessary condition (6) Deflne d,, 
as the delay value closest t o  d,, for which (id,, w,) is min imum Then 

a truncated Taylor expansion of the MSE function around a,, allows one t o  
approximately express the S D  delay algori thm as 

where t{zl,, w,) denotes the second derivative o f  ({d,, w,}, w i th  respect t o  
d,, evaluated a t  d, = 29,. T h e  next proposition is a modi f~cat ion  o f  propo- 

sition 2 o f  [5] and establishes the adaptation constants range for a stationary 
point t o  be attained by the jo in t  SD algorithm, when d, and w, are modifled 
i n  some alternate fashion. 

Proposition 1. Let the set of  positive integers be divided arbitrarily inlo 
twodisjoint subsets nl and n z ,  each containingan infinite ntrrnber ofpositive 
integers. Let a, = 0  when n E KI, and p, = 0 when n E K?. Let X ,,,,, (11) be 
the maximum eigenvalue o f  the sigrial autocorrelation matrix R,, and a,,, 
the delay value closest to d,, for which ({d,, w,} is rnin~mnnl. Assurnmg 
that d, is sufficiently close to t?,, the AfiE will converge to a stationary 
poin t if 

for n E rcl, and 

(10) 

forn  E K ~ .  I 

This  proposition states that  d, and w,, may be adjusted in any alternating 
fashion and the MSE wil l  converge t o  a stationary point if p,, satisfies (9) during 
the adjustment o f  w,, and a ,  satisfies (10) during the adjustment o f  ( I , ,  For 

example, d, may be fixed and w, adjusted unt i l  vw,,f = 0, then w,, may be 
fixed and d, adjusted unt i l  a[/Dd, = 0. T h e  cycle can be repeated unt i l  both 

yW,,( and aclad, approach zero. The above condition is important because 
~t confirms that ,  w i th  the r ight parameters used zit al le~nnt ro l r ,  the MSE is 

reduced a t  each iteration and the jo in t  SD algori thm converges eventually to  a 
stationary point. 

3.2 T h e  Steepest -Descent  D e l a y  T r a c k i n g  A l g o r i t h m  

T h e  particular case treated in this section is such that the adaptive fllter 
has fully adapted t o  the characteristics o f  h(n)  and is a t  least as long as the 
impulse response h(n). For high signal-to-noise ratios, the i th  adaptive fdter 
coefficients w,;, a t  iteration n ,  is approximately o f  the form 

h( i )  System identification (cancellation) 
wni { h - l ( i )  Inverse f i l ter ing (equalization), (11) 

where h( i )  is the i th  weight of the reference path f ~ l t e r  Since we assume the 

algori thm i n  tracking mode, the delay tracking algori thm can be linearized by 
using a truncated Taylor expansion o f  the MSE funct ion around d,, = D,, The 

small error S D  delay algori thm is then o f  the form 

where is equal t o  a2(,/dcl?, evaluated a t  d, = D, Assume a restricted 

class o f  system in which (, is time-independent and equal t o  i. This category 

is not  t o o  restrictive and is applicable t o  systems in which the reference fllter 
h(n)  varies slowly. T h e  stability range for a is 

and the t ime constant o f  delay adaptation is 

Note  that condition (13) is equal t o  condition (10) w i th  8, = D, 
For Type II ,  we can obtain a tighter bound on a .  In this case, the 

M S E  funct ion has only one delay dependent term equal t o  & l . ( n , r ~ ) ,  the 
correlation between the adaptive branch output  and the reference signal Then 
5 = &(n, n) and for the cancellation and equalization configurations, this 
cross-correlation is given respectively by 

and 

@(n, n )  = -2Re[dss(Dn +&)I, (16) 

where $,,(r) is the autocorrelation function o f  the signal s (n)  and p ( k )  is 
the deterministic autocorrelation o f  the reference filter impulse response and is 
defined as 

p(k) = C h ( k  + i ) h S ( i ) .  ( 1  71 

Defining the maximum value o f  the input signal power spectral density 

QsS(e jw)  as amax. the fol lowing sufficient bounds can be derived 

0  < a < -l/Q,,,Re[p"(0)] Cancellation i I h )  

and 

Equalization. O < a < -  (1:)) 

T h e  prime i n  (18) denotes the derivative w i th  respect t o  the continuous-time 
correlation argument. 

