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Abstract

A general estimation model is defined in which two observations are available;
one being a noisy version of the transmitted signal, while the other is a noisy
filtered and delayed version of the same transmitted signal. The time-varying
delay and the filter are unknown quantities that must be estimated. A joint
estimator is proposed. It is composed of an adaptive delay element in conjunc-
tion with a transversal adaptive filter. The same error signal is used by the
two adaptive algorithms to adjust the delay element and the filter such that the
minimum mean squared error is attained. Two joint gradient-based adaptation
algorithms are studied. The joint steepest-descent (SD) algorithm is first inves-
tigated. The possibility of convergence to a multitude of solutions is established
and a condition of convergence is presented. A stochastic implementation of
the joint SD algorithm, under the form of a joint least mean square (LMS) algo-
rithm, is then investigated. It is analyzed in terms of convergence in the mean
and in the mean square of both the delay estimate and the adaptive filter weight
vector estimate. The conditions of convergence of the joint LMS algorithm are
established as functions of the power spectral densities of the observed signals
and the minimum mean squared error.

1. Introduction
Estimating the time delay between two continuous versions of the same
signal, each corrupted by uncorrelated noise components, has been the subject
of many research efforts over recent years. In this paper, we consider the more
difficult model in which the delayed path is subject to frequency dependent
attenuation. The corresponding discrete-time model is of the form

wi(n) = s(n) + vi(n)
ya(n) = Lp, nen)[s()] + v2(n),

where s(n) is the transmitted signal, D, is a delay, possibly time-varying, and
Lp, amls(n)] is an unknoun linear operator, taking the form of a filtering
operation, with the filter impulse response h(n), of a delayed by D, version
of s(n). The signals v;(n) and va(n) are zero-mean noise signals, assumed
uncorrelated with each other as well as with s(n) and Lp, n(n)[s(n)]. Examples
of such systems are encountered in system modelling problems, where the
unknown system often has an impulse response that can be modelled as a pure
time delay in series with a linear filter, as is the case in geophysical exploration,
echo cancelling or multipath communication channels.

This paper presents an analysis of joint delay estimation and system esti-
mation based on the minimum mean squared error (MMSE) performance index,
when the system estimation is specifically performed by an adaptive transversal
filter and the delay estimation is accomplished independently from this filter, by
an adaptive delay element. A joint steepest-descent algorithm and a joint LMS
algorithm are investigated in tracking mode. The assumption of tracking mode
is important because it is then assumed acquisition was initially performed, in
order to bring the estimate close to its optimum value.

The principal contributions of this paper are the generalization of existing
gradient-based time delay estimation without reference filtering h(n), as pro-
posed in [1] and the analysis of a new joint algorithm for the synchronization
of the input and the reference signals used by an adaptive filter. The joint
steepest-descent and LMS algorithms that we investigate in this paper are gen-
eralizations of joint clock phase recovery and adaptive equalization based on
LMS phase tracking, as proposed in [2] (see also [3]), since we allow not only
the sampling phase, but also the sampling period to be tracked and since we
consider general signals. Our joint algorithms are not based on the assumption
that the input signal and the reference signal fed to an adaptive filter are sam-
pled with the same clock period. They also allow the tracking of time-varying
delays in the reference path by a process separated from the adaptive filter,
which itself is free to perform the task of modeling the linear filter h(n) or its
inverse.
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2. The General Theory

Depending on the problem at hand, the operator Lp_ 4(n)[s(n)] can take
the form of the filtering of a delayed version of s(n) or the form of a filter
followed by a delay. The former configuration is defined as a Type | system and
the latter as a Type Il system. These two definitions also apply to the joint
adaptive estimator. Note that the two types of systems are equivalent if the
corresponding delay is constant with time.

