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Abstract 
Backward adaptive hnear prediction is used in low-delay speech coders. 
A good redundancy removal scheme must consider both near-sample 
(formant) and far-sample (pitch) correlattons. Two approaches are 
considered; (1) separate pitch and formant predictors and (2) a sm- 
gle high-order predictor This paper presents analysis and simulation 
results cornparIng the performance of several types of high-order back- 
ward adaptive predictors with orders up to 100 Issues in high-order 
LPC analysis, such as analysis methods, windowing, Ill-condlttonmg, 
quantization nO,se effects, and computational complexity are studled 
The performance of the various analysis methods IS compared wth the 
conventional sequential formant-pitch predlctor The Autcwzorrelatlon 
method (50-01 order) shows performance advantages over the sequen- 
teal formant-pitch configurations. Several new backward high-order 
methods using covariance analysis and a lattice formulation show much 
better predictIon gains than the Auto-correlation method 

1. Introduction 
Predictors are characterized by an analysis frame which IS used 

to adapt the coefficients The predlctor IS then applied to a block of 
samples If the analysis frame precedes the block, the predIctor 1s 
salt1 to be backward adapted No buffermg of “future” samples IS 
needed In backward adapted systems, allowlng for lower processing 
delay Backward adaptation is also used when there is no explicit 
transmission of the predictor coefficient values Both the coder and 
decoder can use backward adaptation to update the coefficients from 
the reconstructed signal 

Traditionally two filters, the formant predlctor and the pitch pre- 
dictor, are used to remove near and far-sample redundancies Consider 
network-quality speech codmg with low-delay and no explicit transmis- 
e.lon of side inform&Ion over channels with errors. For such coders (e.g 
low-delay tree and CELP coders), effective low-delay coding IS achieved 
through removal of Inter-sample redundancy using backward adaptive 
prediction. The pitch filter uses a backward adaptive pitch lag and co- 
efficient values. The formant filter uses backward adaptive coefficient 
values Erroneous lag estimates at the receiver can cause severe error 
propagation. Higher processmg power has made the aiternatlve of a 
single high-order predictor attractive In this configuration, the com- 
blned pitch and formant taps have fixed posItIons This type of predic- 
tor performs better in the presence of channel errors. For high-order 
predictors, we consider Issues and problems such as ill-conditioning, 
wmdowing, complexity and performance. 

2. Formant and pitch prediction 
For separate formant and pitch predictors, the transfer functions 

are 
NI N. 

F(r) = ~o,z-‘, and P(z) = c b,r-“~-‘-‘, (1) 
,=I ,=I 

where N, and Np are the number of formant and pitch predictor 
coeficlents (e g Nj = 10 and Np = 3) and Mp IS the pitch lag 
Note t.hat IVY 1s updated along with the coefficients The adaptation of 
pitch parameters for the pitch predIctor in the cascaded pitch/formant 
contiguration is described in detail in Ref [l] The multi-tap pitch filter 
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P(z) allows for non-integer pitch lag estimation In a speech coder, a 
closed-loop configuration can be used to achieve frequency shaping of 
the quantwation noise. 

As an alternative, a single high-order predIctor can be used to 
remove both near and far-sample redundancies [Z] The order P of 
this predictor should be high enough to mclude the effects of pitch 
correlations 

The adaptation of the predIctIon coefficients is done In a back- 
ward fashion. The general analysis method of Fig 1 may be used to 
represent the windowng of data and/or error to estimate the predw 
tion coefficients ustng the least-squares methods [l] The speech Input. 
s(n), IS multiplied by the data wmdow Wd(n) to give wmdowed speech 
signal s,(n), wtule multiphcatlon of the error signal by the error wn- 
dow we(n) results In the windowed error sIgnal e,(n) The error or 
data window shape may have be rectangular, Hamming, exponentml. 
etc. Barnwell (3) and others (41 have stuched and proposed a class of 
filters obtained using the Impulse response of casual pole/zero filters 
which provide easy control over the shape of the wndow (exponential 
windows belong to ttw class). The shape ofsuch wndows ~ssultable for 
the backward adaptation since there can be more emphasis on recent 
data 

eta(n) 

Fig. 1 Data wmdow and error window 

Covariance and windowed covariancc methods 

In the covariance method, windowing IS performed only on the er- 
ror slgnal (wd(n) = 1 for all n) For a non-rectangular error wIndow, the 
resulted method IS called Wmdowed Covarlance [5]. Tapered windows 
given smooth coefficient changes as the window IS moved Mmlmlza- 
tlon of the sum of windowed errors E = CE-, e,*(n) results in the 
linear equations 9a = * (a IS the symmetric covariance matrix wth 
components 4(i,j), i,j = 1,2,. , P) This system can be solved us- 
Ing Cholesky decomposition to obtain the predtctlon coefficients Note 
that for the covariance methods, the number of terms entermg into the 
correlation estimates IS the same for all lags and 1s equal to the window 
length. However, correlations with large lags reach farther back Into 
past data. 