4. The Joint LMS Algorithm 
In practice, the gradient and derivative functions used in the SD algorithm 

have t o  be estimated In the jo in t  L M S  algori thm, the MSE function c,, 
is estimated by the magnitude o f  the squared error le(n)12. For a Type I 

configuration, the jo in t  SD algori thm then becomes the joint L M S  algorithm. 

d,+l = d, + PaRe e ( n ) m  [ * ad. I 
where u, is the vector o f  delayed samples a t  the adaptive filter input 

T h e  delay and weight vector estimates being random variables, we can 
analyze the jo in t  algori thm in terms o f  convergence in the mean and in the 
mean square o f  either estimate. Because o f  the coupling between the two 
adaptive processes, the gradient noise will affect the delay tracking and the 

derivative noise wi l l  itself influence the adaptive filter These mutual effects 

can be included in the delay variance and weight vector covariance matr ix,  in 
steady-state conditions. T h e  bounds for /L and a are determined, for both types 
o f  convergence. In  the course o f  the analyses, i t  is assumed that all the signals 
and systems are real, tha t  the input signals are zer-mean Gaussian processes 
that the adaptive system is Type I and in steady-state and that the reference 
system is stationary (D, = D ) .  I t  is also assumed that u,, = u ( n T  - ( I , , )  
i e. that any adaptive delay modification is reflected on every sample of the 
adaptive filter delay line. This simplifies the analyses by making the input signal 
autocorrelation matr ix time-invariant. I t  is further assumed that independence 

theory holds, i.e. (see [4] for example) E [ u ( n ) u T ( k ) ]  = 0 f o r k  = O. I.. . . . r r -  I 
and E [ u ( n ) r ( k ) ]  = 0 for k = O , l , .  . . ,  n - 1. We also assume that in steady- 

state, the adaptive weight vector w, can be expressed as w,, = w,,,, + q, , .  
where wept is the opt imum Weiner solution given by wept = R-'p,, l , i , ,=, , .  
and q, is a zer-mean Gaussian noise vector independent o f  the data and such 
that E[qnqT]  = 0 for n # k ,  and E[qtq,] = 0 for i # j .  The noise vector 
covariance matr ix,  deflned as Kq = E[q,qT], is therefore diagonal with the 
values E [ q l ( n ) ]  on the main diagonal. 

We present the analysis for the delay estimator in Section 4 1, the analysis 
for the weight vector estimator in Section 4 2 and we combine the results in 
Section 4.3, in order t o  obtain the to ta l  excess MSE and misadjustment for the 
joint L M S  algori thm. 

4.1 Analysis f o r  t h e  LMS Delay  E s t i m a t o r  i n  Track ing M o d e  

T h e  L M S  delay tracking algori thm is analyzed in terms o f  convergence oi' 
the delay estimate, in the mean and in the mean square The following analysis 
parallels and extends that  o f  Messer [I]. 

For d, = D, the output  o f  the adaptive branch can be expressed as 

T h e  ftrst te rm on the r ight is defined as the opt imum output 1:(n), since i t  

represents the adaptive branch output for perfect modelling in the MSE sense 
T h e  second term on the r ight is defined as the output steady-state noise Define 



c , , , , , , ( n ,  D )  as the error between the opt imum adaptive branch and the reference 
branch, i e 

e,,,,(n, D) = ~ ( n )  - f ( n ) ,  (23) 

and Lhc corresponding MSE as 

Smln = E[ek ln(nr  Dl] .  (24) 

In tracking conditions, the squared error can be approximated by the first 

three terms o f  its Taylor expansion around d, = D. Then, for real signals, 

Def~n ing the derivative noise as 

and the quantity G,, as 

G, = y2(n ,  D )  - e(n,  D ) y ( n ,  D ) ,  (27) 

the L M S  algori thm is therefore approximately expressed as 

d,,+] = d,, - 2a(dn - D)G, - uN,. (28) 