The adaptive filter is a finite length transversal filter, with weight vector
wy. It is desired that the reference delay value D, be estimated separately
from the adaptive filter, by an adaptive delay element d,, cascaded with the
filter in Type | or Type Il form. In joint MMSE delay estimation and adaptive
filtering, the mean squared error (MSE) surface is searched by both the adaptive
filter estimation algorithm and the delay estimation one. In system identifica-
tion (cancellation) scenarios, y;(n) is filtered by an estimate of Lp, hn)ls(1)]
and the resulting signal is subtracted from ys(n) in order to form the error
signal. In inverse filtering (equalization), y2(n) is passed through an estimate
of L_Dn’h_,(n)[s(n]] and compared to y;(n). This illustrated in Figs. 1 and 2.
Figs. 3 and 4 give respectively a detailed form of Type | and Type il systems in
cancellation configuration.

In general, the output of the adaptive branch can be defined as y(n) and
the reference signal as r(n). Then the error signal is defined as

e(n) = r(n) - y(n), (2)
and the MSE function, at time n, as
» = Efle(n)f’]. 3)

The joint estimation can be thought of as taking place into a vector space made
of a weight vector subspace and a delay subspace. The MSE function can take
the following two forms, depending on the type of system

€ = ber(n,n) + wHR,w, — 2Re[wilp,]
"7 @er (0T + dny 0T + d,) + WHRw,, — 2Re[wp,]

Type |
T}’P (4)
ype Il

where the superscript H denotes complex conjugate transpose and Re(-) is the
real value operator, T is the sampling period, ¢,,(n,m) is the autocorrelation
function of the reference signal for the specific problem at hand. In a Type |
system, Ry, is the autocorrelation matrix of u(nT — dy,), the delayed adaptive
branch input. In a Type Il system, R is the autocorrelation matrix of the
adaptive filter input u(n). The vector p,, is the cross-correlation vector between
the same inputs and the reference signal. In a Type | system, each component
of the adaptive filter input vector can experience a different delay, and the
autocorrelation matrix is time-varying. In a Type Il system, the delay d,, is
assumed transferred to the reference branch, such that there is no delay between
the adaptive filter output and the error signal. Note also that the vector p,
depends on d, in both types of systems.

In the weight vector subspace, the MSE function is a quadratic surface [4].
The delay subspace is one-dimensional and, in general, the MSE function is not
unimodal with respect to dn. In order to see this, note that £, depends on two
correlation functions that vary according to the adaptive filter and the operator
L[s(n)], as well as the autocorrelation function of the signal u(n). All of these
time functions are multimodal with respect to d,,, which in turn causes the MSE
function to behave similarly and produce a multitude of local extrema.

3. The Joint Steepest-Descent Algorithm

The simplest joint gradient algorithm is the first order one, which takes the
general form

Wnil = Wi — ft Vw, én
%n (5)
dnyr = dn — a2
+1 [ aﬁd,, )

where yt and o are small positive adaptation constants. This algorithm s referred
to as the joint steepest-descent (SD) algorithm. It is composed of the usual SD
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adaptive filter and the SD adaptive delay element, each one adapted, at iteration
n+ 1, using the MSE function at iteration n. The two adaptive systems can be
cascaded in either Type | or Type Il, and a system identification or an inverse
filtering configuration can be used.
3.1 Convergence of the Algorithm

A necessary condition for a specific d,, and w, to be a stationary solution
of (5) is that both of the following equations be satisfied [5]

Vwabn =0
8 _ 0. (6)
ad,,
Assuming that both the adaptive and the reference systems are Type II, a
necessary condition for (dn, Wn) to be a stationary solution of (5) is

{Wn :R—IPn

7

Re[wip,] =0, M
i.e. the stationary weight vector solution is the Wiener solution when the delay
d,, is such that w,, is orthogonal to p, or the product wy,p, is purely imaginary.
Note that the solution of (7) is not unique.

Assume, for general systems, that the adaptation constants can be time-
varying and denote them as ji, and a,,. Express also the MSE as an explicit
function of d, and wy, ie. as {d,,wn}. Define a stationary point of
&{dn,wn} as a solution (d,,w,) of the necessary condition (6). Define v,
as the delay value closest to d,, for which £{d,,wn} is minimum. Then
a truncated Taylor expansion of the MSE function around 9, allows one to
approximately express the SD delay algorithm as

dngr = dn — anldn — 90)E{0n, W}, (8)

where E{ﬂmwﬂ} denotes the second derivative of £{d,, w,,}, with respect to
d,, evaluated at d, = ¥,,. The next proposition is a modification of propo-
sition 2 of [5] and establishes the adaptation constants range for a stationary
point to be attained by the joint SD algorithm, when d,, and w,, are modified
in some alternate fashion.

