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Asymptotic Receiver Structures for Joint Maximum 
Likelihood Time Delay Estimation and Channel 

Identification Using Gaussian  Signals 

Daniel  Boudreau  and  Peter  Kabal 

timating  the  relative  time  delay  and  the  impulse  response  linking two 
Abstract-This correspondence  addresses  the  problem of jointly  es- 

received  discrete-time  Gaussian  signals. Using two different  methods, 
possible structures  for  the  joint  maximum  likelihood (ML) estimator 
are proposed, when the  observation  interval is long  compared  to  both 
the delay to  estimate  and  the  correlation  time of the  various  random 
processes  involved.  These  structures  generalize  the  cross-correlation 
method  with  prefiltering  that  implements  the ML estimation of pure 
time delays. 

I. INTRODUCTION 
In  this  correspondence,  we  derive  the  form  of  the  maximum  like- 

lihood  estimator  that  jointly  computes  the  estimates  of  the  time 
delay  and  the  impulse  response  that  link  two  observed  discrete-time 
Gaussian  signals.  The  model  assumed  for  these  two  signals is such 
that one signal  is  the  delayed  and  filtered  version  of  the  other.  It  is 
of the  form 

y,(n) = sin) + q ( n )  

yz(n) = CD,.hcn,[s(n)1 + o2(n) (1) 

where s(n)  is  the  transmitted  stationary  Gaussian  signal  and D, is 
a  time-varying  delay.  The  linear  operator SD,.hcni(. ) is  unknown 
and  takes  the  form of a  linear  filtering  operation,  with  the  filter 
impulse  response h(n) ,  of  a  delayed  by D, version  of  the  signal 
s(n). The  signals u , ( n )  and v 2 ( n )  are  zero-mean  Gaussian  stationary 
noise  processes,  assumed  unconelated  with  each  other,  as  well  as 
with s(n). All the  discrete-time  signals  defined  above  are  assumed 
to be  the  sampled  versions,  with  sampling  period T, of continuous- 
time  signals  that  are  strictly  band  limited  to  the  frequency  range 
-1/2T < f < 1/2T. 

The  operator SDm,h(nl[ * ] can  correspond to the  filtering  of  a  de- 
layed  version  of s(n) or to  a  filtering  operation  followed by a  delay. 
This  signal  model  may  be  applied  when  a  signal,  emanating  from 
a  remote  source,  travels  through  two  different  paths  and  is  moni- 
tored by two  spatially  separated  sensors  in  the  presence of  uncor- 
related  noise.  It can  also  apply  to  the  cases  of  noise  cancellation 
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(e.g.,  echo  cancellation) or equalization,  where  one  of  the  two  sig- 
nals  is  filtered  by  an  estimate  of SD,&,)( . ) or its  inverse.  In  this 
case  the  two  observed  signals  are  used  in  the  estimation of  the f i l -  
tering  and  delay  operation. 

In most  of  the  work  done  on  time  delay  estimation. it is  assumed 
that  the  filter h ( n )  is  either  absent or is  represented by a  simple 
gain.  The ML estimator  has  been  derived for this  particular  case, 
when  the  delay  is  constant  and  the  observation  interval  is  both  short 
[ 11 or large [2] and  when  the  delay  is  time  varying [3]. The  simplest 
form  of  estimator  is  obtained  for  the  case  of  constant  delay  and 
long  observation  interval.  The  stmcture of this  asymptotic  receiver 
is  that of a  cross-correlation  performed  on  a  prefiltered  version of 
the  two  signals ~ ~ ( n )  and ?‘>in). Because  of  its  simplicity,  this so- 
called  generalized  cross-correlation  method  has  been  largely  ac- 
cepted,  although  Champagne et al. have  shown  recently  that it can 
lead to large  errors  when  the  actual  observation  interval is short 

