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ABSTRACT 

Complex cepstral deconvolutmn IS applied to acoustic dereverberation 
It IS found that traditional cepstral techmques fail in acoustic derever- 
beratlon because segmentation errors in the time domain prevent ac- 
curate cepstral computation An algorithm for speech dereverberation 
is presented which incorporates a new approach to the segmentation 
and wmdowing procedure for speech. Averagmg in the cepstrum is 
explmted to increase the separation between speech and impulse re- 
sponse. An estimate of the room impulse response is built up, and a 
least squared error inverse filter is used to remove the estimated impulse 
response from the reverberant speech Reduction of reverberation with 
this technique is demonstrated. 

1. INTRODUCTION 

The dereverberation of acoustically reverberant speech has p* 
tentml application to the enhancement of speech which has become 
degraded through the addition of multiple echoes For example, the 
“hands-free” telephone, which is used widely in office rooms, often suf- 
fers from reverberation when the microphone is placed too far from 
the talker. In this case, the ratio of echoed speech reflected from walls 
and other hard surfaces to direct path speech becomes large, and the 
far-end listener perceives the speech as reverberant. Mathematically, 

z(n) = s(n)* h(n) (1) 

where s(n) is sampled time signal representing the “clean” speech, h(n) 
IS the Impulse response of the room, and z(n) is the sum of the direct 
path speech and the resulting echoes. 

Most successful techniques for processing reverberant speech have 
rehed upon measuring two (or more) signals zl(n) and +2(n) at different 
room locations and exploiting the uncorrelatednesa between hi(n) and 
hz(n). Single microphone reverberant speech enhancement typically 
requires prior knowledge of h(n) and subsequent inverse filtering. The 
impulse response may be measured from the response to a known signal; 
techniques for estimation of h(n) from the reverberant speech alone 
have not been described. Another possible single microphone approach 
IS the application of complex cepstral filtering to z(n). In this approach, 
utilized in (1) to process speech degraded by simple echoes (see also [2]), 
no knowledge of h(n) beyond certain broad assumptions is required 
to deconvolve it from s(n). In this paper, we present the results of a 
study into the use of cepstral techniques for enhancement of continuous 
speech which has been subject to simulated room-reverberation. We 
have found that a direct application of the techniques described in 
[l] IS unsuitable for reverberant speech enhancement. However, by 
modifying the windowing procedure, and by using cepstral averaging to 
identify h(n) before subsequent inverse filtering, we are able to achieve 
significant reduction in reverberant effect. 
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1.1 Cepstral Filtering Techniques 

In this section we provide a brief review of the complex cepstrum 
and the techniques by which a segment of speech may be separated from 
a convolved impulse response representmg a simple pattern of echoes. 
The complex cepstrum is described m [3]. It 1s a tweslded (non-causal), 
infinite sequence related to the time domain sequence by a non-linear 
transformation. For the discrete time signal z(n), the characteristic 
system by which the complex cepstrum is calculated is the following: 

The complex cepstrum has several properties which make the tech- 
nique a candidate for deconvolution. First, signals which are combined 
convolutionally in the time domain have complex cepstra which are 
combined additively. As a result, deconvolution is reduced to sub- 
traction in the cepstrum. Second, the complex cepstrum is a measure 
of the “frequency” of variation (known as quefrency) in the log spec- 
trum, and so signals which vary slowly in the log spectrum may be 
separated from quickly varying signals by windowing the complex cep- 
strum. Speech is usually considered to be primarily slowly varying in 
the log spectrum and haa a complex cepstrum concentrated about the 
cepstral origin. Echoes which are delayed from the direct path speech 
can be represented by an impulse response which in the log spectrum 
is characterized by rapid “ripples”, and which in the complex cepstrum 
is composed of pulses concentrated far away from the cepstral origin. 

Schafer (11 developed procedures whereby the complex cepstrum is 
calculated from segments of reverberant speech to which an exponen- 
tially weighted window function is apphed, and the cepstral components 
corresponding to the impulse response are removed. If the complex cep- 
strum of the echoes are in the form of peaks, they are identified through 
a peak-picking procedure and the cepstral values at their locations are 
set to zero. Alternately, the calculated cepstrum is multiplied by a 
cepstral window function designed to preserve the speech cepstrum and 
remove the echo cepstrum. The remaining cepstrum is re-transformed 
to the time domain, and multiplied by the inverse of the exponential 
window to form the enhanced speech. 

