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Abstract: A trellis-coded modulation scheme, using a 
coded 2-FSK/2"-PSK modulation format instead of a con- 
ventional coded 2"+'-PSK format for m-bitslsymbol data 
transmission, is considered. Previous work [I, 21 on coded 2- 
FSK/2"-PSK modulation techniques choose two transmis- 
sion frequencies equally often. In contrast, our method se- 
lects the signal points in such a manner that  each of the sig- 
nal dimensions is used equally. We compare the asymptotic 
coding gains of the proposed method to those of the previ- 
ous schemes and calculate an upper bound to the bit-error 
probability. The spectral characteristics of the proposed 
coded modulation scheme are also studied vis-a-vis those of 
the coded 2"+' PSK format and of the other [I, 21 coded 
2-FSK/2"-PSK formats. We show that  the new scheme 
obtains higher coding gains, sometimes (but not always) a t  
the expense of an increased bandwidth. 

1 Introduction 

Trellis-coded modulation (TCM), a combined coding and 
modulation technique [3], is generally used for digital trans- 
mission over band-limited channels. TCM schemes for data 
transmission over an AWGN channel are designed by op- 
timizing not the free Hamming distance of the code, but 
the free Euclidean distance between the transmitted signal 
sequences. Remarkable coding gain, without compromising 
the data rate or requiring more bandwidth, has made this 
scheme attractive. 

Coded modulation format defined over an expanded set 
of signals, but utilizing both frequency and phase, was sug- 
gested by Padovani and Wolf [I] to achieve further cod- 
ing gain for the same number of trellis states. They have 
shown that  the 2-FSK/Zm-PSK codes have better Euclidean 
distance and hence a higher coding gain than the Unger- 
boeck's 2"+'-PSK codes for an uncoded 2"-PSK signal 
set with the same decoding complexity. However, an in- 
crease in bandwidth has occurred in some cases as a price 
for the increase in noise immunity. These phaselfrequency 
codes are considered useful for channels which can accom- 
modate this nominal bandwidth expansion. By introducing 
a non-uniformity in the signal constellation points, further 
coding gain was obtained in [2] for phase/frequency coded 
systems. However, in practice, the non-uniformity in the 
phase/frequency signal constellation poses a serious prob- 
lem in carrier synchronization. In this article, we consider 
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uniform 2-FSK/Zm-PSK modulation signals as treated by 
Padovani and Wolf. But here the transmission frequencies 
are not used equally; instead the signal constellation points 
are placed in such a manner so as to use the signal dimen- 
sions equally. The equal usage of the signal dimensions 
rather than that  of the transmission frequencies is the key 
concept applied here to achieve additional coding gain. 

The remainder of the article is organized as follows. 
In Section 2, we describe a trellis-coded phase/frequency 
modulation scheme utilizing the available signal dimen- 
sions equally. This scheme is discussed with two exemplary 
systems-coded 2-FSK/4PSK and coded 2-FSK/8-PSK. In 
Section 3, the resulting codes are compared to (a) Unger- 
boeck's and (b) Padovani and Wolf's codes in terms of the 
asymptotic coding gains for several constraint lengths of the 
convolutional coder. An upper bound to the bit-error prob- 
ability is also calculated for the coded 2-FSK/4-PSK for 
the constraint length three. In Section 4, the spectral prop- 
erties of the proposed phase/frequency modulation scheme 
are investigated for different values of the modulation index. 

2 Description of Coded Modulation Scheme 

In an uncoded system, for transmitting m bits of informa- 
tion in an interval T ,  any one of the available 2" signals are 
sent each T seconds. However, in the TCM scheme, 2" sig- 
nals of the 2"+' coded signals are candidates for transmis- 
sion in any keying interval T .  The encoder introduces the 
interdependence among the resulting sequences of channel 
signals such that  the free Euclidean distance dire, between 
any two possible signal sequences becomes greater than the 
minimum distance do between any two points in the 2" sig- 
nal constellation. This synthesized memory is exploited by 
the maximum-likelihood (Viterbi) decoder resulting in an 
asymptotic coding gain of 10 10g,,(d~~~/d2,) dB. 