The  purpose of this  correspondence  is  to  present  some  possible 
stmctures  for  the  asymptotic M L  receiver,  when  the  filter h(n)  is 
the  impulse  response of a  general  linear  time-invariant  filter  and 
the  delay D, is  assumed  constant  and  equal  to D. Very  little  work 
concerning  this  generalization  of  the  pure  time  delay  estimation 
problem  has  appeared in  the  open  literature,  despite  the  fact  that 
an  asymptotic  receiver  structure  is  easily  obtained  using  the  fre- 
quency  domain  and  simple  matrix  theory,  Before we  present  the 
outline of this  derivation,  we  express  the  signal  model  of  (1) in 
vector  form  and  give  the  likelihood  function for the  joint  estimation 
of the  delay  and  the  filter.  Since  the  form  of  this  function  is  essen- 
tially  unchanged  from  the  one  derived by Stuller [3] for  the ML 
estimation  of  a  pure  delay  over  short  observation  intervals,  we  pay 
tribute  to  his  work  by  extending  the  form  of  estimator  that  he  de- 
rived  to our  more  general  case  and by specializing it to the  asymp- 
totic  case.  We  then  show  that  the  same  result  can  be  obtained  with- 
out referring  to  the  general  (nonasymptotic)  case  and  give  another 
form  of  the  asymptotic  receiver.  Note  that the goal  of our work  is 
to  present  some  asymptotic  structures,  without  making  any  attempt 
to  study  the  performance  of  the  respective  receivers. 

[ I ] .  

11. THE LIKELIHOOD FUNCTION 

We  assume  that  the  reference  filter h(n) and  the  reference  delay 
D are  estimated.  respectively,  by  the finite  impulse  response w ( n )  
and by the  delay d. The  mathematical  model  for  the  observed 
waveforms is therefore  an  extension of the  one  used by Stuller [3] 
and  its  vector  form  is 

y(n) = s(n 1 d. H,) + u(nl ( 2 )  

where  the  vectors  are  defined  as 

It is assumed  that  the  zero-mean  Gaussian  noise  processes u I ( n )  
and v,(nj are  both  white  with  power  spectral  densities  of N 0 / 2  
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WIHz.  The  vector w is  defined  as  the  assumed  reference  filter 
weight  vector.  urhose  components  are  the  samples  of  the  impulse 
response w ( n ) .  Because  of  the  finite-length  nature of w ( n ) ,  the  vec- 
tor w also  has  a  finite  number  of  dimensions. 

The  objective is to  obtain  a  processor  that  computes,  over a cer- 
tain  discrete-time  interval [ n , ,  n21, the  probability  density  function 
pl. H . ( y ’ d .  w )  (or  a  function  of  it) of the  observed  signals v , ( n )  
and I ? ( I I ) ,  given  the  assumed  parameters d and w. The ML esti- 
mates d and & ( , I )  are  the  values  of d and w ( n )  that  maximize  the 
density or rhe  likelihood  function.  The  likelihood  function  can  be 
obtained bq extending  the  results in [4] or [3] for  the  maximum 
likelihood  estimation of the  parameters  of  Gaussian  procehses  in 
white  Gaussian  noise.  This is perfonned in detail  in 151, using  a 
vector  form of the  Karhunen-LoPve  decomposition [6] for  discrete- 
time  signals. It is assumed  that  the  transmitted  signal  covariance 
matrix Oss(k 1 d. w). defined  as 

OE, ( k  I d, w )  = E [ s ( n  + k I d ,  w )  sH(n Id. w ) ]  (6) 

is a  positive  definite  function  of  time,  which  implies  that  all  the 
eigenvalues  are  real  and  strictly  positive  numbers.  and  that  the  set 
of  vector  eigenfunctions  is  a  complete  orthonormal  set  over  the 
Interval [n,. n ? ]  [6]. Therefore, all  the  information  present i n y ( n )  
is present in the  series  coefficients,  for  a  number  of  terms  tending 
to  infinity. I n  the  present  case.  since  we  deal  with  discrete-time 
signals  over  a finite  time  intewal  of N = n2 - n ,  + 1 samples, N 
orthogonal  vectors  are  sufficient to represent g ( n )  [ 6 ] .  

The final  form  of  the  likelihood  function  is  found to be  the  sum 
of  a  noncausal  term / y ( d .  w )  and a bias  term I B ( d ,  w )  [3] and [4. 
pp. 10-141. Therefore. 

