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Abstract  
A general estimation model is defined in which two observations 
are available; one being a noisy v e ~ i o n  of the transmitted signal, 
while the other is a noisy filtered and delayed version of the 
same transmitted signal. Examples of such systems occur in 
noise or echo cancellation, digital communication or geophysical 
exploration. The delay and the filter are unknown quantities 
that must be estimated. An adaptive system, based on the 
least squares (LS) estimation criterion, is proposed in order 
to perform a joint estimation of the two unknowns. The joint 
estimator is conceptually composed of an adaptive delay element 
operating in conjunction with a transversal adaptive filter. The 
weighted sum of squared errors is minimized with respect to 
the delay and the adaptive filter weight vector. The latter 
is adapted using a fast version of the recursive l e s t  squares 
(RLS) algorithm, while the former is updated using a form of 
derivative, with respect to the delay, of the sum of squared 
errors. In order to perform this task efficiently, the adaptive 
delay is limited to integer values and is corrected one sample 
at  a time. The integer delay value is defined as the lag. A 
series of relations is presented, in order to compute and update 
the lag value such that the optimum least squares solution is 
attained. The joint delay estimation and RLS filtering algorithm 
is obtained by combining the lag update relations with a version 
of the fast transversal filter RLS algorithm. The simulations 
of the resulting algorithm show that both stationary and time- 
varying delays are effectively tracked and that the adaptive filter 
estimates properly the reference filter impulse response. 

1. Introduct ion 
Estimating the time delay between two versions of the 

same signal, eachone corrupted by zero-mean uncorrelated noise 
components, has been the subject of much research effort over 
recent years. In this paper, we consider the more difficult model 
in which the delayed path is subject to frequency dependent 
attenuation. The corresponding discrete-time model is of the 
form 

Y I ( ~ )  = s (nT)  + v l ( n T )  

ya(n) = t ~ , . n ( n ) [ s ( n T ) ] +  va(nT), 
(1) 

when T is the sampling period, s ( t )  is the transmitted signal, 
D,  is a time-varying delay, v , ( t )  and v a ( t )  am zerwmean noise 
processes, uncorrelated with each other, as well as with s (nT) ,  
and &D,,h(,)[s(nT)] is an unknown linear operator that filters 
a delayed version of s (n) .  

It is of interest to estimate LDn,h(,,)[s(nT)] or its inverse 
when the operator takes the form 

L~, ,nc , , [ s (nT)I=  h(n) 8 s(nT - D,) Type 1, (2) 

corresponding to the filtering of a delayed version of s (n) ,  or 

Co,.rc.)[s(nT)] = h ( t )  8 s ( t ) l t = , r - ~ ,  Type 11, (3) 
corresponding to a filter followed by a delay. Note that the 
operator denotes the convolution operator and that the two 
equations define different types of systems, as indicated. 

In order to estimate L ~ , , h ( ~ ) [ s ( n T ) ]  or its inverse, we pm- 
pose to use a joint estimator that is composed, a t  least con- 
ceptually, of an adaptive delay element dm and a conventional 
Mth-order adaptive FIR filter with weight vector w ~ ( n ) .  De- 
pending on the system configuration, the adaptive delay element 
is in series or in parallel with the adaptive filter. This new joint 
adaptive configuration is based on the use of the same error 
signal for the adaptation of both systems. In this paper, we 
consider a Type I1 system that takes the form of Fig. 1. 

Filter w , ~  (n )  

Reference 1 
Filter h ( n )  r (nT + d m )  

Fig. 1 Identification of a Type I1 system 

Adaptive delay elements have been studied in recent work 
[I], [2] for the simple signal model where the filter h(n)  is absent 
and in [3] for the signal model of equation ( I ) ,  when both 
the delay estimation and the filter estimation are performed 
by minimizing the mean squared error (hlSE) (, = E[le(n)(a] 
with the help of gradient-based techniques (steepeatdescent and 
LMS). 