We use a rate R = m/(m + 1) binary convolutional en- 
coder which encodes m information bits ~ f ) ,  i = 1,. . . , m 
into (m + 1)-coded bits ykb), j = 1,. . . , (m + 1) for the k-th 
signal sequence. These coded bits are mapped to the chan- 
nel signal vector Sk and then phase/frequency modulated 
(uniformly) to the channel signal waveform Sk(t). Here, we 
consider signals which are combinations of binary FSK and 
2"-ary PSK. The two frequencies used for the signal trans- 
mission are (w, + $) and (w, - $) rad/sec with w, as the 
fundamental frequency and h as the modulation index. The 
resulting signal space is then four dimensional and the or- 
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thonormal basis vectors for this space, using Gram-Schmidt 
orthonormalization procedure, is chosen to be 

where w d  = h?r/T, C1 = sin(2ah)/(2?rh), C2 = [ l  - 
cos(2ah)]/(2ah) and D = 1 - Cf - Ci. We emphasize 
that  the orthonormal basis vector set representation is not 
unique and any such basis vector set depends on the mod- 
ulation index h. We illustrate the coded phase/frequency 
modulation scheme with the following two modulation for- 
mats. 

A. Coded 2-FSKICPSK: A widely used scheme for 
2 bits/symbol transmission is QPSK in which various com- 
binations of the two bits select one of the four phase shifts 
to be applied to the carrier. Ungerboeck [3] used an ex- 
panded signal set, namely an 8-PSK constellation for this 
example, in which different combinations of the three coded 
bits a t  the output of the convolutional encoder (for each 
symbol interval) select one of the eight phase shifts. In 
Padovani and Wolf's scheme (referred to hereafter as the 
P W  scheme) [I], for a coded 2-FSK/4-PSK format, one bit 
of the three coded bits selects one of the two carrier fre- 
quencies (the FSK part of the modulation) and the other 
two bits choose one of the four phase shifts to be applied 
to the corresponding carrier. Subsequently, Chalid et al. 
[2] have shown that  by designing the signal constellations 
to be non-uniform, performance gains can be obtained over 
Padovani and Wolf's scheme in many instances. They have 
considered three mapping rules-two of them partition the 
original set into two subsets where each subset consists of 
binary FSK and binary PSK, and the other one partitions 
the original set into two subsets, each consisting of a 4-ary 
PSK signal. 

In [I] and [2], the two transmission frequencies are used 
equally. However, a careful observation of the set of or- 
thonormal basis vectors reveals that  the existing coded 
phase/frequency modulation schemes do not effectively use 
all the signal dimensions. Relying on the principle of Equal 
Utilization of the Signal Dimensions, our scheme (referred 
to hereafter as the EUSD scheme) offersfurther coding gain. 

In the present case, the expanded signal set consists of 
eight signals. These signals are placed on the eight non- 
adjacent vertices (out of sixteen vertices), as shown in 
Fig. 1, of a 4-D hypercube. They also lie on the surface 
of a 4-D hypersphere and thus all the signal points have 
the same energy. Normalization of the signal energy makes 
462 = 1, where 2d is the length of each edge of the hyper- 
cube. The eight signal vectors {So, S1,. . . , S7) thus can be 
represented in terms of the ordered basis vectors as 

Fig. 1 2-FSK/4-PSK signal points and their partitions into 
sub-constellations 

Fig. 2 Trellis diagram for 2-FSK/4-PSK scheme with u = 3 

The signal constellation is partitioned into subconstella- 
tions, using a 'mapping by set partitioning' rule, as illus- 
trated in Fig. 1. Following the notation introduced in [3], 
we use A, to denote the minimum Euclidean distance in 
the i-th partitioned set. Here, A. = 2 f i d  = &units, 
A, = 2 4 d  = & units and A2 = 4d = 2 units. 

In this work, we have considered the same set of system- 
atic convolutional encoders with feedback for which the par- 
ity check polynomial coefficients and the number of infor- 
mation bits involved in parity check operations are provided 
in Tables I1 and I11 of [I]. Fig. 2 presents a trellis diagram 
for 2-FSK/4-PSK scheme with v = 3. While calculating the 
free distance of this trellis code, the symmetries of the sig- 
nal set and the systematic nature of the code are exploited. 
This avoids finding the minimum distance among all the 
correct paths; we need to search the minimum-weight paths 
only against the all-zero possible transmitted paths [3]. We 
calculate d;[,, to be 6 units for v = 3. Therefore, G,, the 
asymptotic coding gain over uncoded 4-PSK = 10 loglo($) 
dB = 4.77 dB. For v = 4, d:re, and hence the coding gain 
over uncoded 4-PSK have been found to remain the same as 
those for v = 3; but N(drree), the average number of code- 
words at  Euclidean distance d*,,, from any given codeword, 
becomes relatively small compared to that for the v = 3 
case. For v = 5, dire, has been calculated to be 8 units and 
thus G, = 10logl,($) dB = 6.00 dB. 