[ (d ,  W )  = ly(d,  W J  + I d d ,  W )  ( 7 )  

where 
n: n: 

l y ( d ,  w )  = l / N n  yH(n)Q2(rl .   rnld,  w ) g ( m )  (8) 
n = > , ,  , ) , = ) I ,  

and 

I n  (8). H denotes  complex  conjugate  tranpose. Q 2 ( n .  m 1 d. w )  is 
the  matrix  impulse  response of the  noncausal  linear  minimum  mean 
square  error  (MMSE]  point  estimator  of s(r1 d ,  w ) ,  from  the  re- 
ceived  vectory(r1).  given  the  parameters d and w [ 6 ] .  In (9). X,(d,  
w )  is  the  ith  eigenvalue of the  covariance  matrix m S s ( k  1 d.  w ) .  The 
matrix  impulse  response Q , ( n ,  m I d ,  w )  is given by the  solution of 

the  “normal“  equation 

= OSf(n - m i d ,  w) (10) 

for n, 5 n 5 n z .   n ,  5 m 5 n 2 .  
In order  to  compute  the  likelihood  function,  this  form of integral 

equation  must  be  solved  for Q,(n;  k 1 d ,  w ) ,  and  the  bias  term  must 
be computed.  The  solution of ( I O )  has  been  derived in [3] for  a 
pure  delay  by  using  the  reversibility  theorem [6] and  a  “construc- 
tive  derivation”  method.  This  method is extended  in [ 5 ]  to the 
general  case (1 )  for  a  finite  observation  interval.  The  received  vec- 
tory(n)  is first processed by a  linear  invertible  matrix  operator T ( n ) .  
which  output r ( n )  is  defined  as 

where LxJ denotes  the  integer  part o f x  and 2;; [ . ] is  the  inverse 
of Cd,, [  1. The  form  of  estimator  obtained  with  Stuller’s  method 
is  given  in  Fig. I ,  wheref(n,  m I w )  is  the  impulse  response of the 
noncausal  linear  MMSE  point  estimator  of z I ( n )  (the  noisy  part  of 
rl(n)) from z , (n)  (the  noisy  part of r2 (n) ) .  and g ( n ,  m 1 d ,  w )  is  the 
impulse  response of the  noncausal  linear  MMSE  point  estimator of 
s(n) from s(nl + z l l n )  - i,(n). The  signals s^,(n) and f,(n) are  the 
components of the  vector f ( n ) .  resulting  from  the  application of 
Q 2 @ ,  mid ,  w )  o n y ( n ) .  

The  complexity of  this  receiver  resides in the  evaluation o f f (n ,  
m I w ) ,  g ( n ,  m 1 d ,  w) and lB(d.  w )  that  must  be  done  for  a  finite 
observation  interval.  An  approximation  of  these  functions  can  be 
obtained by assuming  that  the  observation  interval is large in com- 
parison to both  the  delay  to  estimate  and  the  correlation  time of the 
various  random  processes  involved.  In  this  case,  the  computation 
of the  likelihood  function  is  done by using  time-invariant  filters  and 
frequency  domain  relationships.  The form of  the  estimator  ob- 



I :a IEEE  TRANSACTIOKS ON SIGNAL  PROCESSING.  VOL. 40. NO. 5 .  MAY 1992 

tained  using  this  method  is  of  practical  importance  because if the 
observation  time  is  long  compared  with  the  time  necessary  for  the 
system  transients  to  die  out,  the  estimator  performance  is  nearly 
optimum 141. The  assumption of a  long  interval  can  be  used  only 
to  solve  the  integral  equations  of  the  form  of  (10).  while  the  re- 
sulting  receivers  can  still  be  used  over  the  interval [n,, n2] (al- 
though,  as  pointed  out  in [ I ] ,  the  performance  can  be  poor if the 
interval is short).  The  result  of  this  approximation is  given in the 
next  subsection. 