Proposition 1. Let the set of positive integers be divided arbitrarily into
two disjoint subsets k; and ko, each containing an infinite number of positive
integers. Let ap, = 0 when n € k3, and pn = 0 when n € Ku. Let Ayax(n) be
the maximum eigenvalue of the signal autocorrelation matrix R, and VY.,
the delay value closest to d,,, for which £{d,,,w,} is minimum. Assuming
that d,, is sufficiently close to ¥,, the MSE will converge to a stationary
point if

1
0 < pin < ———> 9)
S R (
for n € k1, and
o2 -
0<Gn<2[5dz€{'gn,wn}] , (10)
for n € ky. |

This proposition states that d,, and w,, may be adjusted in any alternating
fashion and the MSE will converge to a stationary point if y,, satisfies (9) during
the adjustment of w,, and «, satisfies (10) during the adjustment of d,,. For
example, d, may be fixed and w, adjusted until 7w & = 0, then w,, may be
fixed and d,, adjusted until 9¢/3d,, = 0. The cycle can be repeated until both
Vw.& and 06/dd, approach zero. The above condition is important because
it confirms that, with the right parameters used in allernation, the MSE is
reduced at each iteration and the joint SD algorithm converges eventually to a
stationary point.

3.2 The Steepest-Descent Delay Tracking Algorithm

The particular case treated in this section is such that the adaptive filter
has fully adapted to the characteristics of h(n) and is at least as long as the
impulse response h(n). For high signal-to-noise ratios, the it* adaptive filter
coefficients wy;, at iteration n, is approximately of the form

A(3)
Wi &
w={i%
where h(i) is the i*h weight of the reference path filter. Since we assume the
algorithm in tracking mode, the delay tracking algorithm can be linearized by
using a truncated Taylor expansion of the MSE function around d,, = Dy,. The
small error SD delay algorithm is then of the form

dnt1 = dn — a€u(dn — Da), (12)

where £, is equal to 8%¢,/8d% evaluated at d, = D,. Assume a restricted
class of system in which £, is time-independent and equal to £. This category
is not too restrictive and is applicable to systems in which the reference filter
h(n) varies slowly. The stability range for a is

0<a <2/, {13)

System identification (cancellation) (i

Inverse filtering (equalization),
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and the time constant of delay adaptation is

raai 8 (14)
af
Note that condition (13) is equal to condition (10) with ¥, = D,.

For Type I, we can obtain a tighter bound on . In this case, the
MSE function has only one delay dependent term equal to &é,.(n,n), the
correlation between the adaptive branch output and the reference signal. Then
£ = ¢y-(n,n) and for the cancellation and equalization configurations, this
cross-correlation is given respectively by

#(O(n,n) = —2Re | S~ p()$ss(—€T + Dy — dy) (15)
I

and

8{P(n,n) = ~2Re[d,o(Dn +da)], (16)
where ¢,,(7) is the autocorrelation function of the signal s(n) and p(k) is
the deterministic autocorrelation of the reference filter impulse response and is

defined as
p(ky =3 h(k + )k (3). (17)

Defining the maximum value of the input signal power spectral density
B, (e/*) as Ppax, the following sufficient bounds can be derived
0 < a < ~1/®maxRe(p"(0)] Cancellation (1%)
and

O<a< Equalization. (19)

3
Prax?
The prime in (18) denotes the derivative with respect to the continuous-time
correlation argument.

4. The Joint LMS Algorithm
In practice, the gradient and derivative functions used in the SD algorithm
have to be estimated. In the joint LMS algorithm, the MSE function &,
is estimated by the magnitude of the squared error |e(n)|>. For a Type |
configuration, the joint SD algorithm then becomes the joint LMS algorithm,