We found, however, that when these techniques were applied to the 
dereverberation of speech subject to acoustic reverberation, the com- 
plex cepstral method led to distortion or incomplete dereverberation 
in the processed speech. Upon investigation, it was revealed that the 
most serious problems were related to the process of segmentation of 
z(n). In excising a finite length segment zi(n) from the signal of indef- 
inite extent z(n), one obtains a signal that can only approximately be 
represented by the convolution of h(n) with some clean-speech segment 
si(n). Thus, the complex cepstrum ?i(n) can not be said to be the ad- 

dition of ^h(n) and iii(n). Following this line of reasoning, any cepstral 
windowing or peak removal operations on P,(n) can not be expected to 
remove h(n) completely, and can be expected to distort the resulting 
e&mate B,(n). In (11, a method IS presented whereby the estimared 
segments s,(n) can be joined in such a way as to account for the effect 
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of segment truncation error. However, this method wumes that ^h(n) 
has been calculated correctly, and that segmentation error need only 
be considered for the segment reconstruction process Our key finding 
for acoustical dereverberation IS that this assumption is not appropri- 
ate In the next sections, we consider the windowing and segmentation 
problem in more detail. 

2. WINDOWING AND SEGMENTATION 

In this section, we Investigate the effect of the segmentation pro 
cedure and of the time-domain window function upon the calculation 
of the complex cepstrum. Let us begin with the choice of window 
function. We considered rectangular, Hammmg-type, and exponential 
window functions as candidates. Each segment of reverberant speech 
may be written [l] as 

z,(n) = s,(n) * h(n) + e,(n) 

We may describe the error term as the sum 

(‘4 

e,(n) = v,(n) - u,(n) (3) 

where v,(n) is the “extra” echo which intrudes from the previous seg- 
ment and u,(n) is the “missing” tail of the echo of the speech of the 
current segment. Intuitively, the goal of windowing would be to reduce 
the importance of these error components by smoothly tapering the 
segment boundary, while at the same time not introducing distortion 
into the calculated cepstrum. 

Rectangular windows obviously provide no tapermg at segment 
boundaries. Functions such as Hamming windows are tailor-made for 
reduction of truncation error, but their effects upon the convolutional 
combination of signals (of extent on the same order as the window) are 
not known. Consider the windowed signal, y(n) = z(n)w(n) for which 
the spectrum is 

Y(w) = WW(w)l* W(w) 

J - [S(X)H(X)]W(w - X)dX = 
--1 

(4) 

For the Hammmg wmdow w(n) = 0.5[0 54 - 0.46cos(fi)], 

Y(w) = 0.5 
I 
.54X(w) - .23X& - A) - .23X& + $$I 

L 
i5) 

It is extremely difficult to find an expression for the complex logarithm 
of equation (5) which will allow us to predict the effect upon the 
cepstrum. 

Exponential windows, with W(n) = y”, where ]y] < 1, provide 
taper at the segment finish only. However, because they do not de- 
stroy the convolutional combination between signals, they affect the 
cepstrum in a known way. As shown in [3], for z(n) as in (l), 

y”z(n) = -j’s(n) * y”h(n) (6) 
Thus the complex cepstrum of the exponentially weighted signal re- 
mains a sum of the cepstra of two convolutionally combined compo 
nents 

To check which of the above windows would be most suitable for 
calculation of the cepstrum in the presence of segmentation error e,(n), 
we constructed sequences of white noise as the “speech” signal s(n). 
These were convolved with an impulse response representing a simple, 
minimum phase echo of amplitude 0.5 and delay 200 samples. This echo 
has an entirely causal complex cepstrum consisting of a se_ries of pulses 
at n = 200,400,. with the amplitude at the first pulse h(200) = 0.5 
[3]. (With exponential weighting of 0.996”, the pulse amplitude is 
changed to (0.996200) x 0.5 = 0.224 [3]). From the echoed signal were 
then excised segments of various lengths N, analogous to truncated 
speech segments t,(n), and one of the three window functions was 
applied. The value of the resulting complex cepstrum j?,(n) at the two 
points n = cb200, averaged over a small number of trials, is reported 
in Table 1. First note that the cepstral contribution of the signal s;(n) 

was negligible at these locations Three immediate observations can 
then be made from Table 1. First, it can be seen that for rectangular 
and Hamming windows, spurious pulses are encountered at n = -200. 
Second, for all window func$ons, the value of cepstrum at n = 200 
is substantially lower than h(200). Further experiments revealed that 
with non-minimum phase echoes, the cepstrum was equally distorted. 
Also, for maximum phase echoes, the exponential window produced 
a pulse value at n = 200 much smaller than would be predicted 
from theory. Third, the accuracy of the computation does not improve 
with increasing window length. Similar results were also observed with 
actual speech samples rather than white noise. 

