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Abstract 
We view the speech enhancement task in two aspects: reduc- 

tion of the perceptual noise level in degraded speech and recon- 
struction of the degraded information, which may result in im- 
provement of speech intelligibility. We are also very interested in 
noiseindependent speech enhancement where test noise environ- 
ments could differ in intensity from those of algorithm develop- 
ment. To this end, we have developed in this paper an algorithm 
called Noise-Independent Statistical Spectral Mapping (NISSM) 
to estimate a speech enhancement Wiener filter. NISSM consists 
of a noise-resistant transformation, which converts noisy speech 
to a set of noise-resistant features, and a spectral mapping func- 
tion, which maps the features to autoregressive spectra of clean 
speech. We will show that the proposed algorithm effectively re- 
duces noise intensity. When the noise intensity of training differs 
from that of testing, NISSM outperforms significantly a conven- 
tional spectral mapping. The algorithm operates frame-by-frame 
and is designed for real-time application. The noise interference 
could be stationary or non-stationary white noise with variable 
intensity. 

I. Introduction 
Speech enhancement algorithms accept a speech signal which 

has been degraded by noise, and attempt to reduce the noise and 
render output speech of improved quality. From the viewpoint 
of perception, the objectives of speech enhancement are to re- 
duce the noise and to improve the intelligibility of the original 
speech. Reducing those aspects of the input signal which are due 
to the noise generally results in a reduction of the perceived noise. 
Speech enhancement has been investigated for many years, and 
several successful techniques have been reported (e.g. [1,2,3,4,5]). 
However, it has been found so far that only aslight improvement of 
intelligibility can be attained by speech enhancement. Significant 
intelligibility improvement is a continuing challenge for speech en- 
hancement and is important for practical application. Our lack 
of precise understanding of speech intelligibility cues has been a 
major factor in the limited success of improving speech intelligi- 
8 .  

odity of degraded speech signals. One certainty is that recovery 
of the original speech from the degraded signal should reconstruct 
(however inefficiently) the carrier of the speech intelligibility cues. 

Restricting our view to one-channel speech enhancement, we 
note several attempts in this direction in recent years. For ex- 
a p l e ,  spectral mapping [I] maps a noise spectrum directly to a 
corresponding clean spectrum. A second enhancement method, 
called waveform mapping [2], uses an artificial neural network to 
map a noisy speech waveform to a clean one. Thirdly, Hidden 
Markov Models (HMM) [3] can also be used to realize a mapping 
function to enhance speech. An HMM maps a sequence of noisy 
Spectra, instead of a single spectrum or a single waveform vector, 
to a sequence of clean spectra. Taking advantage of the temporal 
Structure of speech which is noise-resistant and can be captured in 

the HMM, this approach has practically demonstrated excellent 
performance. 

Mappings have been used as a common means to enhance de- 
graded speech. This approach has plausible reasoning on theoreti- 
cal grounds, and has demonstrated success on limited applications. 
However, we have noticed the common weakness that all mapping 
functions in previous work have depended very much upon the 
noise level of the speech signals on which they are trained, and 
that the mapping accuracy decreases when noise level increases. 
We have also noticed that the above weakness can be minimized by 
developing a mapping function based on noise-resistant features, if 
there are any. These insights motivated us to use a mapping tech- 
nique with noise-resistant features to enhance degraded speech 
so as to increase, if possible, speech intelligibility. In this paper, 
we present an algorithm denoted as Noise-Independent Spectral 
Mapping (NISM) which attempts to construct noise-independent 
mapping functions derived from speech statistics. In the next sec- 
tion, we give the theoretical description of our algorithm. The 
issues of practical implementation and experimental justification 
will be discussed in the third section. The final section gives some 
concluding remarks on the proposed system. 

11. Spectral mapping derived from statistics 
The general idea which we use here is introduced in [4], and 

exploits noise-resistant features of speech which are sufficient to 
describe the relevant underlying sources of the speech. The diffi- 
culty of finding a good mapping depends only on the reliability of 
the features. A mapping function can be trained from the feature 
space, instead of from the noisy speech. Then it can be applied to 
any range of noise level where the noise-resistant property holds. 

