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Abstract

Backward adaptive linear prediction is used in low-delay speech coders.
A good redundancy removal scheme must consider both near-sample
(formant) and far-sample (pitch) correlations. Two approaches are
considered; (1) separate pitch and formant predictors and (2) a sin-
gle high-order predictor This paper presents analysis and simulation
results comparing the performance of several types of high-order back-
ward adaptive predictors with orders up to 100 Issues in high-order
LPC analysis, such as analysis methods, windowing, ill-conditioming,
quantization noise effects, and computational complexity are studied
The performance of the various analysis methods 1s compared with the
conventional sequential formant-pitch predictor The Auto-correlation
method (50-th order) shows performance advantages over the sequen-
tial formant-pitch configurations. Several new backward high-order
methods using covariance analysis and a lattice formulation show much
better prediction gains than the Auto-correlation method

1. Introduction

Predictors are characterized by an analysis frame which is used
to adapt the coefficients The predictor 1s then applied to a block of
samples 1If the analysis frame precedes the block, the predictor 1s
said to be backward adapted No buffering of “future” samples 1s
needed 1n backward adapted systems, allowing for lower processing
delay Backward adaptation is also used when there is no explicit
transmission of the predictor coefficient values Both the coder and
decoder can use backward adaptation to update the coefficients from
the reconstructed signal

Traditionally two filters, the formant predictor and the pitch pre-
dictor, are used to remove near and far-sample redundancies Consider
network-quality speech coding with low-delay and no explicit transmis-
sion of side information over channels with errors. For such coders (e.g
low-delay tree and CELP coders), effective low-delay coding 1s achieved
through removal of inter-sample redundancy using backward adaptive
prediction. The pitch filter uses a backward adaptive pitch lag and co-
efficient values. The formant filter uses backward adaptive coefficient
values Erroneous lag estimates at the receiver can cause severe error
propagation. Higher processing power has made the alternative of a
single high-order predictor attractive In this configuration, the com-
bined pitch and formant taps have fixed positions This type of predic-
tor performs better in the presence of channel errors. For high-order
predictors, we consider 1ssues and problems such as ill-conditioning,
windowing, complexity and performance.

2. Formant and pitch prediction
For separate formant and pitch predictors, the transfer functions

are
Ny

N'
F(zy=) a2z, and P(z) =) bz~ Mol M
=1 1=1
where Ny and N, are the number of formant and pitch predictor
coefficients (eg Ny = 10 and N, = 3) and M, 1s the pitch lag
Note that M 1s updated along with the coefficients The adaptation of
pitch parameters for the pitch predictor in the cascaded pitch/formant
configuration is described in detail in Ref [1] The multi-tap pitch filter
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P(z) allows for non-integer pitch lag estimation In a speech coder, a
closed-loop configuration can be used to achieve frequency shaping of
the quantization noise.

As an alternative, a single high-order predictor can be used to
remove both near and far-sample redundancies [2] The order P of
this predictor should be high enough to include the effects of pitch
correlations

The adaptation of the prediction coefficients is done 1in a back-
ward fashion. The general analysis method of Fig 1 may be used to
represent the windowing of data and/or error to estimate the predic-
tion coefficients using the least-squares methods {1] The speech input,
s(n), 1s multiplied by the data window wg(n) to give windowed speech
signal sy (n), while multiplication of the error signal by the error win-
dow w,(n) results in the windowed error signal e, (n) The error or
data window shape may have be rectangular, Hamming, exponential,
etc. Barnwell [3] and others [4] have studied and proposed a class of
filters obtained using the impulse response of casual pole/zero filters
which provide easy control over the shape of the window (exponential
windows belong to this class). The shape of such windows 1s suitable for
the backward adaptation since there can be more emphasis on recent
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Fig. 1 Data window and error window

Covariance and windowed covariance methods

In the covariance method, windowing 1s performed only on the er-
ror signal (wq(n) = 1for alln) For a non-rectangular error window, the
resulted method 1s called Windowed Covanance [5]. Tapered windows
given smooth coefficient changes as the window 1s moved Minimiza-
tion of the sum of windowed errors £ = Z;’f’z_m e 2(n) results in the
linear equations ®a = ¥ (¥ 1s the symmetric covariance matrix with
components ¢(i,3), i,7 =1,2,.. ,P) This system can be solved us-
ing Cholesky decomposition to obtain the prediction coefficients Note
that for the covariance methods, the number of terms entering into the
correlation estimates 1s the same for all lags and 1s equal to the window
length. However, correlations with large lags reach farther back into
past data.
Modified Covariance method

