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Abstract. This paper presents modifications to procedures for designing FIR interpolating filters and FIR Nyquist filters that 
allow the output of the filter to be error-free for certain input frequencies. For a minimum mean-square error interpolator, 
the modifications result in an expanded set of linear equations which include the constraints. For minimax stop-band Nyquist 
filters, the modifications involve factoring out a filter which implements the constraints on the transfer function. Approximate 
techniques for implementing the constraints are also discussed. 

Zusammenfassung. Dieser Beitrag stellt Modifikationen yon Entwurfsverfahren fiir interpolierende FIR Filter und Nyquist 
FIR Filter die das Ausgangssignal des Filters bei gewissen Eingangsfrequenzen fehlerfrei machen vor. F/it einen interpolator 
nach dem mittleren Fehlerquadratskriterium fiihren diese Modifikationen auf ein erweitertes System linearer Gleichungen, 
die die Einschr~inkungen enthalten. Fiir Nyquistfilter mit im tschebyscheffschen Sinne entworfenem Sperrband f/ihren die 
Modifikationen auf einen Filterfaktor, der die Einschr~inkungen auf die Ubertragungsfunktion verwirklicht. Es werden 
approximative Verfahren zur Verwirklichung der Einschr~inkungen diskutiert. 

R6sum6. Cet article pr6sente des modifications b. des proc6dures connues pour la conception de filtres d'interpolation RIF 
et de filtres de Nyquist RIF, afin d'inclure des contraintes assurant la reconstruction parfaite pour certaines fr6quences. Pour 
un interpolateur minimisant l'erreur quadratique moyenne, les modifications impliquent la r6solution d'un syst~me d'6quations 
lin6aires, augment6 pour inclure les contraintes. Pour des filtres Nyquist avec bande d'arr~t 'minimax', la proc6dure modifi6e 
impose un facteur qui r6alise les contraintes h la fonction de transfert. Des techniques approximatives pour r6aliser les 
contraintes sont 6galement discut6es. 

Keywords. Interpolating filter, Nyquist filter, filter design. 

I. Introduction 

Interpolating filters and Nyquist filters are com- 
monly used for sampling rate conversion 
operations. In this paper we discuss some problems 
associated with the traditional methods used to 
design finite impulse response (FIR) interpolating 

* This work was supported by the Natural Sciences and 
Engineering Research Council of Canada. 

and Nyquist filters. Specifically, the residual alias- 
ing at some frequencies (such as dc) can render 

the filters unsuitable for practical applications. We 
show how the design procedures can be modified 
to assure error-free reproduction for inputs at 
certain frequencies. 

The work for this paper was motivated by the 
observation that conventionally designed interpol- 
ating filters can perform badly in certain applica- 
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Fig. 1. R e s p o n s e  o f  a n  u n c o n s t r a i n e d  i n t e r p o l a t i o n  filter to a n  i n p u t  T-s tep pu l se  (125 ns rise a n d  fall t imes)  ( N = 35, 279 coeff ic ients ,  

s a m p l i n g  ra t e  472.5 M H z ,  d e s i g n e d  for  a r a i s e d - c o s i n e  p o w e r  s p e c t r u m  wi th  t r an s i t i on  b e t w e e n  5 M H z  a n d  6 M H z ) .  

tions. A particular application involved an inter- 
polating filter for video transcoding (converting 
between a coiour/ luminance representation and a 
composite representation with different sampling 

frequencies). In constant parts of the image, 
noticeable periodic components were inserted by 

the interpolating filter. The cause was traced to the 
fact that the interpolating filter did not interpolate 
a constant input to a constant value. Figure 1 shows 
the response of such a filter to an input pulse 
(design details are given later). Note the ripple at 
the top of  the pulse response. As another example, 

Nyquist filters are required in certain NTSC com- 
patible extended definition television transmission 
systems [ 1 ]. Similar problems with a constant input 
are encountered for this application. 