A. Mapping derivation 
Let s be a sample vector of noisy speech on space S and let 

y be a sample vector of clean speech on space Y ,  the latter be- 
ing generated by M independent and mutually exclusive random 
sources, Xk,l 5 k 5 M. Assume the noise to be additive and 
white with 

s = y + n ,  

where n is a sample vector of noise. The posterior pdf (probability 
density function) of the clean speech given the observed noisy 
speech vector is 

Since the noisy signal is independent of the speech signal, we have 
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The  conventional Minimum Mean-Square Estimation (MMSE) of 
the clean speech is: 

where y ~ ,  is  a sample vector which corresponds to the expecta- 
tion feature of the source, Xk. The  mapping functions, p(Xkls), 
depend on the noise and tend to resemble a flatter pdf (' ~.e., more 
confusable) when the noise level increases. 

Let us introduce a vector of noise-resistant features, x, on 
the space X and assume also that  there are M independent and 
mutually exclusive random sources, Bi, which are able to generate 
all possible x. The  poderior pdf is 

i=1 k = l  

If we further assume that each source on X corresponds to one and 
A A 

only one source on y, i.e., p(AklOi) = 6(k - i), thus, p(ylAk,tJk) = 

X k  and tJk are chosen by maximizing an a posteriori joint pdf, 
p(YIS) = p(yl, .  . . , y t ,  . . . , yTIsl,. . . ,st,. . . ,ST) over a collection 
of doublets, ( Y , S )  = {(YI,XI = f (s i ) ) , . . .  ,(YT,XT = f ( s ~ ) ) ) ,  
where /() is  a transformation. 

where j is the index of a path consisting of the concatenation of 
Xk or 8 k  along L; and le,j,t are d and tJ source indices of 
the j th paths a t  t ime t. I t  has been proven [6] that the above a 
posteriori joint pdf could b e  asymptotically approximated by the 
highest a posteriori joint pdf on a single path, denoted the Most 
Likely Path (MLP), among M~ paths, i.e., 

where * indicates the MLP. We will see in the next section that  
eq. (6) can be resolved by partitioning the X x y  space into M cells 
through the generalized Lloyd al orithm with an assumption that  
each of the random sources is ptp-order autoregressive Gaussian. 

Given a set of X k  and tJk and a noisy speech sequence, S = 
(91,. . . ,s;, . . . ,sT), the prpcess of speech enhancement is to  find 
a clean speech sequence, Y = {yl, . . . ,9t,. . . , 9 ~ 1 ,  which gives 
the maximum a posteriori joint pdl: 

Note that the  pdfs a t  time t in eq. (7) are independent of those 
a t  any other time. Eq. (7) is  equivalent to  

which means that the estimate of a clean speech vector can imme- 
diately be obtained through MMSE when a noisy speech vector is 
supplied; i.e., 

B. Transformation of speech to noise-resistant features. 
As we have seen, the estimation of clean speech depends 

strongly upon the assumption that  noise-resistant features are 
practically available. The goodness of the  features supports the 
quality of the mapping. The features we are looking for here are 
not only noise-resistant but also easy to use with some well-known 
distortion metrics. The formant frequencies have been proposed as 
noise-resistant features [4] with a simple Euclidean metric. How- 
ever, the order of the formants in a time-varying spectrogram of 
speech is crucial in the Euclidean metric, but formants are difficult 
to track during many phoneme-to-phoneme transitions. Their re- 
liability is thus questionable for t he  formant metric. T h e  speech 
spectral phase has been considered insensitive to noise interfer- 
ence. The lack of a well-established distortion metric using this 
feature exhibits the difficulty of our objective. Auditory spec- 
t ra  have been suggested to possess noise-resistant properties. A 
simple processing [5], part of the complete, complex auditory pro- 
cessing of the ear, has recently been proposed to obtain a noise- 
resistant spectrum. All metrics developed for spectral distortion 
would be appropriate to apply to this feature. The advantage of 
this feature motivates us to use it in our enhancement algorithm. 
The conversion of s to x is deterministic, i.e., 

where f ( )  contains two operations: (1) a Fourier transform of 
s, and (2) an application of lateral inhibition processing to the 
Fourier amplitude spectrum (algorithm I in 5 . In Fig. 1, we show 
the noise-resistant properties of x by its pti!rder autoregressive 
spectra in the presence of noise interference. For comparison, the 
same spectra of s have also been plotted. The noise-resistant 
properties are clearly observed in terms of the relatively invariant 
spectra of x as a function of noise strength. 