The Modified Covariance method [6] 1s based on residual energy
ratios It guarantees that the predictor 1s minimum phase
Auto-correlation method

If the windowing 1s done on the speech samples (w.(n) = 1 for all
n), the Auto-correlation method results. Since the auto-correlation
matrix R (Ra = a replacing ®a = ¥) 1s Toephtz, the resulted
linear system of equations can be efficiently solved using the Levinson
recursion  In cajculating the auto-correlation components r(2),i =
1,2,. , P, speech data outside the data window wy(n) are assumed
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to be zero Fewer samples values are used for computing the larger
lag values, making the Auto-correlation method inappropriate when
the analysis window length N 1s comparable to the predictor order P
Furthermore, tapered windows deemphasize the terms corresponding
to large lags. Such windows can affect the numerical conditioning of
the auto-correlation matrix by deemphasizing off-diagonal terms
Lattice and Covariance-Lattice methods

Lattice methods use a bcqueﬁtlm solution formulation approac
through which error minimization is done stage by stage. These meth-
ods do not assume optimality of the previous stages (in the Auto-
correlation method, computationai savings are due to this assumption)
In these methods, a distinction 1s made between forward and backward
errors At each stage m (representing a m-pole model) the forward and
backward error (residual) signals, fn(n) and b, (n), are defined. The
wmput speech 1s s(n), r(n) is the final prediction error (residual) signal,
and n 1s the time index The filtering action of the lattice at stage m
is described by

Sme1(n) =fm(n) = Ky (n)bin(n —1)  and (2.0)
bmy1(n) = = Kmp1(n) fm(n) + bm(n — 1), (25)

where the Np's are the reflection coefficients The initial forward and
backward error signals are set to s(n). One may minimize a combina-
tion of the forward and backward error energies. The minimization of
the error energies can be expressed in terms of the following quantities

Fo(n)= < fA(n) >
Bm(n) = < bL(n) > (3)
Cm(n) = < fm(n)bm(n) >

where the operation < > is either an expectation or an approptriate
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forward and backward error energies with an error window w(n),

_ o AR+ B ()
En(n)y= ) w(n—k)——_z—

k=-o0

)

The choice of weighting factor 1 /‘2 guarantees minimum phase [tﬂ If an

exponential window 15 used n the above formulation, the Exponentlal
Window Lattice method [4] results The mimmzation of the above

wnmhnpd error with respect to the A {n\ leads to the update formula

2Cm(n)

l\'m+1(n+l):m, where
Cmpr(n) = D w(n=k)fm(k)bm(k—1) and (5)

k=-o00
n

Y wln = B3 (k) + b5y (k = 1))

k=-o00

Fm+l(n) + Bm+l(n) =

The Covariance-Lattice method (4, 7] uses the recursion formula-
tions of the regular Lattice (Burg) method to obtain a more compu-
tationally efficient procedure The expected forward, backward, and
cross error energles (Eqs 3) and the resulting update equation for the
reflection coefficients are rewntten in terms of ¢(k, 1), the covariance of
the signal The reflection coefficients are updated using the estimated
covariance (Makoul Covariance-Lattice method [4])

An important modification to the above calculation was suggested
by Cumani [7] To better fit the method to fixed-point arithmetic,
the quantities are scaled for better numerical stability The price is a

clurhf increase 1n computational complexity l"mklp 1} Our later re-

ease nputational complexity {Table Qur later
sults, indicate that this method has excellent numerical properties in
the context of backward adaptlve high-order predlctors Strobach [8]
UISCUSSES Ullb lllebnOQ lul'LllCl' anu generdlues lL to Llle "l(‘ﬂ:nOQS 01 Uen'
eralized Residual Energy (GRE) with the same numerical properties
In this general class (which also includes the solution of the true Re-
cursive Least-Squares (RLS) Covariance-Lattice estimation problem),
coefficients are constructed completely anew at each step, avoiding
round-off error accumulation As seen in Table 1, the computational
complexity disadvantage of the Cumani algorithm (O(P3)) can be over-
come using Strobach Covariance-Lattice methods (O(P?)) The class of

