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Abstract: In this work, the idea of combined shaping and 
coding of a signal constellation over a multitone channel is 
introduced. In selecting such a constellation, we are faced 
with the problems of distributing the rate and the energy 
among the subchannels. Assuming continuous approxima- 
tion, these factors can be selected independently. However, 
in the discrete case, one obtains a better performance by 
using a joint optimization procedure. More importantly, 
often the structure of the constellation boundary imposes 
some restrictions on the rate distribution. This provides a 
stronger coupling between these factors. We introduce two 
joint optimization methods, partly integer, for distributing 
the rate and the  energy. In the first method, the minimum 
distance to noise ratio (protection) along all the dimensions 
is the same. The  proposed method maximizes this protec- 
tion. In the second method, this restriction is relaxed. In 
this case, the average error probability is minimized. Nei- 
ther of these methods has a higher complexity than the 
conventional schemes. The  second method outperforms the 
first one. As part of the calculations, we have found a closed 
form formula for the weight distribution of the scaled E8 
lattice. 

1. Introduction 

An orthonormal set of M modulating signals divide a chan- 
nel into M one-dimensional subchannels. In general, the 
subchannels have both time and frequency overlap. The 
channel noise is assumed to be additive Gaussian of unity 
power. The set of the modulator, channel and demodulator 
is normalized to provide unity gain in each of the subchan- 
nels. This is equivalent to M one-dimensional subchannels 
with additive Gaussian noise of powers a?, i=O,. . . , M-1. 
In general, if the original noise is colored or the channel is 
nonflat, the a,'s will be different. 

In selecting an N-dimensional constellation, N < M ,  
over this channel, we should select a finite set of N- 
dimensional points bounded within a shaping region R N .  
In continuous approximation, the distribution of points is 
approximated by a continuous uniform density within R N .  
In this case to have equal minimum distance along differ- 
ent dimensions a t  the channel output, the volume of the 
Voronoi region a t  the  channel input should be proportional 
to n a,, where the  product is over the set of the constella- 
tion dimensions. The ratio of the volume of RN,  ~ ( R N ) ,  

and n u ,  determines the rate. The second moment of R N ,  
I ( R N ) ,  determines the energy. The design objective'is to 
minimize the probability of error for a given rate and en- 
ergy. The optimum point is achieved by leaving M-N of 
the subchannels empty. The  number of empty subchan- 
nels is affected by two conflicting phenomena: (i) A larger 
number of empty subchannels decreases n u , .  (ii) For a 
fixed second moment, decreasing the dimensionality results 
in a lower ~ ( R N ) .  For a fixed n a,, fixed rate and fixed en- 
ergy, the volume of the Voronoi region and consequently the 
probability of error is determined by V(RN) .  The structure 
of the regions which maximize V ( R N )  for a given I ( R N )  is 
introduced in [I]. These regions have equal second moments 
along different dimensions. This results in an equal distri- 
bution of energy. In this case, the rate is (independently) 
distributed such that  the minimum distance to noise ratio 
along all the dimensions is the same. This is a special case 
of a more general result that  in continuous approximation 
coding and shaping are independent. In other words, as 
far as coding is concerned, the constellation is assumed to 
be an infinite array of points without boundary and as far 
as shaping is concerned, it is assumed that  there are in- 
finite points within the shaping region. In this case, the 
performance measure has independent factors which can be 
optimized separately. 

However, in the discrete case these factors are coupled 
and one gains by using a joint optimization procedure. The 
first coupling is due to the fact that  in a constellation with 
finite cardinality, rate is a discrete quantity. A stronger 
coupling is produced by the addressing scheme. Address- 
ing is the assignment of the data bits to the constellation 
points. The  addressing complexity is a major attribute 
of the shaping regions. To obtain regions with tractable 
complexity, one should impose restrictions on the rate dis- 
tribution. For example, in this work the number of the 
points in each two-dimensional subconstellation is of the 
form 2 R ~ ( l  + 2/N) where N (dimensionality) is an integral 
power of two and the R,'s are integer numbers greater than 
or equal to log,(N/2). 