Several interpretations of  the dc interpolation 
issue are possible. In an interpolator, subsampled 
filters are used in round-robin fashion. If the 
responses of  these subfilters to a constant input 
are not the same, the resultant interpolated values 
will have a periodic variation. From a frequency 
domain point of view, the aliased dc components 
appear at frequencies 2Trl/N, where N is the inter- 
polation factor. If  the response of the interpolating 
filter to the aliased components is not exactly zero, 
the resulting interpolated values will not be con- 
stant. In fact, the stopband lobes of the interpola- 
tion filter may peak in the neighborhood of  some 
of the aliased frequency values, exacerbating the 
effect. 
Signal Processing 

This suggests that the design procedures for 
interpolation and Nyquist filters should be 
modified to allow for control of the interpolated 
dc values. More generally, exact reconstruction 

can be stipulated at any given frequency. For in- 
stance in a video application, control of the 
response at the colour subcarrier frequency will 

ensure that no unwanted amplitude modulation of 
the subcarrier occurs. 

In the following we consider constraining the 
response at one or more frequencies. Two generic 
filter design strategies are examined. For interpola- 

tion filters, the technique described by Oetken 
et al. [5] minimizes the mean-square interpolation 
error for a signal with a given correlation function 
(or equivalently given power spectral density). For 
Nyquist filters, the technique described by 
Ramachandran and Kabal [6] designs Nyquist 
filters with a minimax stopband. Modifications to 
these design techniques to contrain the response 
at certain frequencies are developed. Examples are 
given for filters designed with and without 
frequency constraints. 

2. Interpolating and Nyquist filters 

Interpolating filters and Nyquist filters perform 
similar functions. For an interpolating filter, the 
primary concern is accurate interpolation. For the 
design procedure that we consider, this means 
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minimizing the mean-square interpolation error 
for an input signal of given power spectral density. 
The corresponding frequency response of the inter- 
polation filter will show characteristic peaks in the 
stopband response at frequencies corresponding 
to regions in which the aliased input frequencies 
have little or no energy (see the responses in [5]). 

Nyquist filters are used in data transmission 
systems to prevent intersymbol interference. For 
these filters, the primary concern is the suppression 
of out-of-band energy, while ensuring regularly 

space zero crossings in the impulse response. The 
Nyquist filters considered in this paper have a 

minimax stopband behavior. For a well attenuated 
stopband, the passband will be flat and the transi- 
tion region will have the appropriate symmetry to 
guarantee the zero crossing property. 

For an input sequence s(n) and a filter response 
h(n), the output can be written in terms of a 
convolution, 

the sequence is the rate-increased version of the 
data sequence to be transmitted. In either case, n 
can be written as m N + q  with 0<~ q~< N - 1  and 

the convolution sum can be expressed as 

y ( m N  + q) = ~ hq(i)s((m - i) N). (3) 
i 

The coefficient hq(i) is an element of the qth 
subfilter h ( iN + q). When continuously processing 

input samples, the subfilters are used in round- 
robin fashion. 

The frequency response of an interpolating filter 
can be written in polyphase form, 

N 1 
H(d '°) = Y~ ~ hq(i)  e jcoiN e-j~q 

q--O i 

N, (4) 
= E H q ( e j ' ° N )  e J~q, 

q o 

where 

y(n) =E h (k ) s (n -  k). (1) 
k 

In this paper, FIR filters with real coefficients will 
be considered. In that case, the summation is over 
the non-zero elements of  h(- ) .  In addition, the 
filter will be considered to be non-causal to sim- 
plify coefficient indexing. 

Interpolation and Nyquist filters ideally satisfy 
the property that every Nth  sample of the output 
sequence reproduces the input data values. The 
requirement that y( lN)= s(IN) for general s(.  ) 
implies that 

h( IN)={~  f o r / = O ,  
for I # 0. (2) 

This is the zero crossing property referred to ear- 
lier. This relationship also indicates that the range 
of  coefficient indices must include zero} Normally 
the input to the filter is a sequence with N - 1 zeros 
interposed between sample values. For interpola- 
tion, the sequence is a rate-increased version of  
the sequence to be interpolated. For Nyquist filters, 

Hq(z)A~ hq(i)z '. (5) 
i 

The constraint that a sinusoid at frequency 2 wc 

be reproduced with no distortion is equivalent to 
the condition that the frequency response of 
subfilter q satisfies 

Hq(emcN)=& %0, O<~q<~N-1. (6) 

This result can be obtained directly from (3) by 
requiring that y(n)= s(n)=cos(~ocn+ 0) for 
arbitrary 0. 