Fig. 3 2-FSK/&PSK signal points placed on vertices of a 4-D 
hypercube 

Fig. 4 Trellis diagram for 2-FSK/8-PSK scheme with v = 3 
(any drawn line between two subsequent states actually repre- 
sents two parallel transitions) 

B. Coded 2-FSK/8-PSK: For data transmission of 
3 bits/symbol, we consider sixteen equal-energy signal 
waveforms (4, S1,. . . , S15}. These signal points are placed 
on the sixteen vertices, as shown in Fig. 3, of a 4 
D hypercube with each edge having one unit length. 
The subconstellation partitions of the original constella- 
tion are (i) {(SO, s4); ( S 1 , S J ;  (5'2, s d ;  (s3, &)I  and ( 4  
{(SB, s12); (s9, s13); (s10, s14); (s11, s15)) 

Now, let us consider any particular signal point (say, So) 
and calculate A,, A, and A2. Here, A. = 1 unit, Al = 
min{SoS4, SoSl, SoS5, S0S6, So&, s ~ s ~ )  = JZ units 
and Az = SoS4 = 2 units. From the trellis diagram of 
the coded 2-FSKI8-PSK scheme with v = 3, shown in 
Fig. 4, d ie ,  can easily be determined to be 4 units. Further- 
more, the minimum squared distance d i  between any two 
points in the 8-PSK signal constellation is calculated to be 
4 sin2 22.5' = 0.5857 unit. Hence, G, of 10 dB 
= 8.34 dB is obtained for coded 2-FSK/8-PSK scheme over 
uncoded 8-PSK with v = 3. 

3 Coding Gain and Probability-of-Error 

In this section, we study the performances, namely the 
asymptotic coding gain and the bounds on the probabili- 
ties of event and bit errors, of the proposed coded scheme. 

3.1 Asymptotic Coding Gain 

Asymptotic coding gains of the coded phase/frequency 
modulation scheme for 2 and 3 bits/ transmission are com- 
pared in Tables I and 11, respectively. 

PW scheme (dB) Cod. 8-PSK EUSD 
v h = 0.25 h = 0.50 h = 0.75 h = 1.0 (dB) (dB) 
3 3.7 4.1 4.5 4.8 3.6 4.8 
4 4.4 4.8 4.8 4.8 4.1 4.8 
5 4.8 4.9 5.5 6.0 4.6 6.0 

TABLE I: COMPARISON OF ASYMPTOTIC CODING GAINS FOR 

PW scheme (dB) Cod. 16-PSK EUSD 
N h = 0.50 h = 0.75 h = 1.0 (dB) (dB) 
3 6.8 7.9 8.3 5.3 8.3 
4 7.5 8.3 8.3 6.1 8.3 

TABLE 11: COMPARISON OF ASYMPTOTIC CODING GAINS FOR 

In the P W  scheme, the coding gains are dependent on 
the modulation index h. This is attributed to the fact that 
the equal usage of the transmission frequencies necessitates 
a reorientation of the signal points with h in reference to 
the basis vectors. As the value of h is lowered, information 
flow along some of the dimensions reduces. This results 
in relatively lower coding gain for small values of h. In our 
code, although the transmitted signal waveforms depend on 
h, the allowable signal vectors are fixed with respect to any 
basis vector set. This makes the coding gain independent 
of the modulation index. We also notice that  the coding 
gains obtained in the EUSD scheme are the same as those 
of the P W  scheme for h = 1.0. With h = 1.0, we calculate 
C1 = C2 = 0 and D = 1. These parameter valuesimply that 
the idea of the equal usage of the transmission frequencies 
(w, + $) and (w, - $) is synonymous with the notion of 
the equal utilization of the available signal dimensions. 