In the proposed methods these two factors are jointly 
selected to minimize the probability of error. In the first 
method, the minimum distance to noise ratio along all the 
dimensions is the same. In the second method, this restric- 
tion is relaxed. This freedom is used to reduce the effec- 
tive number of the nearest neighbors of the coding lattice. 
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Neither of these methods increases the complexity over the 
conventional schemes. The  second method outperforms the 
first one. 

2. Boundary shaping 

Shaping is based on a modified version of the method in- 
troduced in [2] and generalized in [3]. In our case there 
are different number of points in different two-dimensional 
subconstellations. To transmit R bits per two dimensions 
in an N=2n-dimensional TCM (Trellis Coded Modulation) 
scheme with one bit redundancy, a signal constellation with 
2nRt1 points is needed. Assume that  the rate allocated to 
the j ' th subspace is Rj. To construct the constellation, the 
two-dimensional subcbnstellations are divided into an in- 
ner group and an outer group. The  number of points in 
the inner group of the j'th subconstellation is equal to 2 R ~ .  
The integer numbers R j  satisfy Cj Rj=nR. The number of 
points in the outer group is l / n  of that  in the inner group. 
This is possible if n is a power of two and R j  1 log2(n). 
The inner group is selected as the cross constellation with 
rate Rj, [4]. The outer points are selected as a subset of 
the cross constellation with rate Rj+l  located around the 
inner group and with the least energy. Both the inner and 
the outer group have four way symmetry and contain an 
equal number of points from each partition of an Unger- 
boeck partition chain. These are important considerations 
in a practical implementation, [2]. 

The N-dimensional constellation is constructed by con- 
catenating n such two-dimensional subconstellations and 
excluding the N-dimensional points corresponding to more 
than one two-dimensional outer point. Addressing is 
achieved by a lookup table with (l+nlog2 n) input lines 
and n[log2(l+n)l output lines. 

The Constellation-Expansion-Ratio (CER) of a shaping 
region is defined as the ratio of the number of points per 
two dimensions to the minimum necessary number of points 
per two dimensions, [3]. For the region under consideration, 
CER is equal to ( l + l / n )  x 2-('In). 

For each two-dimensional subconstellation, the inner 
group is used N-1 times as often as the outer group. This 
means that  the average energy per two dimensions is equal 
to (N-1)/N times the average energy of the inner group 
plus 1 / N  times the average energy of the outer group. Ta- 
ble 1 shows the average energy per two dimensions(A) for 
N=8 and for a minimum distance of one as a function of 
the rate per two dimensions (R). Column A,(R) is the en- 
ergy obtained by applying continuous approximation to a 
rectangular region, Ac(R) = 2(R+0.25)/6. 

3. Coding 

The points of the two dimensional subconstellations belong 
to the half integer lattice (cross constellation, [4]). Different 
two-dimensional subconstellations are scaled with different 
scale factors. Consequently, the N-dimensional points be- 
long to a scaled version of the N-dimensional half integer 

Table 1 Average energy per two dimensions as a function 
of the rate for a minimum distance of one, N = 8. 

lattice. This lattice is partitioned into the cosets of a sub- 
lattice. The unscaled version of this sublattice is denoted 
as the baseline lattice. I t  should be mentioned that scaling 
does not change the group property of the lattices. Conse- 
quently, the coset decomposition is the same as in the un- 
scaled lattices and the cosets are congruent t o  each other. 
Scaling also preserves the distance invariance property, i.e., 
from every point of the scaled lattice the surrounding points 
look the same. In each signaling interval some of the data 
bits are encoded and used to select one of the cosets. The 
rest of the da ta  bits select a point within the selected coset. 
We assume tha t  the dominant error event is the error within 
a coset. This is the case in most of the TCM schemes. The 
numerical examples are based on dimensionality eight and 
the baseline lattice Es, [5]. 