4.1.1 Convergence i n  t h e  M e a n  o f  t h e  Delay  E s t i m a t e  

Take the expected value with respect t o  the input signals, on both sides o f  

(28).  and rearrange. T h e  result is 

I t  can be shown, under the independence assumption, that the random variable 
{ I , ,  is uncorrelated wi th  G,, and A', Furthermore, we have 

where the prime denotes a derivative with respect t o  the correlation argument 

Equation (29) simplifies to  

I t  can be shown that F,,, = -24yp(0) and (31) can be wri t ten as 

which .. .. exhibits a fo rm similar t o  the SD delay t lacking algori thm o f  (12), wi th  

f , ,  = E ,,,, ,, Equation (32) converges i f  11 - a(,,,l < 1, and f rom the above 
derivations, the following proposition emerges 

P r o p o s i t i o n  2. In steady-state conditions and under our assumptio~ls, the 
dr*l;~y r~slir~iator, given by the LAIS delay tracking algorithm operatingjointly 
n ~ / l l  arl aclalrtivc filter in Type I coufiguratiorl, is an unbiased estimator ~f 

4.1.2 Convergence i n  t h e  M e a n  Square o f  t h e  Delay  E s t i m a t e  

Subtract the value I1 f rom each side o f  (28), square each side o f  the 

resulting equation and take the expected value. Defining the time-varying delay 

estimate variance zr,, as 

u,, = E[(d,, - D ) ? ] ,  (34) 

the fmal result is 

Equation (35) indicates that there is convergence in the mean square sense if 

Using the result o f  (30),  the expected value is equal t o  

The value o f  I:'[Gi] can be shown t o  be 

where l r [ ]  is the trace operator and K,, is the weight noise covariance matr ix 

and ( /J~ ' ) (O)  denotes 8 ' & ( ~ ) / d r '  at  T = O 
T h e  condition (36) leads t o  the following proposition 

P r o p o s i t i o n  3. In steady-state conditions and under our assumptions, the 
delay estimator, given by  the LMS delay trackingalgorithm operating jointly 
with an adaptive filter in Type I configuration, is convergent in the mean 
square i f  

where the quantity E[GZ] is given in (38). I 
Because the expected values i n  (35) are time-invariant, the steady-state 

delay estimate variance is given by 

v,, = lim vn 
n-a? 

where E [ N i ]  can be shown t o  be 

EIN:l = -4(4m(0) - h ( O )  + duu(O)tr[Kql)(G+(O) + 4:'u(0)tr[Kv1). (41) 

Note that  the steady-state variance is approached a t  the fastest rate when the 
quanti ty E[(1-2cuG,)2] in (35) is minimum. Th is  happens when the adaptation 
constant is 

which is one half  the maximum adaptation constant allowed by (39). 
4.2 Analysis f o r  t h e  L M S  A d a p t i v e  F i l te r  i n  T r a c k i n g  M o d e  

As wi th  the L M S  delay tracking algorithm, the LMS weight vector adaptive 
algori thm can be analyzed i n  terms o f  convergence i n  the mean and the mean 
square o f  the weight vector estimate 

4.2.1 Convergence i n  t h e  M e a n  o f  t h e  W e i g h t  V e c t o r  E s t i m a t e  

Take the expected value o f  each side o f  (20) (for real signals). T h e  result 

where p, is now a conditional expectation, conditioned on d, and E[p,] denotes 
the expectation wi th  respect t o  d,. It can be shown that,  in steady-state, 

where p ( D )  denotes the second derivative w i th  respect t o  d, o f  p,, when 

d, = D. Equations (44) and (45) indicate that  the weight vector is biased and 
we have the fol lowing proposition: 

P r o p o s i t i o n  4. In steady-state conditions and under our assumptions, 
the weight vector estimator, given by  the adaptive filter LMS algoritlim 
operating jointly with a delay tracking algorithm in Type I configuration, 
converges in the mean i f  

1 
o < p < - ,  

Amax 
(46) 

where A,,, denotes the maximum value o f  the input signal autocorrelation 
matrix R. The weight vector estimate experiences a bias given by  

b = v , ,R-~~;(D) .  (47) 

Note that  the convergence condition o f  (46) is identical t o  the usual 
condition for convergence i n  the mean o f  an L M S  adaptive filter [4] 
4.2.2 Convergence i n  t h e  M e a n  Square o f  t h e  W e i g h t  Vector  E s t i m a t e  

T h e  weight noise vector covariance matr ix K,(n + I), at  i terat ion 7~ + 1. 
is computed in this section and a condition for i ts convergence, in the matr ix 

norm sense, t o  a finite steady-state value is established. From (20) and the 
definition o f  r],, the noise vector can be wri t ten as 

r]n+l = Wn+1 - Wept 

= W ,  + 2pe(n, dn)u ,  - wept 

= [I - 2pnu:lrl ,  

+ 2p[unr(n) - unuRwopt]. 