Before  we  leave  the  subject of ML  estimation  over  a  short  ob- 
servation  interval. it is  important  to  mention  the  recent  work by 
Champagne et al. In  [7].  the  authors  have  considered  the  factor- 
ization  properties  of ML  space-time  processors in  nonstationary 
environments  which,  when  specialized  to  the  case  of  pure  delay 
estimation.  lead  directly  to  Stuller's  results.  In [ l ] ,  the  same  au- 
thors  derive  another  form  for  the  ML  pure  delay  estimator by ap- 
plying  a  dimensionality  reduction  technique  that  generalizes  Stull- 
er's  method.  The  extension  of  this  work  to  the  case of  joint  delay 
and  impulse  response  estimation  remains  a  potential  area of re- 
search. 

A .  The Likelihood Function fo r  a Long Observarion hrerval  
In  this  subsection,  we  present  briefly  the  form  of  the  critical 

components  of  the  asymptotic  likelihood  function.  The  impulse  re- 
sponsesf(n,  m I w) and g(n ,  m 1 d ,  w) are first given,  followed by 
the  asymptotic  form of the  eigenvalues h, used in the  computation 
of IB(d, w). 

J )  The Asymptotic Function l y ( d ,  w): When  the  observation  in- 
terval is long, it can  be  shown  that  both  the  impulse  responsesf(n, 
m 1 w) and g(n, m 1 d, w) become  time  invariant  and  independent  of 
d [ 5 ] .  They  are  given by 

and 

where Vi'(&&) = F[w(n)] ,  F [  ] is  the  Fourier  transform  operator 
and @.,,(e'") is  the  power  spectral  density  of  the  transmitted  scalar 
signal 5 (n). 

Under  the  asymptotic  conditions.  the  quantity L d / T ]  becomes 
negligible  compared to the  length  of  the  observation  interval  and 
the  matrix  operator T ( n )  is given  by  the  middle  equation  of (11). 
The  resulting  form  of Q 2 ( n i d ,  w), as shown in Fig.  1, is  a non- 
causal  processor.  and  a  causal  form  can  be  obtained by delaying 
the  matrix  impulse  response  and  the  input  vector by a  suitable  value. 

2) The Asymptotic Function lB(d ,  w ) :  Some  care  must  be  exer- 
cised  in  the  evaluation of the  bias  term  given  in (9). As N goes to 
infinity,  this  term  becomes  infinite  itself  because it can  be  ex- 
pressed as  the  integral  of  a  function of the  input  signal  power  spec- 
tral  density,  times  the  length  of  the  observation  interval  [3], [ 6 ,  p. 
2071. Proceeding  as in [ 6 ,  pp.  206-2071, it can  be  shown  that,  for 
N >> (TF,,J1, where F,,, is  the  maximum  frequency  contained 
in the  analog  signal s(i), the  asymptotic  form  of  the  eigenvalues  is 
independent of d and is given  by 

X i ( W )  = +.ir(e"2"'"' ) (  1 + 1 W(e"2"t ''IC ) I 2 ) .  (14) 

The  corresponding  vector  eigenfunction is 

The  eigenvalues  are  therefore  function  of w ( n )  only  and  can  be 
computed  using  (14).  The  asymptotic  bias  term  is  consequently 
also  independent  of d.  By using (9), (12)-(14)  in  Fig. 1. we  obtain 
a  form  for  the  asymptotic ML  receiver. 

111. SOLVING THE ASYMPTOTIC  INTEGRAL EQUATION IN THE 

FREQUENCY DOMAIN 

In the  asymptotic  case,  the  solution of  the  integral  equation (10) 
can be done  directly,  without  having to rely on  the  estimator  form 
for  arbitrary  observation  intervals.  This  implies  that  the  form  of 
estimator  based  on  the  impulse  responses of (12)  and  (13)  can be 
obtained  in  a  more  straightforward  manner.  We  present  this  result 
as  an  alternative  to  the  method  given  above.  Note  that  the  asymp- 
totic  form  of IB(w) does  not  change. 