Wnt1 = Wy + 2ue*(n)u, (20)
dpt1 = dy, + 2aRe [e'(n)(—?-m] R 21
Ody,
where u,, is the vector of delayed samples at the adaptive filter input

The delay and weight vector estimates being random variables, we can
analyze the joint algorithm in terms of convergence in the mean and in the
mean square of either estimate. Because of the coupling between the two
adaptive processes, the gradient noise will affect the delay tracking and the
derivative noise will itself influence the adaptive filter. These mutual effects
can be included in the delay variance and weight vector covariance matrix, in
steady-state conditions. The bounds for  and o are determined, for both types
of convergence. In the course of the analyses, it is assumed that all the signals
and systems are real, that the input signals are zero-mean Gaussian processes,
that the adaptive system is Type | and in steady-state and that the reference
system is stationary (D, = D). It is also assumed that u, = u(nT — d,).
i.e. that any adaptive delay modification is reflected on every sample of the
adaptive filter delay line. This simplifies the analyses by making the input signal
autocorrelation matrix time-invariant. It is further assumed that independence
theory holds, i.e. (see [4] for example) E[u(n)u” (k)] = 0fork = 0.1.....n~1
and Eflu(n)r(k)] =0 for k =0,1,...,n — 1. We also assume that in steady-
state, the adaptive weight vector w, can be expressed as w, = wou +17,,.
where Wopt is the optimum Weiner solution given by Wopt = R'puli,=n.
and 1), is a zero-mean Gaussian noise vector independent of the data and such
that E[n,nf] = 0 for n # k, and E[p;m;] = 0 for i # j. The noise vector
covariance matrix, defined as K, = E[n,nl], is therefore diagonal with the
values E[p?(n)] on the main diagonal.

We present the analysis for the delay estimator in Section 4.1, the analysis
for the weight vector estimator in Section 4.2 and we combine the results in
Section 4.3, in order to obtain the total excess MSE and misadjustment for the
joint LMS algorithm.

4.1 Analysis for the LMS Delay Estimator in Tracking Mode

The LMS delay tracking algorithm is analyzed in terms of convergence of
the delay estimate, in the mean and in the mean square. The following analysis
parallels and extends that of Messer [1].

For d, = D, the output of the adaptive branch can be expressed as

y(n,D) = wgptu(nT — D) +9lu(nT - D). (22)

The first term on the right is defined as the optimum output #(n). since it
represents the adaptive branch output for perfect modelling in the MSE sense
The second term on the right is defined as the output steady-state noise. Define



Coin{n, D) as the error between the optimum adaptive branch and the reference
branch, i.e.

emin(n, D) = r(n) - f(n), (23)
and the corresponding MSE as
Emin = E[e;"mn(", D)]. (24)

In tracking conditions, the squared error can be approximated by the first
three terms of its Taylor expansion around d,, = D. Then, for real signals,

eX(n,d,) ~ e?(n, D) — 2(d, ~ D)e(n, D)y(n, D)

| , (25)
+ (dn = D)*[#*(n, D) = e(n, D}j(n, DY}.
Defining the derivative noise as
N, = —2¢(n, D)y(n, D) (26)
and the quantity G,, as
Gy = §*(n, D) = e(n, D)ij(n, D), (27)
the LMS algorithm is therefore approximately expressed as
dnyr = do — 20(dy = D)Gr — aN,,. (28)

4.1.1 Convergence in the Mean of the Delay Estimate )
Take the expected value with respect to the input signals, on both sides of
(28). and rearrange. The result is

Elda] = E[(1 - 206 )dy) + 2Da E[Gn) — « E[N,]. (29)

It can be shown, under the independence assumption, that the random variable

d,, is uncorrelated with G, and N,. Furthermore, we have
Al 1 — ,!,
E[Gn] = —¢7:(0) (30)
E[N,] =0,

where the prime denotes a derivative with respect to the correlation argument.
Equation (29) simplifies to