A simple adaptive filter has the potential to model the 
functional &D,,h(,)[s(nT)] since this function can be approxi- 
mated by an FIR filter with the proper numberof t a p .  But this 
approach is inefficient in the sense that the reference delay D. 
is modelled by a shift in the adaptive filter impulse response. 
For a fixed filter order M, this shift may result into an error 
that is larger than the error corresponding to perfect modelling. 
An additional adaptive delay estimation algorithm, specifically 
designed to track the reference delay variations, allows a better 
impulse response centering and the use of an adaptive filter with 
a smaller order. We refer to a "centered" adaptive filter impulse 
response as one corresponding to the lowest modelling error. 
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2. Least Squares Estimation with a Delay Element 
In this paper, we present a new algorithm for the joint min- 

imization, with respect to the delay value d, and the adaptive 
filter weight vector w ~ ( n ) ,  of the sum of error squares 

* t l  

where M is the filter order and X is a positive memory factor 
between zero and one. The joint delay and reference filter 
tracking algorithm that we propose is based on the assumption 
that a Type I1 adaptive system is used (the adaptive delay is 
located in the reference branch) and that the delay corrections 
are done one sample a t  a time. Define this integer time delay 
as a time lag and denote it by t .  Then, the error eM(i,d.) in 
equation (4) can be expressed as 

where H denotes complex conjugate transpose, r(n) is the out- 
put of the reference branch, u(n) is the input to the adaptive 
branch (signal yl(n) in Fig. 1) and the vector u ~ ( n )  is the 
vector of M input samples in the adaptive filter delay line. 

For-a given value of I, the minimum sum of weighted error 
squares tM (n, f) is defined as 

The weight vector for which this minimum is attained is defined 
as w$(n). Lf the adaptive delay d, is not equal to D,, for all i, 
the sum of errors iM(n,d,) is not minimum with respect to dm,  
unless the adaptive filter length is large enough to accommodate 
both the modelling of the reference filter h(n) and the reference 
delay (i.e. M is large enough such that the delayed optimum 
adaptive weight vector is not truncated). 

3. Lag-recursive Relations 
Our joint LS lag estimation and adaptive filtering algo- 

rithm can be cast into the following general algorithmic form 
1. Apply the RLS algorithm in order to obtain w',(n) and 

tM(n.0 
2. Adapt f by using derivative information from iM(n,f). 

Conceptually, the first part of the algorithm can be imple- 
mented by using any of the computationally efficient forms of 
the RLS algorithm, and the second part :an be implemented as 
a gradient search, with respect to f,  of tM(n,e).  The gradient 
is given by 

and the lag value is updated as 

where (-) denota a time average. Note that when t is updated, 
wL(n)  must a h  be corrected, in order to obtain the joint 
solutbo of (6). 

In order to  compute ( T ) ,  the optimum weight vectors for 
t + 1 and C - 1 must be available. This implies that two 

pvrlld e t i o n s  of the RLS algorithm are necessary, in 
&tioa to t h  one generating wh(n) .  This also implies some 

t pobkm when tbc vdueof C gets updated in one direction or the &. .im r pardlel branch must be initialized with the 

optimum weight vector corresponding to the new value of the 
lag. But this new optimum weight vector depends on past data 
(at least within the memory of the algorithm) and is unknown. 

We solve this transition problem by deriving a set of lag- 
recumiverelations that allow the e rac t  computation of tM(n ,  e+ 
I),  iM(n,f  - I ) ,  +Z1(n)  and ivL1(n)  from the knowledge of 
+',(n) and tM(n,f).  These lag-recursive relationships involve 
some variables that are defined in the following list: 

aMql(n)  and bM-1(n) are the optimum weight vectors of 
the forward and backward linear predictors of order Af - 1 
for the input signal u(n) 
FM-1 (n) and B ~ - l ( n )  are the corresponding minimum 
values of the sums of weighted forward and backward pre- 
diction error squared, f ~ -  (n) and b ~ -  (n) 
~ c - ~ ( n )  and vE-,(n) arc the correlation functions be- 
tween the (M - l ) Ih order forward and backward prediction 
error sequences, { f ~ - ~  (n)) and { b ~ - ~  (n))  respectively, 
and the desired response at  lag f,  i.e. 

where * denotes complex conjugate. 
a ~ - , ( n , e )  is the a priori estimation error defined as 

g ~ - ~ ( n )  is the Kalman gain of order .l4 - 1 appearing in 
the RLS algorithm 

. [w$(n)l M - ~  is defined as the (XI-1)-vector corresponding 
to the first components of w',,(n) 
L ~ f u ( n ) ] M - ~  is the (,\f - 1)-vector corresponding to the 
last components of wfu (n)  
~ : ~ ( n )  and w$,(n) are respectively the first and last 
component of w $ (n)  

The the lag-recursive relationships are: 



We refer to equations (9) and (11) as the forward lag updat;  
recursions, and to equations (10) and (12) as the backward lag 
update recaraionr. 