3..1 Weight distribution of the scaled lat- 
t ices 

The weight distribution of a set of points A with respect to 
a given center is defined as, [5], 

where llull is the norm of vector associated with point u and 
N ( x )  is the number of the points a t  square distance x from 
the center. For a set of points with the distance invariance 
property, the weight distribution function is independent of 
the center. This is the case for a scaled lattice. 

We assume that  the square minimum distance along the 
j ' th two-dimensional subconstellation ( j  E [0, N/2-11) is 
equal to D,. Using the trellis diagram of the lattice based 
on the squaring construction [6], we calculate the weight 
distribution of the scaled lattice E8. The result is, 

where, 
q , = q 4 D ~ ,  j = O , 1 , 2 , 3 ,  

and O2 and O3 are the Jacobi theta functions, [5]. This 
expression will be used in calculating the error probability. 



4. Probability of error 

For an additive Gaussian noise of power a 2 ,  the probabil- 
ity of error between two points with distance d is upper 
bounded by, 

P < I- exp (-d2/2a2). "-6 
Substituting (3) in the union bound results in an upper 
bound for error probability. This bound can be calculated 
by substituting q=exp[-1/(2a2)] in Oh-1, where Oh is 
given in (I) ,  and multiplying the result by 1 1 6 .  In prac- 
tice, we truncate the  weight distribution to the set of the 
nearest neighbors. This is based on the assumption that  
after scaling, the points in the second shell do not come 
nearer to the center than the points in the first shell. For 
the lattice E8, truncating (2) to the set of the 240 nearest 
neighbors, results in, 

where Zj= exp (-Dj/2Nj) and Nj,Dj are the noise power 
and the square minimum distance in the j ' th two- 
dimensional subspace. We use the notation P, - F(Z,, j = 
0,1 ,2 , ,  3) to show the function in (4). 

5. Problem statement 

We have an Mo-dimensional multitone channel. The avail- 
able energy is equal to Eo. We use a Fourier basis for mod- 
ulation. We leave Mo-No of the dimensions empty. In the 
case that  Mo is odd, the dimension with the highest noise 
power is always empty. The noise powers of the remaining 
dimensions are pairwise equal. The two dimensions with 
the equal noise power constitute a (two-dimensional) sub- 
channel. From now on the  word subchannel refers to a two- 
dimensional subchannel. The  nonempty subchannels are in- 
dexed by i € [O,. . . , no - 11, no = N0/2. These are divided 
into K groups each of N dimensions. A two-dimensional 
subconstellation is employed over each subchannel. This re- 
sults in an N-dimensional subconstellation over each group. 
Each group uses an independent TCM scheme. The total 
rate is equal to Ro = noR + K corresponding to R bits 
per each nonempty subchannel and one bit redundancy for 
each coding group. The two-dimensional subconstellations 
are indexed by (k, j )  where k E [O, K - 11 is the index of 
the group and j E [O,n - 1],n = N/2 is the index within 
the group. The  noise power, the square minimum distance 
and the minimum distance to noise ratio (protection) of 
the (k ,  j) ' th two-dimensionalsubconstellation are shown by, 
N,k, Dj and qk = respectively. The corresponding 
rate and energy are related by, 

where A(R) is given in Table 1. 

The  total gain of the system, yt, is defined a s  the sav- 
ing in energy with respect to a reference system with the 
same probability of error. The referencesystem uses an Mo- 
dimensional flat channel with unity gain and is composed of 
the points of the cubic lattice (no coding) bounded within 
a hypercube (no shaping). For the reference system,, we 
assume continuous approximation and use (3) for the error 
probability. Equating the error probabilities, y, is equal to 
the ratio of the energies. This results in, 

where Q is the data rate per two dimensions of the reference 
system, Q = NoR/Mo. The yt reflects (i) the shaping gain, 
(ii) the coding gain, and (iii) the degradation caused by the 
nonflat transfer function of the channel. This degradation 
is due to a loss in dimensionality and/or having n o ;  greater 
than one. I t  can be shown that  in continuous approxima- 
tion, y, is the product of three factors, each representing 
one of these effects. 