Method Computation order* P=10| P =50
Auto-correlation (PN+P)/M 1700 10500
Covariance (PN+P3/643P2/2)/M | 1917 | 32583
Lattice (Burg) 5PN 8000 40000
Cov.-Lat (Makhoul) | (PN+P3/242P%)/M 2300 75500
Cov.-Lat (Cumani) | (PN+4P3/3-P%)/M | 2833 | 172167
GRE (Strobach) (PN+3P%)/M 1900 | 15500

* First order terms have been neglected

Table 1 Comparison of the computation costs (N = 160)

such algorithms is also termed Pure Order Recursive Ladder Algorithms
(PORLA). Note that the adaptation of parameters in the Burg Lattice
(and Exponential Window Lattice) is performed on a sample-by-sample
basis while the Makhoul and Cumani Covariance-Lattice methods also
allow for less frequent updates

3. Issues in high-order predictors

Consider the prediction error filter A(z) = 1 — F(z), with the
LPC analysis done in a backward fashion using the clean unquantized
signal. A quantization model 1s introduced later. Even though the
update rate for the LPC coefficients is not limited by transmission rate
considerations in a backward adaptive configuration, for computational
complexity considerations, we use less frequent update rates The
effects of quantization on prediction gain can also be seen in a full
coder in a companion paper [9]

Hl-conditioning

Due to the low-pass filter before the Analog-to-Digital-Converter
(ADC), artificially low eigenvalues for the Covariance matrix ® are pro-
duced (Covariance and Auto-correlation methods) These eigenvalues
are related to the missing high frequency components in the sampled
speech signal near half the sampling frequency This condition cre-
ates an almost singular covaniance matrix which results in non-unique
solution for the prediction coefficients The small eigenvalues produce
artificially igh prediction coefficients which if used, can cause problems
[6] We term this “physical 1ll-conditioning”.

An almost singular matrix is sensitive to round-off errors. As well,
in high-order analysis, “numerical ill-conditioning” can exacerbate the
round-off errors due to finite precision The hlgh frequency correction
procedure described in lUJ decreases the puyau,al ill- condmonmg pruu-
lem by using a new covariance matrix which 1s obtained by adding
another matrix proportional to the covariance matrix of the high-pass
filtered white noise to the original covariance matrix We use a simpler
white noise correction (adding a small correction only to the diagonal
elements). The effect of white noise correction scheme 1s reduction 1n
the dynamic range of signal spectrum. We found that the white noise
correction was preferable to high-pass correction Although the results
presented are after the ill-conditioning “cure”, the numerical error sen-
sitivity remains an important issue. In the simulations, if a singular
or almost singular matnx was encountered, the previous set of predic-

As tha smiber of Hoconditionin o cngoc

tion coefRcients ac raused
As ihe number Ol Li-conGitioning cases

tion coefficients was reused
increases in number, the effect 1s reflected in a dechne in the prediction
gain curve,
Window considerations

Window shape and size affect other analysis i1ssues such as for-
mant/pitch “capture”, ill-conditioning and complexity An analysis
window size and shape has to be carefully chosen in the case of single
high-order predictor since it has to be suitable for both formant and
nlh‘h correlation Inn': This choice is made even more difficult 1n the
case of the Auto—correlatlon method due to the block edge effects In
the cascaded formant-pitch configuration, the analysis frames of the
near and far-sample predictors can have different size and update rate.
Semi-infinite pole/zero windows (e g Barnwell windows and multiple
exponential windows) are useful for backward adaptive processing. For
example, Auto-correlation analysis using a 2 pole Barnwell (cascaded
filters were used as recommended by [2]) outperforms the Hamming



window (best length) by about 2 dB for female utterances (improve-
ment for males was smaller) Error windowing using pole/zero windows
1s useful in the case of lattice analysis. Pole/zero windows also have
computational advantages since they can be implemented recursively.
As found 1n our experiments, the lack of taper at one end results in
worse numerical problems than for windows such as the Hamming win-
dow which are tapered at both ends. Shightly longer effective lengths
(see (3] for discussion on effective length of pole/zero windows) pro-
duce better results for higher order windows However, it was found
that windows with very long “tails” resulted in poor performance