The variables used in the above relationships, except for 
vG- ( n )  and ( n ) ,  arc intermediate variables available in 
the implementation of the fast transversal filter (FTF) RLS 
algorithm [4]. As for v G - ,  ( n )  and v g - ,  ( n ) ,  they are found in 
the implementation of the recursive lurst-aqusres lattice filter 
[5] .  This close relationship between the above lag-recursive 
equations and the fast implementations of the RLS algorithm 
is taken into consideration in the formulation of the joint time 
delay estimation and RLS adaptive filtering algorithm. 

The lag-recursive relationships can be derived by using 
geometrical arguments or by using shift-invariance properties 
of some vectors and matrices appearing in the RLS algorithm 
[6]. These relationships can be combined with a version of the 
fast transversal filter RLS algorithm in order to obtain a joint 
time delay estimation and RLS filtering algorithm. 

4. Fast Joint Time Delay Estimation and Adaptive 
Filtering RLS Algorithms 

Based on the error and weight vector recursions developed 
in the previous section, joint time delay and FTF algorithms can 
be obtained. These algorithms are composed of three distinct 
computational phases. The h t  phase is essentially the prelimi- 
nary computations phase of the FTF algorithm [4], with a slight 
difference. This difference resides in the order of the forward and 
backward predictors, which must be .ti - 1 in the present case. 
The second computational phase involves the computation of 
the current weight vector w h ( n )  and the computation of the 
three errors i M ( n , C ) ,  i M ( n , C + l )  and &,(n,C- 1) .  These com- 
putations are performed by using the lag update recursions for 
the error and the weight vector. It first involves the computation 
of w z l ( n )  and i .w(n,  C - 1).  Then the forward lag recursions, 
for both the error and the weight vector, are used twice in order 
to get the errors for C and C + 1 and the weight vector for C. 
These successive applications of the forward lag recursions pro- 
duce the least number of computations, compared for example 
to the application of the forward and backward lag recumions 
on the error and weight vector at  lag C. This choice also simpli- 
fies the third computational phase, which involves a decision on 
the lag update and the computations of the new corresponding 
variables. 

Schematically, the first two phases of the algorithm can 
be represented M in Fig. 2, whem six parallel digital filters are 
represented. The top three filters are essentially the same as 
the ones used in the conventional fast transversal filter [4], 151, 
except for the difference in predictor order, and represent the 
h t  computationalphaae. Note that vM-,(n)  and + ~ - 1 ( n )  are 
the a priori forward and backward prediction errors, and y ~ ( n )  
is defined M 

The fourth filter is for the computation of iM(n,C - 1) and 
w g l ( n  - 1) .  Notice that i ( , _ , ) ( n  - 1 , t )  is also obtained from 
that filter, through the first relation of (9). A fifth filter, with 
weight vector w $ - , ( n  - I ) ,  is used to obtain v g - , ( n ) ,  from 

which &(n, C )  and &M-l)(n,C + 1 )  are computed. Finally a 

Fig. 2 Interpretation of the computation of the sums 
of squared errors in terms of transversal filters 

sixth transversal filter, with weight vector w z i , ( n  - I ) ,  is used 

in the computation of vr-+:'(n) and &(n,C + 1). 

The originality of this joint LS algorithm resides in the 
serial cqmputations, from wt;' (n- I ) ,  of all the necessary errors 
and weight vectors for lags t' and C +  1 .  The lag-update recursions 
append themselvesnicely to the FTF algorithm of Cioffi (41, with 
M - 1-order predictors. Note also that all the computations of 
the joint algorithm based on Fig. 2  are exact as long as the lag 
is not updated. When this situation happens, the lag-recursive 
relations of equations (9) to (12) are also useful in obtaining a 
smooth transition of w Z 1 ( n )  or w z l ( n )  to their new values, 
by making use of the past data. 