The result in (6) means that the frequency 
response Hq(e j°~cN) must correspond to a shift of 

q samples. Note' that the right-hand side has a 
magnitude of one. This is necessary to allow the 
q = 0 case to be consistent with the interpolation 
property (2). In addition, note that if the response 
satisfies (6) at frequency ~oc, the response also 
satisfies this condition at frequency -Wc. 

Using the constraint given by (6), it can be shown 
from the polyphase form of  the frequency response 

i For  Nyqu i s t  filters, the zero th  s a m p l e  is of ten set  to N 

ins tead  of  I. This  gives  a p a s s b a n d  ga in  of  one. 
2 F requenc ies  are no rma l i zed  wi th  respect  to the s a m p l i n g  

f requency  of  the in t e rpo la t ed  sequence .  

Vol. 24, No. 2. August 1991 



120 P. Kabal, E. Dubois / lnterpolating filters with constraints 

that 

H(eJt±coo+2~,/N) ) = {N,  l = mN, (7) 
( 0, otherwise. 

This indicates that the z-transform H(z)  has roots 

on the unit circle. For general Wc, the factor con- 

taining these unit circle roots can be written as 

N - 1  

He(z )=  I] (z-eJ~%+2"/N))(z-e  J~c+2~'/N)) 
I--1 

(zU _ eJ~,cN)(zU _ e jo~oN) 

- (z - eJ°~c) (z - e  -j°'°) (8) 

This filter serves to suppress aliased versions of  

the sinusoid. For Wc of the form "rrm/N, the root 
factor differs from the general form since the con- 

straints of  (6) become real for some or all of  the 

subfilters. Specifically, for a dc constraint (m = 0), 

the root factor becomes 

(9) 

N - 1  

/-/c(z)= II ( z - e  j2=,/N) 
1=1 

N z - - I  

z- -1  

mean-square error in (A.4) is augmented with two 
terms: 

eq r~(O) - T V T T 2hqaq + + 2hshqs. = hqRhq + 2hchqc 

(11) 

The constraints on the response can be combined 
with the error-minimization equations to give the 

following linear equations for the constrained 

minimization: 

¢- o o / I - Z - I :  . (12) 
sT 0 0JLAsJ L-sin(oJ q) J 

In contrast to the unconstrained optimization, the 

system of  equations is no longer Toeplitz. This 

means that some efficiency of solution must be 

sacrificed to enforce the constraints. The changes 

to include additional constraint frequencies or a 

constraint frequency of  the form w m / N  are 
straight-forward. 

4. Nyquist filter design 

3. Interpolating filter design 

The design of  unconstrained minimum mean- 
square error interpolating filters is discussed in 

Appendix A. For each frequency w~, the complex 

constraint of  (6) can be expressed as a pair of  real 
constraints which need to be considered for each 

subfilter. Consider the case of  a single frequency. 

The constraints can be written as 

h-~c=cos(w~q) and h~s=-sin(wcq) ,  
(lO) 

where the elements of  h q v are hq (i) and the elements 
of  c and s are c~ = cos(w¢iN) and s~ = sin(wciN), 

respectively. For ~o¢ of  the form ~rm/N, one of  the 
pair of  real constraints is automatically satisfied 
for some or all values of  q. These real constraints 
for the general case can be incorporated into the 
design procedure using Lagrange multipliers. The 
Signal Processing 

The linear phase FIR Nyquist filter design pro- 

cedure of  [6] can be modified to allow exact repro- 

duction of  certain frequencies. The focus of  that 

paper  is the design of factorable filters. That aspect 

will be stressed less here, though the modified 
Nyquist filter can be forced to be factorable and 

the factorization techniques discussed in [6] still 
apply. 

The constraint of  a correct response at frequency 
wc (assumed to be in the passband for clarity of  

exposition) requires that the responses at the stop- 
band frequencies 2 ~ l / N + w c ,  1= 1 , . . . ,  N - 1  be 
exactly zero. This can be accomplished by forcing 
the overall Nyquist filter to have a factor with zeros 
at those frequencies. This factor is the filter Hc(z) 
of (8). 

The heart of  the procedure in [6] involves 
decomposing the Nyquist filter into two parts - 
one controlling the s topband and one controlling 
the passband. Interaction between the passband 



P. Kabal, E. Dubois / lnterpolating filters with constraints 

and stopband filters requires an iteration of the 
designs, i.e., the stopband filter is redesigned taking 
into account the response of the passband filter. 