When  the  asymptotic  condition N >> (TF,,,J' is  satisfied,  we 
can  set n ,  + --m and n2 + m and  write (10) as 

x 

! , - m  Q2(kId,  w)@,(n - k i d ,  W) = @,,(nId. W) (15) 

where @,(k 1 d ,  w )  is  defined  as 

= E[s (n  + k l d ,  w)sH(n1 d ,  w)] + E[u(n  + k)#(n)] 

= mSs ( k  I d ,   w )  + 1 Z6(k) N o  (16) 

with I representing  the  2 X 2 identity  matrix  and 6 ( k )  the  unit  sam- 
ple  function. 

Taking  the  Fourier  transform  and  solving,  the  frequency  domain 
solution  is  the  matrix  transfer  function  of  the  Wiener  filter,  given 
by 

Q2(e'"ld,  w) = @S,(e'"(d,  w)@,;'(eiYld, w). (17) 

Solving  the  above  equation  and  using  the  result  in (8) gives,  after 
some  manipulations 

l y (d ,  W )  = 1/2N, [ > O ( - I I ~  W )  0 y:(nT - d)]y2(n)  
n 

+ 1 / 2 N 0  [ G * ( - n  1 w) E y , (nT - d)]y: (n)  

+ 1/2N0 [ G * ( - n l w )  8 w-l(n)  8 y,(n)]y?(n)  

+ 1/2N0 [ @ ( n I w )  8 w(n)  0 y2(n)]yr(n)  (18) 
n 

where 

and 8 is  the  convolution  operator. 
The realization  of  the  asymptotic  estimator,  based  on (18). is 

illustrated  in  Fig. 2. It is  essentially  identical  to  the  one  of  Fig. 1 
with  the  definitions of (12) and  (13)  (and  some  block  diagram  ma- 
nipulations). 

Note  that if the  reference  filter  is  absent,  we  only  have to esti- 
mate  the  delay d .  In this  case,  the  two  bottom  branches  of  the  es- 
timator  and  the  bias  term  are  not  functions  of  the  delay  and  can  be 
removed  from  the  computation  of  the  likelihood  function.  This 
leaves  only I y ( d )  to compute  with  the  remaining  upper  part  of  Fig. 
2.  This  stmcture is  the  generalized  cross  correlator  implementing 
ML  delay  estimation wjhen complex  signals  are  used.  In  the  case 
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Fig. 2 .  Block diagram of an approximate noncausal Joint maximum llkelihood receiver 

of real  signals  and h ( n )  = 6 ( n ) ,  the  structure  simplifies  further  to 
the  exact  generalized  cross  correlator of Knapp  and  Carter  with  the 
likelihood  function  given by 

The  stmcture of Fig.  2 has  some  advantages  over  that of Fig.   1.  
First of all  it  clearly  identifies  the  delay  estimator as a  single  delay 
element.  It  is also given  in  terms of three  different  correlation 
branches  that  could  be  identified  as: 1) a  generalized  cross-corre- 
lation  branch  (the  upper  one)  involving y , ( n )  and y 2 ( n )  and 2) two 
generalized  autocorrelation  branches  involving  the  two  received 
signals  separately.  In  term  of  complexity,  the  two  structures  are 
more  or  less  equivalent  since  one  can  be  obtained  from  the  other 
by simple  block  diagram  manipulations. 

IV. CONCLUSION 

We  have  presented  in  this  correspondence  two  asymptotic  forms 
for  the  joint  maximum  likelihood  estimator, for time-invariant  de- 
lay  and  filter.  The  two  structures  can  be  obtained  by  specializing 
the  general  nonasymptotic form to  the  long  observation  case, or by 
solving  directly  the  asymptotic  normal  equation  in  the  frequency 
domain.  The  form  presented in Fig.  1 is  compatible  with  that  of 
the ML estimator  derived  by  Stuller.  The  estimator of Fig.  2 retains 
the  generalized  cross-comelator form defined  by  Knapp  and  Carter. 
The  structures  discussed  in  this  publication  can  be of practical  in- 
terest  in  evaluating  other  forms of suboptimum  joint  estimators for 

the  signal  model  of (1 ) .  They  are  also of academic  interest  since 
they  solve  the  generalization of the  pure  time  delay  estimation 
problem. 
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