Then, proceeding as i n  [4]. K,(n+ 1) can be computed t o  be 



Except for the term involving the delay estimate variance, Eq (49) is identical 
t o  the one for an adaptive filter operating alone ([4], Eq. (5.74)). Proceeding as 
i n  [4], the input signal autocorrelation matr ix R can be transformed t o  normal 
form, using a unitary similarity transformation Q. Defining the transformed 

covariance matr ix X(n) as 

X(n) = QTK,(n)Q, 

the norm o f  the covariance matr ix K,(n) converges t o  a finite value i f  and 
only if the trace o f  X(n) converges t o  a finite value. For a convergent in the 
mean square delay estimator, it can be shown that  t r [ X ( n ) ]  converges t o  the 
steady-state value 

if and only if the parameter p satisfies the condition 0 < p < l / t r [ R ] .  

Therefore, if the delay estimate variance v, is finite, the trace o f  the weight- 
error covariance matr ix K, is f ini te and the condition for convergence in the 
mean square is given in the fol lowing proposition. 

Proposition 5. In steady-state condit ions a n d  under  o u r  assumptions, 
the  weight vector est imator, given b y  the adapt ive  f i l te r  LAW algor i thn i  

opera t ing  j o i n t l y  w i t h  a mean square convergent delay t rack ing a lgor i thm 
i n  T y p e  I configurat ion, i s  convergent i n  the mean square if a n d  o n l y  i f  

where Xi i s  the ith eigenvalue o f  the (L + 1) x (L + 1) i n p u t  signal autocor- 
re la t ion  m a t r i x  R. 

This  condition for convergence in the mean square sense is identical t o  the 
one for an adaptive filter operating alone. 

If the adaptation constant p is small enough t o  make p t r [ R ]  << 1, then 
(50) can be wri t ten as 

where tr[K;] is defined as the trace o f  the weight-error covariance matr ix specific 
t o  the adaptive filter and is given as 

Combining (38), (41) and (52) in (40), one obtains (with great pain) a closed- 
fo rm expression for the steady-state delay estimate variance v,, This expression 

can i n  tu rn  be used t o  determine the adaptation constants as explicit functions 
o f  the input signals statistics. A n  easier and more practical approach is t o  f ~ x  n 

priori the steady-state delay estimate variance v,, a t  a certain acceptable level. 
Then, the quantities E[G;] and E[N;] are available as functions o f  / I  Using 
these results i n  (40) gives a as a function o f  p .  The adaptation constants can 
then be determined, w i th  the help o f  (39) and (51), t o  insure convergence in 
the mean square. 

4.3 Excess Mean-Squared Er ror  a n d  M i s a d j u s t m e n t  w i t h  t h e  J o i n t  

L M S  A l g o r i t h m  

From (20), the MSE funct ion is, for real signals and under our usual 
assumptions. 

F = b ( 0 )  + E[w;fRwn] - 2E[w;fpn1. (54) 

T h e  use o f  the definitions o f  r), gives the steady-state MSE 

T h e  excess MSE is then 

Eex = Ess - Ernin 

where 

. . 

T h e  misadjustment is defined as the rat io o f  the excess MSE t o  E,,,,,. From 

(56) t o  (59), we f ind that  the misadjustment expression is 

where the different forms of misadjustments are defined in relation t o  the above 
excess MSE definitions. 

4.4 Discussion 

T h e  main results o f  Section 4 are expressed by (33), (38). (39). (40). (41). 