Eldas1] = (1 + 2067:(0)) E[da] — 2Da¢?; (0). (31
It can be shown that £min = —26%:(0) and (31) can be written as
Eldata) = (1 = 0min) Elds] + Dok, (32)

which exhibits a form similar to the SD delay tracking algorithm of (12), with

&y = £, Equation (32) converges if |1 — aémin] < 1, and from the above
derivations, the following proposition emerges

Proposition 2. In steady-state conditions and under our assumptions, the
delay estimator, given by the LMS delay tracking algorithm operating jointly
with an adaptive filter in Type I configuration, is an unbiased estimator if

2 1

l<a<— =

En IO (33)

]
4.1.2 Convergence in the Mean Square of the Delay Estimate
Subtract the value D from each side of (28), square each side of the
resulting equation and take the expected value. Defining the time-varying defay
estimate variance v,, as
v = E[(ds = D), (34)
the final result is
Vg1 = B[(1 — 20G,) vn + &®E[N]]. (39)
Equation (35) indicates that there is convergence in the mean square sense if
IE[(1 - 22Ga)?]] < 1. (36)
Using the result of (30), the expected value is equal to
E[(1 - 20Gn)?]) = 1 — 40 E[Gn] + 46°E[G2 a7
=1+ 4a¢(0) + 4a*E[G3). '
The value of E[G2] can be shown to be
I3 = 3(84:(0)) + 467 (0)¢1, (0)tr[K,) + 9(41,,(0))*tr[K]]
+ (6re(0) = d64(0) + duul WK, (657 (0) + 62 (O)u[K,])  (38)
+ 3(gu (O)r[K, ),

where (r[-] is the trace operator and K, is the weight noise covariance matrix
and $!1(0) denotes 81¢(7)/0r% at 7 = 0.
The condition (36) leads to the following proposition.
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Proposition 3. In steady-state conditions and under our assumptions, the
delay estimator, given by the LMS delay tracking algorithm operating jointly
with an adaptive filter in Type I configuration, is convergent in the mean
square if

~95(0) _ _&min
V<ac Fhl) o e (39)
where the quantity E[G2]} is given in (38). 1

Because the expected values in (35) are time-invariant, the steady-state
delay estimate variance is given by

Vgg = nlilgo Up
_ o’ E[N3)]
T 1= E[(1- 20Ga)F) (40)
__ —aB[N]
= ) + 16 5T
where E[N?] can be shown to be
B[N = ~4(rr(0) = 677(0) + $uu ()42 [K,])(97:(0) + 61, (0)tx[K, ). (41)

Note that the steady-state variance is approached at the fastest rate when the
quantity E[(1—2aGy)?] in (35) is minimum. This happens when the adaptation
constant is 41 (0)
Qopt = Q—E—r@, (42)

which is one half the maximum adaptation constant allowed by (39).
4.2 Analysis for the LMS Adaptive Filter in Tracking Mode

As with the LMS delay tracking algorithm, the LMS weight vector adaptive
algorithm can be analyzed in terms of convergence in the mean and the mean
square of the weight vector estimate.
4.2.1 Convergence in the Mean of the Weight Vector Estimate

Take the expected value of each side of (20) (for real signals). The result
is

E[wny1] = E[wn] + 2uE[e(n, dn)un)
= E[w,] + 2u(Er(n)u,) (43)
— E[u,,u:’;w,,]).
Making use of independence theory, (43) car. be expressed as [6]
Elwnat1] = Elwn] + 2u(E[pn] - RE[ws]), (44)

where p,, is now a conditional expectation, conditioned on d,, and E{p,) denotes
the expectation with respect to d,,. It can be shown that, in steady-state,

Efpn] = Rwopt + Y/avesp(D), (49)

where p(D) denotes the second derivative with respect to d, of p,, when
d, = D. Equations (44) and (45) indicate that the weight vector is biased and
we have the following proposition:

Proposition 4. In steady-state conditions and under our assumptions,
the weight vector estimator, given by the adaptive filter LMS algorithm
operating jointly with a delay tracking algorithm in Type I configuration,
converges in the mean if

O<p< , (46)