We are looking for R,k's, E$'s and a rule for grouping 
the subchannels. This is expressed in terms of the one-to- 
one assignment (j, k)-i, where ( j ,  k )  is the index of the 
two-dimensional subconstellation and i is the index of the 
two-dimensional subchannel. The objective is to maximize 
y, or equivalently to minimize PC. As R is an integer, it 
is usually impossible to change No while keeping the total 
da ta  rate, NoR/2, constant. As a result different systems 
obtained by changing No can not be easliy compared. This 
means that  No should be considered as a fixed parameter 
of the scheme and then the whole scheme can be compared 
with other possibilities to make the final selection. 

6. First method: Equal protection along 
the subchannels 

For equal protection, we set = Po, Vj, k. In this case the 
optimization problem is formulated as: 

' Maximize Po 

< 

K-1 n-1 

Subject t o :  1 1 R: = noR, R,k E N, R: 2 log2(n) 
k=0 1=0 
K-1 n-1 

1 CE;=EO, q > o ,  
\ k=O j=o 

(7) 
where N is the set of integers. Combining (5) and (7) results 
in, 



Using (8) the optimization problem in (7) reduces to, 4. Find the smallest integer m _< no such that  for i l , i2  f 
[O,m - 11, the elements in the  set indexed by i l  are 

K-1 n-1 ( Minimize x A(R,~)N; obtained by the permutation of the elements in the 

k=n ~ = o  set indexed by i,. These two-dimensional subconstel- 

1 
< - 

K-1 n-1 lations are the candidates for receiving the bit. 
Subject to :  R: = nOR, R: E N ,  R: > log,(n). 

k=o 3=0 5. Allocate one bit to the candidate which bv receiving it 
(9) 

" 
will result in the least increase in the objective func- 

In this case the assignment ( j ,  k ) @ i  is arbitrary. This tion. Update the rates. If there are still bits to be 
problem is solved by the following algorithm: distributed go to step 2, otherwise quit. 

1. Set R,k = log2(n), Qj, k. no[R- log(n)] bits remain to 
be distributed. 7..1.2 Optimum Energy Distribution for a Given 

Rate Distribution 
2. Allocate one bit to the two-dimensional subconstella- 

tion with the least value of [A(R: + l ) - A ( ~ : ) l  N). The  objective function in (10) is a convex U function of 

Update the rates. If there are still bits to be distributed 
E,k's. As a result, the global optimum point over the convex 

go t o  step 2, otherwise quit. 
region determined by the energy constraint is determined 
by the Lagrange method. This results in the following set 
of equations for E,k's. 

7. Second method: Nonequal protection 
along the subchannels a 

3 [p(z:,j = 0,1,  2,311 = AN:A(R:) 

In this case we minimize the average error probability of 
the whole system. This is formulated as, 

1 Minimize F(z:, j=0 ,1 ,2 ,3) ,  z:= exp (-D:/~N:) 

I 
k=O 
K-1 n-1 

Subject to: z R , k = n o ~ ,  R: E N ,  R,k 2 log,(n) 
k=O i=O 

(10) 
where D$ is related to E; and R,k by (5). The  rate/energy 
distribution and the assignment rule ( j ,  k ) ~ i  are deter- 
mined by a two step iterative procedure. The  first step 
itself is another iterative procedure and finds the optimum 
rate distribution for a given energy distribution and vice 
versa. As the starting point we use the answer obtained by 
applying the first method. In the second step, we find the 
optimum assignment rule (j, k ) ~ i  for the final answer of 
the first step. Then the two steps repeat. 

7..1 First step 

7..1.1 Optimum rate distribution for a given energy 
distribution 

Following algorithm is used to find the rate distribution: 

1. Set R! = log,(n), Qj,  k. no[R- log(n)] bits remain to 
be distributed. 

This set is solved by an iterative method. 

7..2 Second step: Assignment ( j , l c ) ~ i  

This problem is solved by the following algorithm: 

1. Arrange the nonempty subchannels according to the 
value of the noise power in increasing order and index 
them by i l  E [O,no - 11. 