(46). (51)- (52). (56) and (60). 
T h e  first point t o  note is the fact that,  as long as the delay estimation 

algori thm is convergent in the mean square (v,, is finite), the conditions for 

convergence o f  the L M S  adaptive filter (46) and (51) are identical t o  the usual 

conditions for a similar adaptive filter operating alone, i.e. the convergence de- 
pends solely o n  the eigenvalues o f  the input signal autocorrelation matr ix.  Note 

also that,  because o f  the adaptive delay element, the weight vector estimate is 
biased. 

Another point t o  note is tha t  the convergence o f  the L M S  adaptive delay 

element depends on the input signal power 4,,(0) and the minimum MSE Ern,,. 

T h e  expression (40) for the delay estimate variance is complicated by the 
presence o f  the adaptive filter-related terms. The delay estimate variance is 

also encountered i n  the excess MSE and misadjustment expressions o f  (56) and 

(60) Once the delay variance is computed, these t w o  quantities are seen t o  be 
funct ion o f  t w o  terms specific t o  the adaptive delay element and t o  the adaptive 
filter, respectively, and o f  a cross-product te rm (note that  the delay specif~c term 
being funct ion o f  v,,, i t  is indirectly function o f  the adaptive filter) Note that 

the expressions for E& and ti, are identical t o  those obtained for the respective 
adaptive algorithms operating alone [ I ] ,  [4]. T h e  cross-product terms (2; and 
Acid' are essentially the result o f  gradient and derivative estimation noise in the 

t w o  jo in t  adaptation processes. For stationary input and reference processes. 

the estimation noise in one adaptive algori thm is increased by the gradient 
estimation noise present i n  the other adaptive system. Therefore, the total  

misadjustment M is not  merely the sum o f  the adaptive delay element and 
adaptive filter misadjustment expressions M d  and M f ,  but  also includes a term 

due t o  the jo in t  estimation noise. 

I t  is impor tant  t o  keep i n  mind that all the results o f  Section 4 were derived 
for an adaptive Type I system in which the delay d, applies t o  every sample o f  

u,. I f  the delay adaptation is slow enough, the results in the previous sections 
can be applied t o  the case where each sample o f  u, experiences a different 
delay. 

4.5 S i m u l a t i o n  Resu l ts  

T h e  performance o f  a system identification Type I configuration has been 
simulated wi th  a spectrally white input signal s(n). Table 1 shows the measured 

excess MSE and misadjustment for different adaptation conditions and a SNR 

o f  10 dB. T h e  theoretical misadjustment, as given in (60), is also given as 12f11, 
T h e  cross-product term M d M f  being a second order component, i ts effect is 

therefore small or negligible, as can be seen f rom the fact that E:: is always 
approximately equal t o  the sum o f  ELx and [ tx .  Fig. 5 illustrates the type of 
learning curve obtained after a un i t  step occurs i n  the reference delay. 

Tab le  1 

I t  is noted in the simulations that  if the adaptive fdter has a t ime constant o f  
adaptation on the same order o f  the adaptive delay t ime constant, the refere'nce 

delay tends t o  be compensated by both adaptive systems, and the delay element 

converges t o  a value different than the reference value. This effect is illustrated 
i n  Fig. 6 for a delay element w i th  a = 0.5 and for one with a = 0 1. when a 
un i t  delay step is applied in the reference branch 

5. Conclusion 
In  this paper, we have studied in some details the jo in t  SD and jo in t  L M S  

algorithms for t ime delay estimation and adaptive filtering. The convergence 

t o  a mult i tude o f  stationary points was established and the tracking behaviour 

o f  the t w o  algorithms was investigated. T h e  coupling between the t w o  LMS 

adaptive algorithms was shown t o  give a misadjustment expression equal to  
the sum o f  the individual misadjustments and a cross-product term. These 

expressions can be used t o  obtain a theoretical view o f  the application of such 
algorithms i n  specific environments. 
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Fig. 5 Learning curve for a un i t  step reference path delay variation; 
p = 0.01 and (Y = 0.5. T h e  dashed line indicates the 
min imum MSE, Emin = 0.0139 
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Fig. 6 Delay element response for a unit  step reference path delay 
variation; p=0.01; (a) o = 0.5, (b)n=O.l 

Fig. 4 Type Il systems in cancellation configuration 