WINDOW n N = 512 N = 1024 IV = 2048 N = 4096 

Rectang -200 0.123 0 183 0.156 0.211 

+200 0.120 0 174 0.256 0.240 

Hamming -200 0.078 0 174 0 185 0 231 

+200 0.077 0.175 0.263 0.267 

Expon -200 0.006 -0.002 0.008 0.002 

CT = 0.996 +200 0.152 0.185 0.185 0.173 

Table 1 Average cepstral peaks calculated for various 
window types and lengths 

We speculate that both Hamming windowing and non-tapered seg- 
mentation errors of the rectangular window cause the phase curve of 
the complex logarithm to be distorted, resulting in confusion between 
minimum and maximum phase components of the impulse response 
cepstrum. A similar effect was noted in [4]. Therefore, we cannot use 
either of these windows for acoustic dereverberation since we expect, 
in general, a non-minimum phase room impulse response and segmen- 
tation errors in Zi(n). 

As for the exponential window, we speculate that segmentation 
error u,(n) appearing at the segment start causes cepstral distortion. 
Although the mechanism remains unclear, it also appears that confu- 
sion between maximum phase and mmimum phase components per- 
sists with exponential windows in the presence of segmentation error m 
the following sense: when the same experiment was run using a maxi- 
mum phase echo of amplitude 2.0 (which corresponds to the maximum 
phase impulse response with the same spectral magnitude as the min- 
imum phase echo of amplitude 0.5), a very similar cepstral value at 
n = 200 to that in the minimum phase case was computed. Under 
the given exponential weighting, the value of the cepstral pulse should 
be 0.996=” x 2.0 = 0.897. 

Thus, exponential windows are also of little use in the presence of 
segmentation error. In order to ameliorate the situation, we proposed 
the following: define a segment to begin only after a period of speech 
silence, and apply an exponential window. In this way, 8,-r(n) % 0. 
Speech pauses occur quite frequently and have durations of about 0.1 
to 0.2 seconds [5]; therefore, the segmentation scheme adopted should 
remove most segmentation error v,(n) for room responses concentrated 
within several hundred milliseconds. We supposed that the smooth 
taper to zero of the exponential window would “remove” segment end 
error “i(n), for large enough values of N. Preliminary tests revealed 
that this strategy was very effective. In the next section, we outline a 
dereverberation algorithm based upon this windowing and segmenta- 
tion technique. 

3. DEREVERBERATION ALGORITHM 

In the proposed dereverberation algorithm, the primary goal is to 
estimate accurately the reverberation impulse response. From this es- 
timate, a least squares filter is designed and applied to the reverberant 
speech. Figure 1 shows a block diagram of the dereverberation system, 
which is’structured so that it may be run in real time. In the first step, 
the reverberant speech is segmented according to the procedure de- 
scribed above. For the purposes of this research, this segmentation was 
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z(n) = s(n) * h(n) 

Segmentation, Weighting 
and Cepstrum Calculation 

* 

Filter g(n) i(n) 

/ 

Update Cepstral 

Fig. 1 Dereverberation System Block Diagram 

done “by eye” on the reverberant speech waveforms, but automation 

should be straightforward. 

Next, exponential weighting of each segment is performed. Note 

that in addition to the tapering effect of the exponential window, 

multiplication by w(n) = r”, for I-r] < 1, also has the effect of 
moving r-plane zeroes inward radially and hence, for sufficiently small 

171, of converting mixed phase impulse responses to minimum phase 

[3]. It is easier to deal with minimum phase sequences because of 

their lack of linear phase ambiguities and because of their greater 
separability from speech in the cepstral domam. Also, for minimum 

phase sequences, phase unwrapping is not required m the computation 

of the complex logarithm. Accordingly, the complex cepstrum is then 
computed from the log magnitude of the spectrum. It is necessary to 

make the assumption that the room impulse response is converted to 

mmimum phase with the exponential weighting factor chosen 

The computed cepstrum is averaged over several’ segments. This 

has the effect of reducing cepstral noise caused by remaining segmenta- 

tion error and of reducing the background cepstral level due to speech. 

Furthermore, since the pitch of the speech is not exactly constant over 

most speech records, the large cepstral peak at the pitch period [3] 

becomes “smeared” and reduced by averaging. An example of the ben- 

eficial effects of cepstral averaging is shown in Figure 2, where the pitch 

peak can be seen to wander while the cepstrum due to h(n) remains 

constant This allows cepstral components due to the impulse response 

located around the pitch period to be identified by peak-picking. Thus 

even for cases when the normal cepstral separation assumptions (that 

impulse response components are not located around the pitch period) 

cannot be made, identification of the echo cepstrum can proceed We 

found that performance was usually best when only the range within 

the first 15 ms (corresponding to the maximum expected pitch period) 

was peak-picked. 

The averaged, peak-picked cepstrum is transformed to the time 

domain, and exponential de-weighting is applied to provide an estimate 

of the impulse response, which is truncated at an appropriate length. 