The prediction methods are based on an estimate of the corre-
lation. The length of the analysis window must be large enough to
provide a valid estimate of the correlations. The minimum formant
frequency 1s around 270 Hz (males) Assuming a sampling frequency of
8000 Hz, this corresponds to a near-sample correlation lag of 30 sam-
ples A suitable formant analysis frame is 40-80 samples The range
of pitch frequencies which has to be considered for natural speech is
from 64 Hz to 400 Hz Typical male speech has an Fy (fundamental
frequency) range of 80 to 160 Hz With the average male and female Fj
at 132 and 223 Hz, the corresponding distances between pitch pulses in
the time domain signal are 61 and 36 samples Hence from maximum
and average pitch lag considerations, correlations corresponding to 120
and 61 lags (maximum and average) are needed. For the far-sample cor-
relations of lowest pitch (64 Hz corresponding to 125 samples), a suit-
able effective length for the analysis frame (Auto-correlation method)
1s around 350 samples. If an analysis frame of such size 1s used, the
stationary assumption for the formant characteristics may no longer
be valid and formant variations may not be tracked faithfully Hence
there is conflict between the desired formant and pitch analysis frame
sizes (especially for the Auto-correlation method) and a compromse
has to be made Traditionally an analysis frame of 120-160 samples
(15-20 ms) have been used for formant analysis The expernments of
tlns work indicated that although for lngher order prediclors a shightly
longer analysis frame size results 1n a better performance, the frame
si1zes can still be used for Auto-correlation method high-order predic-
tors. However, for the Covariance-Lattice methods, the best window
length was around 100 samples.

4. Comparison of methods
Analysis methods

The order of the predictor should be high enough to include past
samples as far back as the one corresponding to the lowest possible pitch
(corresponding to order 125). With such a high order, the conflict
between the desired formant and pitch analysis frame size may not
allow for the full exploitation of the pitch and formant redundancies
in a single predictor. In the previously published graphs of high-
order predictor gain versus the prediction order, the curve becomes
flat after order 50 [2]. This conflict is not as much of a problem
for the Covariance/Covariance-Lattice methods as it is for the Auto-
correlation method

The Covariance method showed severe ill-conditiomng for high
orders. So much so that the prediction gains dropped below acceptable
levels White noise correction “cured” the ill-conditioning to some
degree  Fig. 2 shows a comparison of several Covariance techniques
(160 sample blocks, updated every 20 samples). The curves labelled
Covariance are with white noise correction. The Modified Covariance
method has better numerical properties and produced better results,
even though ill-conditioning still persists at high orders. The figure
also shows the performance of the Exponentially Windowed (double
exponential} Lattice method. The dropoff in performance for higher
orders is due to numerical problems.

The best results were obtained when Covariance-Lattice (Cumani)
was used. This is shown in Fig. 3. Most of the advantage comes from
the better numerical properties of this method Windowing of the
error can further improve the conditioning of the Covariance methods
A Hamming window was applied to the Modified Covariance method,
with results shown in the same figure The Covariance curves are not
strictly monotonic for high orders. This can be attributed to two effects
remaining 1l-conditioning and the fact that in backward adaptation,
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Fig. 3 Comparison of prediction gains for different methods

the data for the correlation calculation 1s “stale” and may not reflect
the current statistics, especially for large lags

Fig. 3 also shows the results for the Auto-correlation method
(Barnwell window). The Auto-correlation curves are monotonic but
increase slowly if at all beyond order 50. Ill-conditioning is not a severe
problem. The Auto-correlation curves lie well below the Covariance
curves for larger orders, since the Auto-correlation method suffers from
window shape effects.

Fig. 4 compares the segmental SNR for the Auto-correlation
method, orders 10 and 50. Since the pitch lags for the female are
less than 50, the order 50 analysis captures the female pitch; there is
a substantial difference between the order 10 and order 50 results For
the male (pitch around 70-80 samples), the pitch is out of reach for the
order 50 predictor.

The computational cost comparison among various methods 1s
shown 1n Table | The update rate M 1s an important factor when
deciding among various alternatives Note that for the Lattice method
M =1 Experiment results investigating the update rate effect show
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Fig. 4 Segmental prediction gain (segPG) comparison

between speech analyzed using the LPC of order 10

(sohd line) and of order 50 (dashed line) using

Auto-Correlation method
that for the high performance methods, a less frequent update rate can
be used since the performance degradation due to less frequent update
1s small
Backward adaptive effects and quantization noise