Modified Covariance method 

The Modified Covariance method [6] IS based on residual enrrgj 
ratios It guarantees that the predlctor IS minimum phase 

Auto-correlation method 

If the windowing IS done on the speech samples (use = 1 for all 
n), the Auto-correlation method results. Since the auto-correlation 
matrix R (Ra = a replaclng Oa = *) IS Toeplltz, t.he resulted 
lmear system of equations can be efficiently solved using the Levlnson 
recursion In calculating the auto-correlation components r(z),i = 

112,. ,P, speech data outside the data wlndow wd(n) are assumed 
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to he zero Fewer samples values are used for computing the larger 
lag values, maklng t.he Auto-correlation method mappropriate when 
the analysis window length N IS comparable to the predIctor order P 
Furthermore, tapered wlndows deemphaslze &he terms correspondmg 
to large lags. Such wmdows can affect the numerical conditionmg of 
the auto-correlation matrix by deemphaslzmg off-diagonal terms 

Lattice and Covariance-Lattice methods 

Lattice methods use a sequential solution formulation approach 
through which error mmmuzation is done stage by stage. These meth- 
ods do not assume optlmality of the previous stages (in the Auto- 
correlation method, computational savings are due to this assumption) 
In these methods, a dIstInctIon IS made between forward and backward 
errors At each stage m (representing a m-pole model) the forward and 
backward error (residual) signals, fm(n) and b,(n), are defined. The 
Input speech 1s s(n), r(n) is the final predlction error (residual) slgnal, 
and n IS the time Index The filtermg action of the lattice at stage m 
is described by 

fm+l(n) =fm(n) - Ii,+~(n)b,(n - 1) and WI 
bm+l(n) = - L+~(n)fm(n) t L(n - 11, (2 b) 

where the li,‘s are the reflection coefficients The initial forward and 
backward error signals are set to s(n). One may minimize a combina- 
tlon of the forward and backward error energies. The minimization of 
the error energies can be expressed m terms of the following quantities 

F,,,(n) = < /i(n) > 

B,(n) = < b$(n) > (3) 

C,,,(n) = < /m(n)b,(n) > 

where the operation < > is either an expectation or an appropriate 
time average. The Burg algorithm minirmzes a combination of the 
forward and backward error energies wth an error window w(n), 

Tile choice of welghtlng factor l/2 guarantees mlnlmum phase [4] If an 
exponential wndow IS used in the above formulation. the Exponential 
Wlndow Lattice method (41 results The mimmlzatlon of the above 
welghted error wth respect to the l<,(n) leads to the update formula 

‘JCm(n) 
I<rn+1(n + 1) = Fm(n) + B,(n)’ where 

C,,,+l(n) = 2 w(n - k)f”(k)b,,,(k - 1) and 
(5) 

t=-m 

Fm+1(n) + &,I (n) = 2 w(n - k)(f:-l(k) +b:..,(k - I)] 
t=-m 

The Covatlance-Lattice method [4, 71 uses the recursion formula- 
tlons of the regular Lattice (Burg) method to obtain a more compu- 
tatlonally efficwnt procedure The expected forward, backward, and 
cross error enetgles (Eqs 3) and the resulting update equation for the 
reflectIon coefficients are rewritten m terms of 4(k, I), the covariance of 
the signal The reflectjon coefficients are updated using the estimated 
covarlance (Makoul Covariance-Lattice method [4]) 

An Important modification to the above calculation was suggested 
by Cumam [7] To better fit the method to fixed-point arithmetic, 
the quantities are scaled for better numerical stabtllty The price is a 
slight Increase In computatIonal complexity (Table 1) Our later re- 
sults, lndlcate that this method has excellent numerical properties in 
the context of backward adaptive high-order predictors. Strobach [8] 
discusses this method further and generalizes it to the methods of Gen- 
erahed Restdun/ Energy (GRE) wth the same numerical properties 
In this general class (which also includes the solution of the true Re- 
cuwve Least-Squares (RLS) Covarlance-Lattice estimation problem), 
coefficients are constructed completely anew at each step, avoiding 
round-off error accumulation As seen in Table 1, the computational 
complexity disadvantageof the Cumam algorithm (O(P3)) can be over- 
come usmg Strobach Covariance-Lattice methods (O(P’)) The class of 