Fig. 1 Spectra as a function of noise intensity. On the 
left are spectra (amplitude in dB versus 
frequency in HZ) from a linear prediction 
analysis (twelfth order) of noisy speech; on the 
right are those of lateral-inhibition-processed 
noisy speech. The overlaid plots represent 
variation in noise intensity: 0 dB, 5 dB, 10 dB, 
15 dB, 20 dB, 25 dB, and oo dB. The lowest 
spectrum corresponds to 0 d B  and the highest 
spectrum to m dB (i.e., no noise). The speech 
waveform is shown in the inset. 



111. Speech enhancement algorithm 
and experimental results 

Our speech enhancement algorithm is generally based on the 
theory of Wiener filtering. At a given time, a spectrum of clean 
speech is estimated through MMSE, based on a noisy speech ob- 
servation. A filter, designed from such a spectrum, is applied to 
the noisy speech to  output an enhanced version of the speech. The 
actual system consists of three major components: (1) extraction 
of noise-resistant features, which realizes eq. (10) and outputs a 
waveform vector corresponding to a zero-phase auditory spectrum; 
(2) a codebook which contains coefficients of random sources on 
both X and Y spaces; (3) a composite Wiener filter from a bank 
of weighted filters, each of which are determined by the spec- 
trum of a random source on Y .  Fig. 2 summarizes the system 
overview. Moreover. we investieate in our ex~e r imen t s  the idea " 
(71 of improving the enhancement performance iteratively. We 
will describe each of the components in detail except the /() box, 
which is adequately described in [S]. 

Fig. 2 Block diagram of the speech enhancement 
system. 

A .  Speech data 
The  speech waveforms in our experiments were sampled a t  

10 kHz, and the speech material was phonetically balanced. At 
any given time, a frame of 128 speech samples was observed. This 
frame size is large enough to provide an accurate estimation of 
the random speech source and is small enough to  approximate 
speech stationarity over the frame. The frame advance was set to 
64 samples and a Hamming window was used when necessary. 
Twelfth-order (p = 12) linear prediction analysis was used in 
the pdf estimation (see later). We collected approximately one 
hundred minutes of speech as a training set and about thirty 
minutes as a test set. We trained the mapping function on the 
noise-resistant features obtained from clean speech, and used it 
for all ranges of noise level. 
B. Training procedure 

Instead of maximization in eq. (6), we minimize its negative 
logarithm: 

Assuming that  all of the random sources on both X and Y are 
pth-order autoregressive Gaussian sources (p = 12), we have [8] 

where vector ru contains p + 1 values of the autocorrelation func- 
tion of process u ;  ou is the variance of the pth-order minimum 
predictive residual of u; vector ra, contains the first p + 1 values 
of the autocorrelation function of the autoregressive coefficient 
sequence of process v :  

The solution to this equation is very well-known as the Lloyd al- 
gorithm (also popularly called the k-means method). It partitions 
the space y x X into M cells with a composite distortion measure, 
d(yt ,  Xk) + d(ek,st). An alternative to  the Lloyd algorithm called 
the LBG method [9] is currently used, because of its advantages 
for algorithm initialization. 
B. Enhancement procedure 

The speech enhancement procedure can be expressed through 
Wiener filtering and eq. (9) as follows: 

M M*<M 
; t = ~ t * i t =  x s t * ~ ~ ~ ~ ( e k l ~ t ) =  x ~ t * ~ ~ , ~ ~ ( g k + l ~ t ) ,  

k = l  k*=1 
(15) 

where the sign * represents convolution; the sign # indicates the 
first M# largest p(Oklst), which are used in order to reduce the 
computation load. The  pdf p(Bklst) can be evaluated through 
eq. (13), given xt. Since y l ,  is the mean vector of the kth au- 
toregressive Gaussian source or the impulse response of the corre- 
sponding autoregressive filter, the above convolution can be com- 
pactly realized by pth-order autoregression. 
C. Ezperimental r e~u l t s  

We assess here two important parameters for the enhancement 
algorithm: (1) M,  a number that  determines how many random 
Gaussian sources are necessary to describe the compressed speech; 
and (2) M#, a number that  determines how many filters are suffi- 
cient to produce accurate enhanced speech given noisy speech. We 
apply the Itakura-Saito (IS) distortion [lo] and rms (root-mean- 
square) log spectra between the enhanced spectra and the corre- 
sponding clean spectra as a criterion to test performance. The 
IS-distortion is more sensitive to spectral peaks than to spectral 
valleys; rms log spectra treat distortion in the frequency domain 
equally. We first investigate the enhancement scheme without it- 
erative improvement, i.e., an open loop scheme. 