3.2 Probability-of-Error Performance 

The error performance of the EUSD scheme is studied when 
the codes are used on the AWGN channel. Perfect phase 
and timing synchronization are assumed. To calculate the 
event-error and the bit-error probability bounds, conven- 
tional generating function is defined over the expanded set 
of signals. For high signal-to-noise ratios, the event-error 
probability P(e)  approaches from above the value [3] 

where E, is the (2"-ary) symbol energy, No/2 is the double- 
sided noise power spectral density and 

To find the average bit error probability performance of 
the Viterbi decoder, the pairwise error probability between 
the coded sequence and the estimated sequence is evaluated 
using the Bhattacharyya bound. A tight upper bound to 
the bit-error-probability is provided in [4] as 

where the Bhattacharyya parameter D is related to 
the system bit energy-to-noise ratio Eb/No a s  D = 



6 7 8 9 10 11 12 13 14 15 
Eb/No (dB) -- w 

Fig. 5 Bit-error probability for uncoded QPSK (shown by - 
- -) and a tight upper bound on bit-error probability for coded 
2-FSKICPSK EUSD scheme (shown by --) vs. bit-energy to 
noise ratio 

exp(-mEb/4No) and m is the number of bits transmitted 
in a keying interval T. The  generalized transfer function 
T(D,  z )  of the 2-FSK/4-PSK, eight-state trellis code is com- 
puted by drawing a signal flow graph (in a similar fashion as 
given in [5]) and applying Mason's gain formula. Fig. 5 plots 
the bit-error probability of (uncoded) QPSK signal and also 
the tight upper bound of (3) to  the bit-error probability of 
the EUSD 2-FSK/4-PSK coded signal. 

4 Power Spectral Density 

The  bandwidth occupancy of a signal is an aspect as vital as 
the error performance. By providing a random phase-shift 
to the transmitted signal (for converting it to  a wide-sense 
stationary process), we compute the power spectral den- 
sity (PSD) in the long-term average sense [6]. The EUSD 
coded scheme has a different PSD than that  of the uncoded, 
Ungerboeck-type coded or even the other phase/frequency 
coded schemes discussed earlier. The PSD for the EUSD 
coded scheme is computed assuming the following: 

1. For the k-th signal sequence, the data ~ f ) , i  = 
1,. . . , m, are considered as a sequence of i.i.d. binary 
random variables which take on the values 0 and 1 with 
equal probability. 

2. The output of the encoder ykb), j = 1 , .  . . , (m + I) ,  is 
mapped as described in Section 2. 

3. The baseband pulse p(t)  is a full-duty cycle, unit am- 
plitude rectangular pulse of duration T seconds. 

Now, we write the n-th possible transmitted bandpass signal 
S F ( t )  as 

@(t) = ~ i ( t ) c o s w ~ t - S ; ( t ) s i n w C t ,  n = 0,...,2"+'-1 

(4) 
where S,'(t) and S,?(t) are termed the in-phase and the 
quadrature components, respectively. The bandpass signal 
S F ( t )  can alternatively be written as 

The signal amplitude levels A,, B,, C,, D, of the four sine- 
cosine frequency components for the eight signal points in 
the 2-FSK/4-PSK code format is provided in Table 111. 
From (4) and (5), the followings can be derived: 

s,'(t) = 6 [ (A,  + C )  cos wdt + (B, - D,) sin wdtl(6) 

s? ( t )  = 6 [(A, - c n )  sin wdt - (Bn + Dn)  cos wdtj(.T) 

The complex low-pass equivalent signal SF(t)  can be de- 
fined as 

where 
S$(t) = f i ~ e { ~ f P ( t ) e j ~ " ) .  (9) 

By calculating the autocorrelation function and taking 
its Fourier transform, the average PSD Gip(f), equally av- 
eraged over all the signal waveforms, becomes 

where fd = wd/2r and P ( f ) ,  the Fourier transform of the 
signal p ( t ) ,  is Tsinc(fT). Fig. 6 plots the power spec- 
tral density Grp( f ) / T  vs. the normalized frequency f T  for 
the coded 2"+'-PSK (h=O) and the coded 2-FSK/2"-PSK 
modulation with h=0.25, 0.50, 0.75 and 1.00. Table IV sum- 
marizes the spectral efficiencies by tabulating the 99%, the 
95%, the 90% and the half-power (3 dB) bandwidth. Here, 
the bandwidths are mentioned as the ratio of the bandwidth 
required for the P W  scheme and the EUSD scheme to the 
corresponding bandwidth required for the coded 2"+'-PSK 
scheme. In [4], the conditions for Ungerboeck's TCM codes 
to retain the same spectral characteristics as that  for the 
uncoded case are provided. We assume these conditions 
while comparing the spectral efficiencies. 