Method Computation order * P=lO P=50 

Auto-correlation (PN+P’)/M 1700 10500 

Covariance (PN+P3/6t3P2/2)/M 1917 32583 

Lattice (Burg) 5PN 8000 40000 

Cov.-Lat (Makhoul) (PN+f3/2t2P2)/M 2300 75500 

Cov.-Lat (Cumam) (PN+4P3/3-P’)/M 2833 172167 

GRE (Strobach) (PNt3P*)/M 1900 15500 

’ Fwst order terms have been neglected 

Table 1 Comparison of the computation cosls (N = 160) 

such algorithms is also termed Pure Order Recursrue Ladder Algorhms 
(PORLA). Note that the adaptation of parameters in the Burg Lattice 
(and Exponential Window Lattice) is performed on a sample-by-sample 
basis while the Makhoul and Cumani Covariance-Lattice methods also 
allow for less frequent updates 

3. Issues in high-order predictors 
Consider the predictton error filter A(r) = 1 - F(r), wth the 

LPC analysis done in a backward fashion using the clean unquantized 
signal. A quantization model IS introduced later. Even though the 
update rate for the LPC coefficients is not limited by transrmssion rate 
considerations m a backward adaptive configuration, for computational 
complexity considerations, we use less frequent update rates The 
effects of quantization on prediction gain can also be seen in a full 
coder in a companion paper [Q] 

IlLconditioning 

Due to the low-pass filter before the Analog-twDigital-Converter 
(ADC), artificially low eigenvalues for the Covariance matrix I are prc- 
duced (Covariance and Auto-correlation methods) These elgenvalues 
are related to the missing high frequency components in the sampled 
speech signal near half the sampling frequency This condltlon cte- 
ates an almost smgular covarlance matrix which results in non-unique 
solution for the prediction coefficients The small elgenvalues produce 
artificially high predictlon coefficients which if used, can cause problems 
[S] We term this “physlcal Ill-conditionmg”. 

An almost singular matrix is sensltlve to round-off errors. As well, 
in high-order analysis, “numerical ill-conditionmg” can exacerbate the 
round-off errors due to finite precwon The high frequency correction 
procedure described in [S] decreases the physical ill-conditioning prob- 
lem by using a new covariance matrix which IS obtamed by adding 
another matrix proportional to the covarlance matrix of the high-pass 
filtered whtte noise to the original covariance matrix We use a simpler 
white noise correction (adding a small correction only to the diagonal 
elements). The effect of white noise correction scheme IS reduction In 
the dynamic range of signal spectrum. We found that the white noise 
correction was preferable to high-pass correction Although the results 
presented are after the ill-condltlonlng “cure”, the numerical error sen- 
sitivity remains an important issue. In the slmutatlons, lf a singular 
or almost singular matrix was encountered, the previous set of predlc- 
tion coefficients was reused As the number of Ill-condltlonlng cases 
increases in number, the effect IS reflected in a decline In the predIction 
gain curve. 

Window considerations 

Wmdow shape and size affect other analysis Issues such as for- 
mant/pltch “capture”, ill-conditionmg and complexity An analysis 
wmdow we and shape has to be carefully chosen in the case of single 
high-order predictor since it has to be suitable for both formant and 
pitch correlation lags. This choice is made even more difficult In the 
case of the Auto-correlation method due to the block edge effects In 
the cascaded fotmant-pitch configuratlon, the analysis frames of the 
near and far-sample predictors can have different size and update rate. 
Semi-infinite pole/zero wmdows (e g Barnwell windows and multiple 
exponential windows) are useful for backward adaptive processing. For 
example, Auto-correlation analysis using a 2 pole Barnwell (cascaded 

filters were used as recommended by [2]) outperforms the Hamming 
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wmdow (best length) by about 2 dB for female utterances (improve- 
ment for males was smaller) Error windowing using pole/zero windows 

1s useful in the case of lattice analysis. Pole/zero windows also have 
computational advantages since they can be Implemented recursively. 
As found In our experiments, the lack of taper at one end results in 
worse numerical problems than for windows such as the Hammmg win- 
dow wtuch are tapered at both ends. Slightly longer effective lengths 
(see [3] for discussion on effective length of pole/zero wmdows) pro- 
duce better results for higher order wmdows However, It. was found 
that windows with very long “tails” resulted in poor performance 