The modified procedure to include the effect of 
a constrained response at frequency Wc can be 
summarized as follows. Let the passband be the 
frequency range [0, top]. The stopband is then the 
frequency range [2~r/N - top, 7r]. Let the passband 
linear phase filter be Ho(z) and let the stopband 

linear phase filter be Hi(z). The overall filter is 
Ho(z)Hc(z)H~(z). The weighting function for the 

stopband region is W(to). 

0. Initialization. Let Ho(z)= 1. 
1. Stopband design. The desired response of  the 

filter H~(z) has the value one at to---0 and is 
zero in the stopband. The stopband weighting is 

W'(to) = W(to)lHo(eJ~)Hc(eJ°') I. 

The Remez exchange algorithm operating on a 
discretized frequency grid can be used to design 
a stopband filter which approximates the 

desired response [2]. 
2. Passband design. Ho(z) is designed to force zero 

crossings into the impulse response of the over- 
all filter. This requires the solution of a set of 
linear equations to determine the coefficients of 
Ho(z). The linear equations involve the impulse 
response coefficients of the combined filter 
Hc(z)H,(z). 

3. Iterate the design, repeating steps 1 and 2 until 

the responses no longer change significantly. 

For certain combinations of filter length and 
interpolating ratio, H,(z) has an even number of 

coefficients. In that case, since H,(z) is linear 
phase, there is a null in the frequency response at 

to = rr. This null obviates the need for He(z) to 
include a zero at z = -  1. 

Factorability of the Nyquist filter can be assured 
by using H2,(z) as the stopband filter (with 
appropriate modification of the weighting func- 
tion) and using H~(z) as the constraint filter. In 
the factorable design, the factor Hc(z) appears in 
both the minimum phase and the maximum phase 
parts of the filter. The presence of the term H2c(Z) 
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can reduce the number of  coefficients available for 
the design of  the passband and stopband filters 
significantly. However, in Nyquist filter applica- 
tions, the stopband suppression requirement 
usually applies to each of the minimum and 
maximum phase factors individually. This means 
that the number of coefficients for each of these 
factors is sufficiently large to allow for the inclusion 
of at least some frequency constraints. 

Although the focus of this paper is the constrain- 

ing of  the response for certain input frequencies, 
similar principles can be applied to force a null 

into the response of the filter at some particular 
stopband frequency. In data transmission applica- 
tions, such a null can be used for pilot tone 
insertion. 

5. Approximate solutions 

The discussion above has involved exact con- 
straints on the response for input sinusoids. In this 
section, alternate approximate solutions are 
investigated. 

5.1. Interpolating filter 

The formulation for a constrained response 
changes the form of the equations from that for 
the unconstrained mean-square minimization. If 
the input signal model is modified to include a 
sinusoidal component,  the mean-square error will 
include the effect of this sinusoid. By increasing 

the amplitude of the sinusoidal component relative 
to the other components of  the signal, the error at 
the frequency of  the sinusoidal component will 
receive more weighting. 

The sinusoidal component  is a signal of  the form 

s(n) = Ac cos(tocn + 0), (13) 

where 0 is a uniformly distributed random phase. 
This randomized phase component  is appropriate 
to force the solution to be independent of phase. 
In addition, the resulting autocorrelation is station- 
ary. The autocorrelation of  the signal plus sinusoid 
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6. Design examples 

r'~x(k) , 2  = rxx(k) +~Ac cos(rock). (14) 

The coefficients of the interpolating filter can be 
found by using the modified correlation function 

in the equations for the unconstrained minimiz- 
ation. 

A potential problem with this approach is that 

the correlation matrix becomes increasingly ill- 
conditioned as Ac increases. The rank of the matrix 
approaches 2 in the limit of  large Ac. For moderate 
values of Ac, the effect of  the modified correlation 
matrix will shift the solution so as to reduce the 

mean-square interpolation error for inputs of 
frequency toc. 

5.2. Nyquist filter 

The standard Nyquist design procedure can be 
modified to include constraints at a certain 

frequency by using a constrained filter design pro- 
cedure for designing the stopband portion of  the 
filter. As an alternative, an increased weighting can 
be given to the aliased frequencies of a given input 

sinusoid. A large weight at the aliased frequencies 
will tend to force zeros to occur at those frequen- 
cies. Such strategies are appealing since the stan- 
dard Nyquist design procedure needs to be only 
slightly modified to constrain or weight the 
response for sinusoidal inputs of  a given frequency. 