In Fig. 3, we show IS-distortion and rrns log spectra for the 
test set, for SNR = 0 d B  and SNR = 10 dB, when M varies 
from 27 = 128 to 21°=1024 and when M# varies from 2O = 1 
to 27 = 128. We have seen tha t  an  increase in M from 128 to 
1024 decreases the distortion when M# is one, i.e., our system 
acts as a vector quantizer (VQ). An increase in M# from 1 to 1 

= - ~ n ( P l . d Y ~ S ) )  = :!:{- ln(~(~tlll,*,t))+ln(~(l~,*,t~st))}. 128 decreases significantly the distortion for any M. However, t=l 
(11) when M #  is large (e.g., 128), the increase in M also increases 

Since each pdf is time-independent, the MLP is thus equal to the the distortion unfortunately. T h e  explanation may be that the 

concatenation of the ubestn sources at  each time: distortion depends upon the ratio of $. The larger M is, the 
lower the ratio is. These results suggest that the spectra of clean 

(12) contribution of the one best source, is very sub-optimal. 



Fig. 3 Developed spectral mapping (NISM) 
performance, using IS-distortion (left) and rms 
log spectra (right) as  a function of the number of 
sources, M ,  and number of filters, M#. 
Horizontal axes indicate M in bits. Vertical axes 
are distortion (in an abitrary scale). Dashed 
lines are used for SNR = 0 dB and solid lines for 
SNR = 10 dB. The  lines from top to bottom 
correspond to  M# = 2', 21,22,. . . ,27. 
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Fig. 4 Increments of the distortion as a function of the  
increase of noise intensity from SNR 10 dB to 
SNR = 0 dB. Dashed lines show the increments 
for the conventional spectral mapping; solid lines 
are used for the  noise-independent spectral 
mapping. Horizontal axes are M in bits. Vertical 
axes show distortion in an abitrary scale. The 
left panel shows IS-distortion and the right 
shows rms log spectra. 

In order to demonstrate the effectiveness of noise-resistant fea- 
tures, we compared the noise-independent spectral mapping with 
the conventional spectral mapping based on eq. (2), as far as  re- 
sisting noise interference. We repeated the above experiments for 
the conventional spectral mapping, and examined the increases 
in distortion for both a conventional mapping and the noise- 
independent spectral mapping when SNR is decreased from 10 d B  
to  0 dB. Fig. 4 plots such increases. The increases in IS-distortion 
for the conventional spectral mapping are about 2 times as high as 
that for the noise-independent spectral mapping and the increases 
with rms log spectra were about 1.5 times as high. Therefore, the 
noise-resistance in the  noise-independent spectralmapping is very 
effective and the mapping confusion is less severe than that in a 
conventional spectral mapping. 

We have experimented with a closed-loop enhancement 
scheme, i.e., iteratively improving an estimate of clean speech, 
based on the noisy speech. At each iteration, the enhanced speech 
is fed back as noisy speech to  compute again all the pdf's, then 
obtaining a new estimate. Beyond eight iterations, we had not 
perceived a significant reduction of the distortion. However, when 

viewing spectrograms, the noise level was slightly reduced corn- 
pared with an  open-loop scheme. 

IV. Concluding Remarks 
We have developed in this paper a statistical mapping of spec- 

t ra  to enhance degraded speech. The  crucial factor which makes 
the present algorithm superior to  conventional spectral mapping, 
in the aspects of mapping confusion and of noise-independent 
mapping, is the introduction of noise-resistant features. How- 
ever, an  ideal noise-independent mapping was not achieved in 
our experiments, since the currently-used noise-resistant features 
are merely an approximation of ideal features. The  performance 
degradation due to  a variable noise environment is significantly 
lower than that made by conventional spectral mappings. More- 
over, the impression of noise in the output speech is effectively 
reduced by our algorithm in the case of a noise environment dif- 
fering very much from the training environment. Keeping in mind 
that  an ideal noise-independent mapping is never possible, we can 
say that our preliminary step toward noise-independent speech 
enhancement has been successful. Comparing our system with 
HMM-based enhancement [3] on theoretical grounds, the HMM 
method relies on the noise-resistant advantage of the temporal 
structure of speech and our technique uses the auditory spectrum 
of the speech. These two advantages are not contradictory but 
complementary. Thus a combination of both will gain yet more 
enhancement power. For instance, taking a local temporal struc- 
ture of speech in our algorithm, for instance the use of look-ahead 
or delayed-decision in the implementation, such as a system could 
capture both advantages, and yet can be implemented in a real- 
time system. 
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