From Table IV, it may be noted that  the EUSD scheme 
requires more bandwidth for low h values. However, from 
Tables I and 11, we observe that  the additional coding gains 
accrued with the low h values are also significantly more 
compared to those with the high h values. For example, 
with h = 0.25, the bandwidth expansion factor (relative 
to the P W  scheme) is 1.225 (99% BW), 1.314 (95% BW), 
1.434 (90% BW) and 1.114 (3 dB BW). However, a t  the 
same time, we obtain an additional asymptotic coding gain 
of 1.1 dB (with v=3), 0.4 dB (with u=4) and 1.2 dB (with 
v=5) for the coded 2-FSK/4-PSK format. With h=0.5, 
the bandwidth requirement for the EUSD scheme is almost 
the same as the P W  scheme, yet we obtain an additional 
asymptotic coding gain of 0.7 dB (with v=3), 0.0 dB (with 



Fig. 6 Power spectral density Glp(f)/T vs. f T  for coded 
Zmt'-PSK modulation (h=O) and coded 2-FSK/Zm-PSK mod- 
ulation with h=0.25,0.50,0.75 and 1.00 

v=4), 1.1 dB (with v=5) for the coded 2-FSK/4-PSK for- 
mat; and 1.5 dB (with v=3), 0.8 d B  (with v=4) for the 
coded 2-FSK/8-PSK format. Surprisingly enough, we find 
that  the bandwidth (in any of the above defined notions) 
requirement for the EUSD scheme is less than that  for the 
P W  scheme for h=0.75 while attaining the same or higher 
coding gain. Furthermore, with h=0.75 and the same de- 
coder complexity, the EUSD scheme requires the same 95% 
bandwidth as that  for the coded 2"+'-PSK scheme while 
giving rise to substantial asymptotic coding gain as men- 
tioned in Tables I and 11. Finally, we note that  the 3-dB 
bandwidth expansion factor is least with h=0.25 and high- 
est with h=1.00 (among the four modulation index values 
considered). On the  other hand, the 99% bandwidth ex- 
pansion factor is least with h=1.00 and most with h=0.25. 

5 Summary and Conclusions 

In this article, we have considered uniform 2-FSK/Zm-PSK 
codes for transmitting information a t  m-bits/symbol. A 
scheme has been suggested where the signal dimensions are 
used equally rather than the transmission frequencies as 
proposed earlier in [I, 21. In particular, codes for the data 
transmission a t  2 and 3 bits per signaling period have been 
derived. 

Assuming soft maximum-likelihood (Viterbi) decoding, 
the asymptotic coding gains for the proposed codes have 
been evaluated. We emphasize that  in the proposed coded 
phase/frequency modulation (EUSD) scheme, unlike the 
previous schemes, the asymptotic coding gain is indepen- 
dent of the value of the modulation index. A tight upper 
bound to the bit-error-probability for transmission over the 
AWGN channel has been computed. The spectral char- 
acteristics of the EUSD scheme have been compared with 
those of the uncoded two-dimensional scheme and the P W  
scheme proposed in [I], studying the trade-off between the 
coding gain and the  bandwidth expansion. Depending on 
the definition of the bandwidth (99%, 95%, 90% or 3 dB), 
the modulation index may be chosen to minimize the band- 
width expansion. 

For higher values of m, the proposed scheme, denoted as 
2-FSK/2"-PSK, suffers the same limitation as uncoded 2m- 

TABLE 111: AMPLITUDES OF DIFFERENT FREQUENCY 
COMPONENTS FOR 2-FSK/4-PSK SIGNAL CONSTELLATION 

POINTS 

Mod. Index Code Type Bandwidth 
h 99% 95% 90% 3 dB 

0.00 Uncoded 1.000 1.000 1.000 1.000 
0.00 Ungerboeck's 1.000 1.000 1.000 1.000 
0.25 PW scheme 0.996 1.041 1.102 1.039 
0.25 EUSD scheme 1.221 1.368 1.580 1.157 
0.50 PWscheme 0.985 1.091 1.187 1.206 
0.50 EUSDscheme 1.001 1.091 1.186 1.204 
0.75 PWscheme 0.981 1.132 1.254 1.672 
0.75 EUSD scheme 0.868 1.000 1.152 1.464 
1 . O O  PW scheme 0.980 1.163 1.345 2.264 
1.00 EUSD scheme 0.980 1.163 1.345 2.264 

IV: COMPARISON OF THE SPECTRAL EFFICIENCIES 

-ary PSK and offers almost no improvement as compared 
to the Ungerboeck codes. However, extending the signal 
space dimensionality beyond four dimensions may be con- 
sidered. For instance, 4-FSK/Zm-PSK modulation formats, 
defined over an eight-dimensional signal space (8-D hyper- 
cube), is expected to yield additional coding gain over the 
Ungerboeck codes. 
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