Amax
where Amax denotes the maximum value of the input signal autocorrelation
matrix R. The weight vector estimate experiences a bias given by

b = v R™1p(D). (47)
| |

Note that the convergence condition of (46) is identical to the usual
condition for convergence in the mean of an LMS adaptive filter [4].
4.2.2 Convergence in the Mean Square of the Weight Vector Estimate
The weight noise vector covariance matrix K, (n + 1), at iteration n + 1,
is computed in this section and a condition for its convergence, in the matrix
norm sense, to a finite steady-state value is established. From (20) and the
definition of 5,,, the noise vector can be written as

Mntl = Wng1 — Wopt
Wp + 2pe(n, dp)up — Wopy

Il

48
= [ 2y, “
+ 2p[unr(n) — upulwop).
Then, proceeding as in [4], K,(n + 1) can be computed to be
K,(n+ 1) = K, (n) — 2u[K,(n)R + RK, (n)] (49)

+ 4 RURE  (n)] + 44> RlEmin + Eminva /2]



Except for the term invoiving the delay estimate variance, Eq. (49) is identical
to the one for an adaptive filter operating alone ([4], Eq. (5.74)). Proceeding as
in [4], the input signal autocorrelation matrix R. can be transformed to normal
form, using a unitary similarity transformation Q. Defining the transformed
covariance matrix X(n) as
X(n) = QTK,(n)Q,

the norm of the covariance matrix K,(n) converges to a finite value if and
only if the trace of X(n) converges to a finite value. For a convergent in the

mean square delay estimator, it can be shown that tr[X(n)] converges to the
steady-state value

&min + EminVss/2
1— ptr[R]

if and only if the parameter yu satisfies the condition 0 < p < 1/tr[R].

Therefore, if the delay estimate variance v, is finite, the trace of the weight-

error covariance matrix K,, is finite and the condition for convergence in the

mean square is given in the following proposition.

nlln;lq tr[X(n)] = tr[K,] = p(L + 1) (50)

Proposition 5. In steady-state conditions and under our assumptions,

the weight vector estimator, given by the adaptive filter LMS algorithm

operating jointly with a mean square convergent delay tracking algorithm
in Type I configuration, is convergent in the mean square if and only if
1

0<p< —7— (51)

il

where ); is the i** eigenvalue of the (L + 1) x (L + 1) input signal autocor-

relation matrix R. -

This condition for convergence in the mean square sense is identical to the
one for an adaptive filter operating alone.

If the adaptation constant p is small enough to make ptr[R] < 1, then
(50) can be written as

tr[Ky] & p(L + 1)(Emin + Eminves/2)
= oKy ]+ p(L + Dminvss /2,

where tr[K}] is defined as the trace of the weight-error covariance matrix specific
to the adaptive filter and is given as
tr[K}) = p(L + 1)émin- (53)

Combining (38), (41) and (52) in (40), one obtains (with great pain) a closed-
form expression for the steady-state delay estimate variance vgs. This expression
can in turn be used to determine the adaptation constants as explicit functions
of the input signals statistics. An easier and more practical approach is to fix a
priori the steady-state delay estimate variance vs at a certain acceptable level
Then, the quantities E[G2] and E[N?] are available as functions of . Using
these results in (40) gives o as a function of y. The adaptation constants can
then be determined, with the help of (39) and (51), to insure convergence in
the mean square.
4.3 Excess Mean-Squared Error and Misadjustment with the Joint

LMS Algorithm

From (20), the MSE function is, for real signals and under our usual
assumptions,

(52)

€= 6er(0) + EfwI Rwa] — 2E{w] . (54)
The use of the definitions of 5, gives the steady-state MSE
. Vssbmin | f(Emin + Eminvss/2)01(R] 55
&ss = Emin + 0 + 1= ptlR) . (55)
The excess MSE is then
ex = &ss ~ &min
_ Ussgmin #(€min + éminuss/Q)t'r[R] 56
-2 + 1— ptr[R] (56)
=G HELHES
where .
£, = Ubmin, (57)
¢ _ Hmintr[R] 58
fox = 1 - ptrfR]’ (58)
ar _ #eminvss (1) (59)

%1~ purlR)
The misadjustment is defined as the ratio of the excess MSE to &min. From
(56) to (59), we find that the misadjustment expression is

M =My M+ M
=M+ M+ MMT,
where the different forms of misadjustments are defined in relation to the above
excess MSE definitions.