The experiments up to this point use backward adaptive predic-

tion based on the clean speech signal For the purpose of evaluating
the effect of quantization noise, a model assuming the following is used
(1) The quantization noise 1s white, (2) The quantizer noise energy de-
pends on the energy of the prediction residual (3) The quantizer SNR
(prediction residual energy to quantization error energy) is fixed for an
analysis frame (160 samples) The model 1s implemented by adding a
noise energy to the diagonal elements of the Covariance matrix or the
Auto-correlation matrix The level of noise is 1teratively adjusted for
each analysis interval until the specified SNR is achieved: (0) The initial
quantization noise energy 1s set to a fraction of the input signal energy.
(1) The correlation matrix is augmented with the quantization noise
terms (2) The prediction coefficients are calculated (3) The residual
energy is calculated (4) The quantization noise energy 1s reevaluated
from the quantizer SNR (5) If the quantization noise energy has sig-
nificantly changed, repeat the process at step (1). Table 2 shows the
prediction gains for a quantizer SNR of 10 dB for the Autocorrelation
method The effect of the quantization noise 1s to reduce the prediction
gain Note also that the increase in going from order 10 to order 50 is
reduced. Other experiments show that the effect of quantization noise
is to close the gaps between the various analysis schemes (the ordering
remains essentially the same as for clean speech) Note also that quan-
tization noise has the same beneficial effect on ill-conditioning as the
white noise correction.

Gender | order 10 order 30 | order 50
gain dB | gain dB | gain dB
18 93 2125 21 83
18 51 20 27 20 83
16.84 18.89 18.91
16.74 18 51 18 17

Analysis based on

1- Clean speech

2- Quantized speech
1- Clean speech

2- Quantized speech Male

Female

Table 2 Comparison between analysis based on clean signal
and simulated quantized signal for female and male
utterances, Auto-correlation method

Comparisons with cascade formant-pitch configurations
Cascade formant-pitch configurations can have several forms: (1)
Sequentially optimized, (2) Jointly optimized [1}, and (3) Decoupled
[10] These methods have the advantage of selecting independent anal-
ysis frame size for the formant and pitch predictors. Method (2) which
produces the best overall prediction gain has a very high computa-
tional cost A problem with the cascade formant-pitch filters is their
poor performance with channel errors; the lag estimate may be in error
and cause severe error propagation Method (3) trades off performance
for error robustness. For our comparisons (error propagation is not
explicitly considered), we use the sequentially optimized formant/pitch

configuration with a high-order predictor. During the unvoiced seg-
ments of the speech, the pitch predictor is turned off.

Table 3 compares the performance of the cascade filters with a
single high-order predictor (Auto-correlation analysis, order 50), both
types of predictors are updated every 5 samples. The results show that
the high-order filter outperforms the F-P cascade for both the male
and female speakers. Previous considerations indicated that the high-
order filter does not capture the pitch of the male speaker However, the
larger number of taps more than makes up for the loss (at least in terms
of average prediction gain). Further experiments with a 50+3 F-P filter,
show that for the female, the pitch part does not help (in fact, shghtly
degrades the prediction gain) However, for the male speaker, the pitch
part gives a further gain (0 5 dB) which 1s perceptually important

Gender | formant | pitch overall

method eneet gamn dB | gawn dB | gain dB
F-P (10+3) 16 5 1.2 177
Single high-order female - - 199
F-P (10+3) | 148 07 155
Single high-order male - - 170
F-P (50+3) 199 -07 19 2
Single high-order | °M2e |~ - 199
F-P (50+3) | 170 05 17.5
Single high-order | ™*¢ - - 170

Table 3 Comparison of overall prediction gains between
sequential formant-pitch configuration and
high-order single predictor configuration

5. Summary and conclusions

Backward adaptation is used in low-delay speech coding applica-
tions. A single high-order filter provides excellent overall prediction
gains. Compared to a cascade formant-pitch predictor, the hugh-order
filter is more appropriate 1n the presence of channel errors. The Barn-
well window Auto-correlation method with 50-th order predictor per-
forms well for female utterances. Covariance methods promise even
more prediction gain, since they can capture large lag pitch redundan-
cies However, they are plagued with numerical problems The Cuman:
Covariance-Lattice with white noise correction overcomes these prob-
lems to a large degree. However, 1t 1s computationally intensive Fur-
ther work is needed to find an appropriate compromise between com-
plexity (varying the order and update rate) and performance.. In addi-
tion, the PORLA algorithms (Strobach) might have a place in backward
adaptive high-order predictors for speech coding.
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