Several filters were designed to illustrate the 
procedure described in this paper. 

In terpola ting filters 

First, we return to the application that motivated 
the search for means to constrain the response. 

Consider the interpolating filter needed to convert 
a CCIR luminance signal (sampling rate 
13.5 MHz) to an NTSC luminance signal (samp- 
ling rate 14.4 MHz). A sampling rate conversion 
factor of 35/33 is used. This corresponds to inter- 

polating by a factor of 35 and then subsampling 

by a factor of 33. Here we focus on the interpola- 
tion step. An interpolation filter was designed ( N = 
35) with 279 taps (8 non-zero taps for each output 
sample), and with the input power spectrum 
modelled as a raised-cosine response with transi- 

tion between 5 MHz and 6MHz.  Applying a 
sampled test pulse (rise and fall times 125 ns, 
measured between the 10% and 90% points) gives 
the time response shown in Fig. 1. The peak ripple 
due to dc reconstruction errors is 2.3%. 

The interpolation filter was redesigned with a 
dc constraint. The corresponding pulse response 
appears in Fig. 2. The top of response is now flat. 
The change in impulse response needed to accom- 
plish this change is very small - the maximum 
change in any filter coefficient is 0.0034. 

~ 0.5 

< 

0.8 
Time- /is 

1.2 2 116 

Fig. 2. Response of a constrained interpolation filter to an input T-step pulse (125 ns rise and fall times) ( N  = 35,279 coefficients, 
sampling rate 472.5 MHz, designed for a raised-cosine power spectrum with transition between 5 MHz and 6 MHz, constrained at dc). 

Signal Processing 
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Consider  an example to illustrate a const ra ined 

design for  a short  filter. The interpolat ing ratio is 

N - - 5 .  The input  power  spectrum is assumed to 

be a raised-cosine,  flat to 0.8"rr/N and then rolling 

off to become  zero at r r /N.  Each subfilter has 6 

coefficients, giving a filter with a total length o f  29 

coefficients (24 non-zero,  non-uni ty  coefficients). 

The overall filter is l inear phase. Figures 3 and 4 

compare  the f requency response o f  the uncon-  

strained design with that  for  a filter which requires 

20 

10 

0 

-10 

g 
< -20 

- 3 0  

- 4 0  
0 .2n  0 . 6 n  0 .4 r l  

Frequez cy 

A A 
O. 8n 

Fig. 3. Frequency response of an unconstrained interpolation 
filter ( N = 5, designed for a raised-cosine power spectrum with 

transition between 0.16rr and 0.2"rr). 

2O 

IO 

0 

- 1 0  

~, - 2 0  

- 3 0  

- 4 0  
0 .2n  0.4 t l  

Frequency 

I  AAft 
0 . 6 n  O.8n n 

exact reproduct ion  o f  dc and a f requency of  

0.5~r/N. Three degrees o f  f reedom for each 

subfilter are used up in meeting these constraints.  

The original uncons t ra ined  filter has a peak dc 

ripple o f  7.2% and a peak ampli tude ripple o f  2.5% 

for a sinusoidal input  at 0.5~r/N. The uncon-  

strained filter has normal ized mean-square  inter- 

polat ion errors of  0, 6 . 6 3 x 1 0  3, 17.12x10-3,  

17.12 x 10 3 and 6.63 x 10 -3 for sample phases q = 

0, 1, 2, 3 and 4, respectively. The signal-to-noise 

ratio (SNR)  cor responding  to the mean-square  

error averaged over sample phases is 20.22 dB. For  

the constra ined filter, the cor responding  normal-  

ized mean-square  interpolat ion errors are 0, 7.29 x 
10 -3 , 18 .79x10  -3, 18 .79x10  -3 and 7 .29x10  -3 . 

These mean-square  errors are calculated using the 

same raised-cosine power  spectrum model  for the 

input  signal. The S N R  for  the constrained case is 

19.82 dB. The penalty paid for the constraints is 

small as measured  by the mean-square  interpola- 

t ion error. The constra ined filter has zeros at the 

appropr ia te  frequencies to avoid aliasing o f  the 

constraint  frequencies.  Since these zeros are in the 

s topband,  the s topband at tenuat ion o f  the filter is 

comparab le  to that o f  the unconst ra ined  filter. 