2. Arrange the two-dimensional subconstellations accord- 
ing to the value of P; (protection) in the increasing 
order and index them by i2 E [0, no - 11. 

3. Assign the members of the two sets with the same index 
to each other. 

7..3 Special cases 

We can show tha t  if there exists a rate distribution such 
that  A(R,k)N;=constant, then this is optimum for the en- 
ergy distribution E,k=Eo/no and vice versa. This results 
in equal protection. Another special case arises when in a 
given energy updating step we obtain E,k=Eo/no. In this 
case if the total rate is a multiple of Mo, the optimum rate 
distribution will be of the form R,k=R. The converse is true 
if the noise powers along different dimensions are equal. 

2. Arrange the two-dimensional subconstellations accord- 
ing to the value of E;/A(R,~)N; (protection) in the 8. Example 
decreasing order and index them with il E [0, no - 11. 

In this example, we consider a (1 - D )  partial response 
3. Arrange the two-dimensional subconstellations accord- channel. The total number of dimensions is equal to Mo=27 

ing to the value of Ej/A(R,k + 1)N: in decreasing order and No=24 dimensions are nonempty. A zero is transmitted 
and index them with i2 E [0, no - 11. between successive Mo-dimensional blocks. This  brings the 



iannel t o  zero state a t  the beginning of each block. We 
have R=2 corresponding t o  a total da ta  rate of N0R/2=24 
bits. There are K = 3  coding groups each of dimensionality 
N=8.  Lattice Eg is used as the baseline lattice. Over a 
flat channel, the corresponding TCM scheme results in 5.41 
dB coding gain plus the shaping gain of the constellation 
boundary, [2]. We apply both of our design methods to 
this problem. The performance is measured in terms of the 
total gain, .yt, and the  probability of error. Figures (1) and 
(2) show these parameters as  a function of the energy per 
dimension, Eo/24. 

Referring to Fig. ( I ) ,  we note that  for low energy per di- 
mension the total gain decreases. This is due to the large 
number of the nearest neighbors. Referring to Fig. 2, we 
note tha t  the improvement of the second method is almost 
equivalent t o  multiplying the probability of error by a con- 
stant  factor. This can be considered as reducing the number 
of the nearest neighbors to some smaller effective value. A 
justification of this phenomenon is obtained by referring to 
(4). This equation is composed of the sum of 4 x 60=240 
terms. Each term corresponds to one of the nearest neigh- 
bors of the lattice Eg. I t  is seen that  the distance from the 
center to 1/15 of the neighbors is determined by the protec- 
tion along only one two-dimensional subconstellation. The 
distance to 6/15 of them is determined by the sum of the 
protections along two of the two-dimensional subconstel- 
lations. Finally the distance to 8/15 of the neighbors is 
determined by the sum of the protections along all the two- 
dimensional subconstellations. When the protections are 
added i t  makes no difference which subconstellation has a 
larger effect on the sum. This flexibility is used by the op- 
timization algorithm to reduce the effective number of the 
nearest neighbors. We note tha t  for lattices like the Leech 
lattice with 196560 nearest neighbors, [5], this improvement 
will be more pronounced. 
Summary and conclusions: We have designed a TCM 
coding scheme for signaling over a multitone channel. This 
is based on jointly selecting the internal structure (coding) 
and the  boundary (shaping) of the constellation. Instead of 
dealing with the rate as a continuous variable and rounding 
the result, we have used an  integer optimization procedure 
for the  rate allocation. Two different schemes are proposed. 
The first scheme has equal minimum distance to noise ratio 
along all the dimensions. In the second scheme this con- 
straint is removed. The  second method outperforms the 
first one. Neither of the two schemes has higher complexity 
than the conventional methods. As part of the calculations, 
we have generalized the concept of the weight distribution 
t o  the scaled lattices and found a closed form formula for 
the  weight distribution of the scaled Eg lattice. 
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