From the estimated impulse response, a least squared-error filter is 

designed. This technique is described in [6]. The impulse response 
estimates are in general mixed phase and hence filters with delays are 

specified. From Figure 1 it can be seen that the only delay between 

the reverberant and the processed speech is this filtermg delay, making 
the algorithm potentially suitable for real-time operation. The delays 

involved in the cepstral processing affect only the “up-tc+dateness” of 

the filter coefficients. Best perceptual results were achieved with filter 

lengths on the order of the impulse response durations and with short 

delays, on the order of f of the filter length. 

L XL 

Fig. 2 Average over 11 speech segments of first 150 cepstral 
values; the trace at bottom is the average of the 11 
upper traces 

4. RESULTS 

The above procedures were tested using approximately ten seconds 
ofspeech digitized at 8 k&Is and convolved with simulated room impulse 
responses generated with the image model [7]. In Figure 3 a simulated 
impulse response of an 6.4m x 6.4m x 4.2m enclosure with source- 
microphone distance of 0.92m is shown. The reflection coefficients 
of the walls are 0.9, and those of the floor and ceiling are 0.4. The 
impulse response, truncated at 128ms, is mixed phase and has 32 z- 
plane zeroes outside the unit circle and 992 zeroes inside From the 
resultmg reverberant speech 11 segments of duration 4096 samples 
were selected by examination of the reverberant speech waveform. The 
complex cepstrum was calculated using FFT’s of length 8192 samples. 
The exponential weighting factor used, 7 = 0.999, was in this case 

not sufficiently small to move all zeroes Inside the unit circle Thus it 
represents a “teal” scenario in which the required exponential weighting 
factor would not be known beforehand. 

Peak picking after linear cepstral scalmg was performed in the 
cepstral region 0 < n _< 150. Figure 4 shows the estimated impulse 
response calculated from the reverberant speech. The estimate was 
truncated at 600 samples and was used to design an 800 tap least 
squares filter with delay 200 taps. The corresponding convolution of 
the filter with the impulse response of Figure 3 is shown in Figure 5. 
The large, early “spikes” were greatly reduced with the application of 

the filter but some new error in the form of low amplitude, long delay 
echo was introduced. Listening tests showed that the filtered speech 
had much less reverberant “boomy” sound, but low level, tone-like 
distortion was noticeable. The ratio of direct to reverberant energy for 
the “enhanced” impulse response was 6.0 dB vs 1.7 dB for the original 

This method was further tested with different impulse responses. 
For impulse responses formed of a number of discrete, well defined 

peaks, the processed speech was remarkably superior to the reverberant 
speech. Such impulse responses are not, however, characteristic of those 
encountered in typical rooms. 

In general, the beat results usmg simulated room impulse responses 
were achieved for responses which had few z-plane zeroes far outside 
the unit circle, for which “light” exponential weighting was sufficient 

for conversion to minimum phase. We found that weighting heavily led 
to distortion in the estimated impulse response which increased with 
echo delay. 
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4.1 DISCUSSION 

We have presented some results of a study into the applicability of 

cepstral processing to reverberant speech enhancement. We have found 
that direct deconvolution using the methods of [l] is not practical. 

The accuracy of the computed cepstrum is critically dependent upon 

the degree of segmentation error in each reverberant speech segment. 

The accuracy of the cepstral computation is equally degraded when 
tapered windows such as Hamming functions are applied. We therefore 

use exponential weighting to introduce taper at the segment end, and 

reduce segment start error by choosing segment starts to begin after 

silent periods. Cepstral averaging then allows accurate identification of 

the reverberation impulse response. 

This technique presupposes that the impulse response is made 

minimum phase by exponential weighting. However, choosing a small 

value of 7 designed to accommodate all expected impulse responses 

leads to distortion upon exponential de-weighting. Wespeculate that as 
7 is reduced, the time window falls off more sharply and the beginning 

of the segment is emphasized. Therefore any residual segmentation 
error which is not corrected by choice of segment start location becomes 

magnified for smaller values of 7 Possible solutions to this problem 
would involve a twc+step or alternately a closed-loop approach wtnch 

would remove some reverberation before applying a heavier exponential 

weighting. In this way, segmentation error would be decreased and 

would lead to less distortion upon heavy exponential weighting. 

For weighting using values of 7 closer to unity, experimentation 

revealed that the segmentation distortion is largely removed. However, 

residual speech cepstrum remaining at all cepstral locations after aver- 
aging represents a limit to the performance of this technique. In cases 
where the reverberation impulse response cepstrum IS large compared 
with the residual speech cepstrum, the enhancement procedure is ef- 
fective. If the echo cepstrum is of a form suitable for peak-picking, 

the enhancement is also effective and represents a large improvement 

over the techniques described in [l]. The residual speech cepstrum may 
be reduced by increasing the number of segments averaged. This, of 

course, implies that the impulse response must remain constant over 

the averaging period. Further research is required to determine the 

optimal tradeoff between these factors. 
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