The predlction methods are based on an estimate of the corre- 
lation. The length of the analysis wmdow must be large enough to 
provide a valid estimate of the correlations. The minimum formant 
frequency 1s around 270 Hz (males) Assummg a sampling frequency of 
8000 Hz, this corresponds to a near-sample correlation lag of 30 sam- 
ples A suitable formant analysis frame is 40-80 samples The range 
of pitch frequencw which has to be considered for natural speech is 
from 64 Hz to 400 Hz Typlcal male speech has an Fo (fundamental 
frequency) range of 80 to 160 Hz With the average male and female 1;6 
at 132 and 223 Hz, the corresponding distances between pitch pulses m 
the time domaln slgnal are 61 and 36 samples Hence from maximum 
and average pitch lag considerations, correlations corresponding to 120 
and 61 lags (maximum and average) are needed. For the far-sample cor- 
relations of lowest pitch (64 Hz corresponding to 125 samples), a suit- 
able effectwe length for the analysis frame (AutGcorrelation method) 
IS around 350 samples. If an analysis frame of such size 1s used, the 
stationary assumption for the formant characteristics may no longer 
be valid and formant variations may not be tracked faithfully Hence 
there is conflict between the desired formant and pitch analysis frame 
sizes (especially for the Aut@correlation method) and a compromw 
has to be made Tradltlonally an analysis frame of 120-160 samples 
(15-20 ms) have been used for formant analysis The experiments of 
tllm work ~nd~a~cd that although [or h~ghcr o&r ~pwd~c~.ors a sl~ght.ly 
longer analysis frame srze results In a better performance, the frame 
sizes can St.111 be used for Auto-correlation method high-order predlc- 
tow. However, for the Covariance-Lattice methods, the best window 
length was around 100 samples. 

4. Comparison of methods 
Almlysis methods 

The order of the predictor should be high enough to include past 
samples as far back as the one corresponding to the lowest possible pitch 
(correspondmg to order 125). With such a high order, the conflict 
between the desired formant and pitch analysis frame size may not 
allow for the full exploitation of the pitch and formant redundancws 
in a single predictor. In the previously published graphs of high- 
order predictor gain versus the prediction order, the curve becomes 
flat after order 50 [2]. This conflict is not as much of a problem 
for the Covarlance/Covariance-Lattice methods as it is for the Aute 
correlation method 

The Covariance method showed severe ill-conditionmg for high 
orders. So much so that the prediction gains dropped below acceptable 
levels White noise correction “cured” the ill-conditioning to some 

degree Fig. 2 shows a comparison of several Covariance techniques 
(160 sample blocks, updated every 20 samples). The curves labelled 
Covariance are with white noise correction. The Modified Covariance 
method has better numerical properties and produced better results, 
even though Ill-condltionmg still persists at high orders. The figure 
also shows the performance of the Exponentially Windowed (double 
exponential) Lattice method. The dropoff in performance for higher 
orders is due to numerlcal problems. 

The best results were obtained when Covariance-Lattwe (Cumani) 
was used. This is shown m Fig. 3. Most of the advantage comes from 
the better numerical properties of this method Windowmg of the 
error can further improve the conditioning of the Covarlance methods 
A Hammlng wndow was apphed to the Modified Covarlance method, 
wth results shown in the same figure The Covariance curves are not 
strwtly monotonic for high orders. This can be attrlbut.ed to two effects, 
remaining ill-condltlonmg and the fact that in backward adaptation, 
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Fig. 2 Comparison of prediction gams showing the effect of 
ill-conditioning 
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Fig. 3 Comparison of prediction gains for different methods 

the data for the correlation calculation 1s “stale” and may not reflect 
the current statistics, especially for large lags 

Fig. 3 also shows the results for the Auto-correlation method 
(Barnwell window). The Auto-correlation curves are monotomc but 
increase slowly if at all beyond order 50. Ill-conditioning is not a severe 
problem. The Auto-correlation curves lie well below the Covarlance 
curves for larger orders, since the Autcwzorrelation method suffers from 
window shape effects. 

Fig. 4 compares the segmental SNR for the Auto-correlation 
method, orders 10 and 50. Since the pitch lags for the female are 
less than 50, the order 50 analysis captures the female pitch; there is 
a substantial difference between the order 10 and order 50 results For 
the male (pitch around 70-80 samples), the pitch is out of reach for the 
order 50 predlctor. 