The approximate  design technique using an 
autocorre la t ion  funct ion with added  sinusoidal 

componen t s  was tested for  this design case. With 

the relative ampli tude o f  the autocorre la t ion o f  the 

dc and sinusoidal componen t s  set to 1000 times 

that o f  the original autocorre la t ion funct ion at 

k = 0 ,  the results are very close to that o f  the 

contra ined optimizat ion.  The resulting filter 

exhibits ripples o f  less than 0.0002% at the con- 

strained frequencies. No  numerical  difficulties 

were encountered  with this case (double  precision 

arithmetic) unless the relative ampli tudes o f  the 

autocorre la t ion  terms for the dc and sinusoidal 

componen t s  were set to be extremely large (more 
than 1012). 

Fig. 4. Frequency response of a constrained interpolation filter 
(N = 5, designed for a raised-cosine power spectrum with 
transition between 0.16rr and 0.2xr, constrained at dc and to~. = 
0.1~r). Note the spectral nulls at 0.3w, 0.4"rr, 0.5"rr, 0.7rr, 0.8~r 

and 0.9~r. 

Subfilters of different lengths 

In the previous example,  each subfilter was o f  

length 6. A second example,  using the same con- 
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straint frequencies, shows the effect of  using 

subfilters of  different lengths, again with a total of  

24 non-zero, non-unity coefficients. However,  now 

the subfilter lengths are distributed as 5 (q = 1), 7 

(q =2) ,  7 (q =3 )  and 5 (q =4).  As shown in the 

appendix,  the design of interpolating filters 

accommodates  an overall F IR filter h(n) with 

arbitrary length subfilters. However,  if we use a 

design procedure which generates equal length 

subfilters, we can design several h(n) of  different 

lengths and extract the needed subfilters. The 
length 5 subfilters were extracted from a 23 tap 

filter, while the length 7 subfilters were extracted 

from a 35 tap filter. Decreasing the length of the 

subfilters for q = 1 and q = 4 from 6 to 5 increases 

the mean-square error at those sampling phases, 

while increasing the length of the subfilters from 

6 to 7 for q = 2 and q = 3 decreases the mean-square 
error for those sampling phases. The resulting filter 

has normalized mean-square errors of  0, 12.03 x 
10 -3, 13.13 X 10 3, 13.13 x 10 -3  and 12.03 x 10 -3. 

There is a small net benefit with different length 

subfilters - the corresponding SNR improves to 

19.97 dB. The frequency response of this filter is 
shown in Fig. 5. Note that in this case the passband 
is much flatter, but the s topband suppression is 
poorer. 

20 • , . . . . . . .  

- 2 0  

- 3 0  

- 0 0  
0 . 2 n  O,4n O,6n O,8tr 

F r e q u e n c y  

Fig. 5. Frequency response of  a constrained interpolation filter 
with different length subfilters ( N  =5 ,  designed for a raised- 
cosine power spectrum with transit ion between 0.16,~ and 0.27, 
constrained at dc and wc=0.1"rr ). Note the spectral nulls at 

0.3"rr, 0.47, 0.5~, 0.7~, 0.87 and 0.9~r. 

Signal  P r o c e s s i n g  
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Nyquist filter 

The design example for a linear phase Nyquist 

filter has 29 coefficients. The design uses N = 4 

and a s topband edge at 0.375~r. The filter is factor- 
able into a minimum and maximum phase part, 

each with 15 coefficients. The overall Nyquist filter 

shows a peak dc error of  0.15%. This f l ter  was 

redesigned using the factorable Nyquist approach 

with the dc response constrained. The frequency 

responses of  the unconstrained and constrained 

designs are shown in Figs. 6 and 7. The constraint 

10 

0 

- 1 0  
r,, 

- 2 0  

< - 3 0  

- 4 0  

- 5 0  
0.2r t  0 . 4 n  0 . 6 n  O,8n n 

F r e q u e n c y  

Fig. 6. Frequency response of an unconstrained min imum 
phase factor of  a Nyquist  filter ( N  = 4, s topband edge 0.375~). 