An alternativejoint algorithm could take the parallel form 
of Fig. 3, where three versions of the FTF algorithm am im- 
plemented, one for each possible lag, in order to compute 
tM(n ,C  - I ) ,  t M ( n ,  C )  and tM(n ,C  + 1). But this form of joint 
algorithm does not allow, when the lag is updated at  time n,,  
the determination of the new sum of squared errors and the new 
weight vector in the direction of the lag update. These variables 
have to be initialized to zero. This typically introduces an er- 
ror in both quantities, because their computation involves the 
internal variables yM(n) and gM(n), t h ~ t  were obtained from 
nonzero initial conditions a t  n < n.. In o d e r  to allow a smooth 
transition in this case, two extra parallel branches, one for C + 2  
and one for 1- 2, must be computed, which gives a find parallel 
algorithm involving five branch-. 

5. Experimental Results 
The fast joint time delay estimation and adaptive RLS fil- 

tering algorithm corresponding to Fig. 2  was implemented, in 
order to verify its practical behaviour. The usual problem of 
numerical instability, often associated with the RLS algorithm 
implementations [4], was also present in our algorithm. A peri- 
odic restart of the algorithm, similar to the technique proposed 
by Eleftheriou and Falconer [7], was implemented to reinitialize 
the algorithm's internal variables (those produced by the fint 
computational phase). The restart period w a s  arbitrarily fixed 
to 600 iterations. The time average of equa:.m (8) was implo 
mented by accumulating, for C ,  C + 1  and t - 1, the sums of 



crw(n,f - 1) 
e ~ ( n ,  C - 1) qGk 
€ ~ ( n , f  - 1) 

Fig. 3 Parallel application of the FTF algorithm in 
order to compute EM(n,f - I), &,(n,e) and 

Number of iterations 

squares iM(n,  f )  over a number of iterations. The reference fil- 
ter h(n) was implemented as a 21-tap lowpass FIR filter, with a 
3dB bandwidth approximately equal to 0.7%. The transmitted 
sipal s(n) w a s  a zero-mean process with a white power spectrd 
density from -T to T.  The adaptive filter also had 21 tape. 

We were essentially interested in the delay tracking capa- 
bilities of the joint LS algorithm. The effect of a reference unit 
step delay, applied a t  time zero, on the suma of squared errors, 
is shown in Fig. 4 when there is no lag update algorithm and 
X = 0.97. After an initial adaptation, the adaptive filter with a 
delay of f + 1 (curve (c)) models the reference filter very well, 
since iM(n. 1 + 1) is essentially zero. Note that the mean steady- 
state value of the sum of squares increases for f (curve (b)) and 
C - 1 (curve (a)), indicating that the adaptive filter modelling 
b e a ~ m a  kr effective for these delays. 

A typical delay estimator response is shown in Fig. 5, when 
there is no noise and the averaging length, for the derivative 
estimate, is 26 samples and X = 0.9. The reference delay D, 
is represented by the dashed Line. The joint algorithm follows 
the reference delay closely, which indicates that the adaptive 
flter impulse response stays centered, even if the reference delay 
attains a fairly large value after 1200 iterations. This figure 
shows the joint algorithm potential in tempering significantly 
the problem of unwanted delay tracking by the adaptive filter. 

Number of iterations 

Fig. 5 Tracking of a linearly changing delay; X = 0.9 

6. Conclusion 
This paper has presented a new algorithm for the joint es- 

timation of time delays and correlation function between two 
observed signals, when the estimation criterion is the minimiza- 
tion of the sum of squared errors. The principal contribution of 
the work is the derivation of an RLS algorithm that makes use 
of time update, filter order and lag update relations, in order to 
compute efficiently the least squared error and the correspond- 
ing weight vector. The lag update constitutes an additional 
degree of freedom for the minimization of the sum of weighted 
squared errors. It also allows the adaptive filter to model more 
efficiently the reference filter h(n). 
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