(60)
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4.4 Discussion

The main results of Section 4 are expressed by (33), (38), (39). (40), (41).
(46), (51), (52), (56) and (60).

The first point to note is the fact that, as long as the delay estimation
algorithm is convergent in the mean square (vs is finite), the conditions for
convergence of the LMS adaptive filter (46) and (51) are identical to the usual
conditions for a similar adaptive filter operating alone, i.e. the convergence de-
pends solely on the eigenvalues of the input signal autocorrelation matrix. Note
also that, because of the adaptive delay element, the weight vector estimate is
biased.

Another point to note is that the convergence of the LMS adaptive delay
element depends on the input signal power ¢,,(0) and the minimum MSE &min-

The expression (40) for the delay estimate variance is complicated by the
presence of the adaptive filter-related terms. The delay estimate variance is
also encountered in the excess MSE and misadjustment expressions of (56) and
(60). Once the delay variance is computed, these two quantities are seen to be
function of two terms specific to the adaptive delay element and to the adaptive
filter, respectively, and of a cross-product term (note that the delay specific term
being function of vss, it is indirectly function of the adaptive filter). Note that
the expressions for €3, and €L, are identical to those obtained for the respective
adaptive algorithms operating alone [1], [4]. The cross-product terms £3f and
M9 are essentially the result of gradient and derivative estimation noise in the
two joint adaptation processes. For stationary input and reference processes,
the estimation noise in one adaptive algorithm is increased by the gradient
estimation noise present in the other adaptive system. Therefore, the total
misadjustment M is not merely the sum of the adaptive delay element and
adaptive filter misadjustment expressions M4 and MT, but also includes a term
due to the joint estimation noise.

It is important to keep in mind that all the results of Section 4 were derived
for an adaptive Type | system in which the delay d,, applies to every sample of
u,,. If the delay adaptation is slow enough, the results in the previous sections
can be applied to the case where each sample of u, experiences a different
delay.

4.5 Simulation Results

The performance of a system identification Type | configuration has been
simulated with a spectrally white input signal s(n). Table 1 shows the measured
excess MSE and misadjustment for different adaptation conditions and a SNR
of 10 dB. The theoretical misadjustment, as given in (60), is also given as Afyy,.
The cross-product term M4M/ being a second order component, its effect is
therefore small or negligible, as can be seen from the fact that £4 is always
approximately equal to the sum of &/, and 4. Fig. 5 illustrates the type of
learning curve obtained after a unit step occurs in the reference delay.

u a 78 4 &y M M,

0.1 | 0.5 {0.00312 | 0.00193 | 0.00563 | 40.5% | 39.4%

0.05| 0.5 | 0.00141 | 0.00193 | 0.00308 | 22.1% | 25.4%

0.1 | 0.1 ]0.00312 | 0.00010 | 0.00313 | 22.5% | 23.3%

0.01 | 0.5 | 0.00026. | 0.00193 | 0.00195 | 14.0% | 16.0%

0.05 | 0.25 | 0.00141 | 0.00051 | 0.00163 | 11.7% | 14.2%
Table 1

It is noted in the simulations that if the adaptive filter has a time constant of
adaptation on the same order of the adaptive delay time constant, the referénce
delay tends to be compensated by both adaptive systems, and the delay element
converges to a value different than the reference value. This effect is illustrated
in Fig. 6 for a delay element with & = 0.5 and for one with a = 0.1, when a
unit delay step is applied in the reference branch.

5. Conclusion

In this paper, we have studied in some details the joint SD and joint LMS
algorithms for time delay estimation and adaptive filtering. The convergence
to a multitude of stationary points was established and the tracking behaviour
of the two algorithms was investigated. The coupling between the two LMS
adaptive algorithms was shown to give a misadjustment expression equal to
the sum of the individual misadjustments and a cross-product term. These
expressions can be used to obtain a theoretical view of the application of such
algorithms in specific environments.
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