0 

- 1 0  

'~ - 2 0  

< - 3 0  

- 4 0  

- 5 0  
0 . 2 n  0 . 4 n  0 . 6 n  O,8n n 

F r e q u e n c y  

Fig. 7. Frequency response of a constrained min imum phase 
factor of  a Nyquist  filter ( N  =4 ,  s topband edge 0.375"rr, con- 

strained at dc). Note the spectral null at 0.57. 
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reduces the stopband suppression by 2.1 dB. The 
alternate approach using a large weighting at the 
aliased constraint frequencies generates a filter 
very close to that for the exact constraint method. 

7. S u m m a r y  and  c o n c l u s i o n s  

This paper has introduced the concept of con- 
straining the response of an interpolating or 
Nyquist filter to give error-free response at certain 
frequencies. The ability to design filters with such 
properties is important in many practical applica- 
tions. The results show that the presence of con- 
straints need not significantly degrade the perform- 
ance of the filter as measured in terms of interpola- 
tion error or stopband suppression. In addition, 
approximate techniques can be applied to the filter 
design process. These approaches have the 
advantage of requiring only minor modifications 
to existing design procedures. 

A p p e n d i x  A.  M i n i m u m  m e a n - s q u a r e  

error  i n t e r p o l a t o r  

The system under consideration is shown in Fig. 
A.1. The input signal is assumed to be a stationary 
process with autocorrelation function rx~(k). The 
input signal is subsampled and then sample rate 
increased to produce the signal u(n). The signal 
u(n) contains every Nth sample of x(n) with zero 
samples in between. 

The output signal y(n)  can be written as 

y ( n ) =  Z h ( k ) u ( n - k ) ,  (A.1) 
k 

or in vector form 

y(n) = hVu I"). (A.2) 

The limits of the sum (and hence the range of 

•r • •• • • 

Fig. A.1. Block d i a g r a m  for in t e rpo la t ion  mode l .  

indices in the vectors) are left unspecified in order 
to simplify the notation. The mean-square interpo- 
lation error is 

e(n) = E[x2(n)] -2hVE[x(n)u  ~n~] 

+ h T E[u~")u~n)v]h 

= rxx(0) - 2hga~)+  hTR~')h, (A.3) 

where the matrix R ~"~ is the matrix of correlations 
for u(n) and the vector a ~"~ is the cross-correlation 
between x(n)  and n ~"~. The nonzero elements of 
R ~") and a ~"~ can be expressed in terms of the 
correlation of x(n).  Many rows and columns of 
R ~") and elements of a ~"~ are zero due to the fact 
that N - 1 out of every N samples of u(n) are zero. 

The mean-square interpolation error varies with 
the sampling time n. Further examination shows 
that the mean-square error is cyclo-stationary. 
Writing n = raN+q,  the mean-square error 
depends only on the sample phase q. For a given 
sample phase q, only a subset (every Nth 
coefficient) of the coefficients of h(n) is used in 
producing the output sample. Then one can find 
a reduced set of equations for sample phase q, 

eq = r~x(O) - 2hqotqT d- h TqRhq, (A.4) 

where 

R =  

G~(O) r x ~ ( N )  • • " 

G x ( - N )  r~(O) • • • 

and 

and 

h ( - N + q )  1 
hq = h(q) ] 

h ( N + q )  ] 

[ G x ( - N +  q)] 
aq = Gx(q) • 

rx~(N+q) 

(A.5) 

(A.6) 
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The matrix R is Toeplitz and does not depend 
on q. 

The minimum mean-square error is found by 

differentiating the above equation with respect to 

the filter coefficients. This leads to the discrete 

Wiene r -Hopf  equation, 

Rhq = ~q .  (A.7) 

The resulting mean-square error for sample phase 

q is 

eq = rxx(0) - hTaq. (A.8) 

This value depends on q. With the appropriate  

range of filter coefficients (h (0) included) the error 

is exactly zero for q = 0. 
For equal length subfilters, the mean-square 

error increases from 0 for sample phase zero to a 

maximum for a sample phase at or near N/2 (see 

[4, 5]). This suggests that increasing the lengths of  

subfilters for sample phases with large mean- 

square errors relative to other subfilters would be 
beneficial. In some cases, for a fixed computat ional  
effort (averaged over all subfilters), the average 
mean-square error can be decreased over the case 

in which all subfilters are of  the same length. 

P. Kabal, E. Dubois / lnterpolating filters with constraints 

was conceived originally by H. L. Nguyen of 

INRS-Telecommunicat ions  for a video transcod- 

ing application [3]. 
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