The computatlonal cost comparison among various methods IS 
shown In Table 1 The update rate M 1s an Important factor when 
deciding among various alternatlves Note that for the Lattice method 
M = 1 Experiment results lnvestlgatmg the update rate effect show 
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Samples 
(a) Female 

Samples 

(1,) Male 

Fig. 4 Segmental predIction gain (segPG) comparison 
between speech analyzed usmg the LPC of order 10 
(solid hne) and of order 50 (dashed Ime) using 
Auto-Correlation method 

that for the high performance methods, a less frequent update rate can 
be used since the performance degradation due to less frequent update 
IS small 

Backward adaptive effects and quantization noise 

The experiments up to this point use backward adaptive predlc- 
tlon based on the clean speech signal For the purpose of evaluating 
the effect of quantlzatlon noise, a model assuming the following is used 
(1) The quantlzatlon noise IS white, (2) The quantlzer noise energy de- 
pends on the energy of the prediction residual (3) The quantlzer SNR 
(prediction residual energy to quantization error energy) is fixed for an 
analysis frame (160 samples) The model IS Implemented by adding a 
noise energy to the diagonal elements of the Covariance matrix or the 
Auto-correlation matrix The level of noise is Iteratively adjusted for 
each analysis interval until the specified SNR is achieved: (0) The initial 
quantlzation noise energy 1s set to a fraction of the input signal energy. 
(1) The correlation matrix is augmented wth the quantization noise 
terms (2) The predIctIon coefficients are calculated (3) The residual 
energy is calculated (4) The quantizatlon nowe energy IS reevaluated 
from the quantlzer SNR (5) If the quantlzation noise energy has slg- 
nificantly changed, repeat the process at step (1). Table 2 shows the 
prediction gains for a quantizer SNR of 10 dB for the Autocorrelation 
method The effect of the quantization noise IS to reduce the prediction 
gain Note also that the increase in going from order 10 to order 50 is 
reduced. Other experiments show that the effect of quantization noise 
is to close the gaps between the various analysis schemes (the ordering 
remams essentially the same as for clean speech) Note also that quan- 
tlzation noise has the same beneficial effect on ill-conditionmg as the 
white noise correctlon. 

Table 2 Comparison between analysis based on clean signal 
and simulated quantized signal for female and male 
utterances, Autecorrelation method 

Comparisons with cascade formant-pitch configurations 

Cascade formant-pitch configurations can have several forms, (1) 
Sequentially optimized, (2) Jointly optimized [l], and (3) Decoupled 
[lo] These methods have the advantage of selecting independent anal- 
ysls frame size for the formant and pitch predictors. Method (2) which 
produces the best overall predlction gain has a very high computa- 
tional cost A problem with the cascade formant-pitch filters is their 
poor performance wth channel errors; the lag estimate may be in error 
and cause severe error propagation Method (3) trades off performance 
for error robustness. For our comparisons (error propagation is not 
expllclt.ly considered), we use the sequentially opt,imlzed formant/pitch 

configuration with a high-order predictor. Durmg the unvoiced seg- 
ments of the speech, the pitch predictor is turned off. 

Table 3 compares the performance of the cascade filters with a 
single high-order predictor (Auto-correlation analysis, order 50), both 
types of predictors are updated every 5 samples. The results show that 
the high-order filter outperforms the F-P cascade for both the male 
and female speakers. Previous considerations indicated that the high- 
order filter does not capture the pitch of the malespeaker However, the 
larger number of taps more than makes up for the loss (at least m terms 
of average prediction gam). Further experiments wth a 50+3 F-P filter, 
show that for the female, the pitch part does not help (in fact,, sllght.1) 
degrades the predictlon gain) IIowevcr, for the malt speaker, th? pitch 
part gives a further gain (0 5 dB) w IIC I IS perceptually Important l 1 

Table 3 Comparison of overall predictlon gains between 
sequential formant-pitch configuratIon and 
high-order single predictor configuration 

5. Summary and conclusions 
Backward adaptation is used in low-delay speech coding applica- 

tions. A single high-order filter provides excellent overall predlction 
gains. Compared to a cascade formant-pitch predlctor, the high-ordcl 
filter is more appropriate m the presence of channel errors. The Barn- 
well window Auto-correlation method wth 50-01 order predictor per- 
forms well for female utterances. Covarlance methods promwe even 
more prediction gam, since they can capture large lag pitch redundan- 
cies IIowever, they are plagued with numerical problems The Cumanl 
Covariance-Lattice with white noise correction overcomes these prob- 
lems to a large degree. However, It IS computatlonally Intensive Fur- 
ther work is needed to find an appropriate compromise between con- 
plexity (varying the order and update rate) and performance.. In addi- 
tion, the PORLA algorithms (Strobach) might have a place in backward 
adaptive high-order predictors for speech coding. 
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