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Abst rac t :  We are going to maximize the entropy of a line 
code subject to  some constraints on the  power spectrum. 
The general tools are the selection of the constellation basis 
(modulating waveforms) and the power allocated t o  each con- 
stellation dimension. In our analysis, the basis is fixed and is 
selected to reduce the computational complexity of the mod- 
ulation. The following constraints on the power spectrum 
are considered in detail: (i) A fraction of the total power 
equal to Fp is located in the frequency band [O,w,], and/or 
(ii) the spectrum has spectral nulls a t  the zero and/or a t  
the Nyquist frequency. To realize a power spectrum with 
spectral null(s), we need a set of dimensions with the same 
set of nulls. We discuss the general structure of such basis. 
In specific, we give analytical expression for the basis pro- 
viding spectral null a t  zero frequency and/or at  the Nyquist 
frequency. These are either sine basis or closely related to 
it. This property reduces the computational complexity of 
the modulation by a l l o e g  for the use of t he  fast sine trans- 
form algorith. Th-= ==? Sc.=:ioz is c o ~ p u r e d  by an 
optimization procedure. We also propose a method to match 
the spectrum of the  line code to a partial response channel. 
This procedure maximizes the entropy of the code subject to 
having equal minimum distance t o  noise ratio along all the 
dimensions a t  the channel output. The  noise is the sum of 
the additive Gaussian noise and the intersymbol interference. 

1 Introduction 

Consider asignal constellationcomposed of a set of equiprob- 
able points. In  continuous approximation, the distribution 
of the constellation points is approximated by a continuous 
uniform density within the shaping region. Assuming con- 
tinuous approximation, the selection of the  constellation is 
composed of selecting a basis for the space and a boundary 
(shaping region) for t he  points. This selection can be formu- 
lated in terms of an optimization procedure. The objective 
function (to be  maximized) is the  rate  of the constellation. 
There is always a constraint on the total energy. According 
to the application, we impose some additional constraints. 

Due to the conrkcoll; q r x x k z u i o ~ .  rho ~-mcillro of the 
shaping region appears as an independent factor in the objec- 
tive function. This reduces the complexity of the optimiza- 
tion procedure. Without loss of generality, we can assume 
that  the shaping region is obtained by the  scaling of a base- 
line region B, [I]. For a fixed 8, the  shaping problem reduces 
to the selection of an appropriate set of the scale factors. For 
a fixed total power, this is equivalent to a power allocation 
problem. 

Shaping 

Fig. 1 System block diagram. 

In this work, we impose some constraints on the power 
spectrum of the constellation. We assume that,  the basis 
is iixed and the power allocation is optimized to maximize 
the rate. The basis is selected to reduce the computational 
complexity of the modulation by the use of the fast transform 
algorithms. 

For a given cutoff frequency w, = 37 f , ,  define the power- 
ratio of a spectrum as the fraction of the total power in the 
frequency band [O,w,]. The  Fp-constraint is the constraint of 
having a power-ratio less than or equal to Fp. We study the 
following constraints in detail : (i) the Fp-constraint, and/or 
(ii) the spectrum has some spectral nulls. 

We also study the selection of a line code for the signal- 
ing over a Parrial-mouse channel. Ln this case, the en- 
tropy is maximized subject to the constraint of having equal 
minimum distance t o  noise ratio along all the dimensions.. 
The noise is composed of the additive white Gaussian noise 
and the intersymbol interference. This results in a spectrum 
which is matched to the channel. The optimization proce- 
dure also concerns the  selection of the constellation basis. 

2 System block diagram 

Figure 1 shows the block diagram of the system under con- 
sideration. We use discrete time model and block based 
processing. In each signaling interval, which is corn- 
posed of M channel use, a binary data vector i is t r an s  
mitted. The shaping block maps the vector i to the N- 
dimensional point a in the  baseband constellation. This is a 
finite portion of the coding lattice bounded within the s h a p  
ing region R,. The second moment along the i'th dimension 
of 72. is equal to Xi.  The diagonal matrix A. is defined 
as, A. = diag [A,, . . . , AN-,]. Normalizing the volume of the 
Voronoi region around each constellation point to unity, the 
entropy of a is equal to. 

This is based on the assumption that the points a are used 
with equal probability. 

The modulator, M x N, M 2 LV, matrix M maps the 
point a to the point y in  the modulated constellation. Tu 
is a set of points in an N-dimensional subspace of the M- 
dimensional channel space. The dimensions of the modu- 
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lated constellation are along the columns of M .  In general, 
there exists M - N linear relationships between the compo- 
nents of y. As an example, for M 2 N + 1, we can select 
M such the  sum of the components in each of its columns 
is equal to zero. In this case, y will have a spectral null a t  
zero frequency. For a fixed rate  per each channel dimension, 
decreasing N beyond M results in a higher rate per each con- 
stellation dimension. For a fixed minimum distance, such a 
constellation requires a higher energy. This can be  consid- 
ered as the price of introducing M - N linear relationships 
between t h e  components of y .  

It  can be shown tha t  the entropy of y in Fig. 1 is equal to, 

H ( y )  = H ( a )  + log ( J M I M I ) .  (2) 

as the entropy of the  system M .  For an orthonormal M, 
H ( M )  is zero and we have, H ( a ) =  H(y) .  Under the con- 
straint of, Trace(MtM) = hr, H ( M )  is always negative un- 
less M is orthonormal. 

Channel is linear and has a memory length of Mo symbols 
(impulse response of length Mo + 1). Without loss of gener- 
ality, we assume tha t  Mo 5 M .  The noise is additive white 
Gaussian with zero mean and power u2, n(0,u2). T h e  out- 
put of the channel (M-vector ?) is related by t h e  following 
relation to the channel input (M-vector y ) ,  

where the M x M matrix C is the transfer matrix of the 
channel, the  M x Mo matrix Co reflects the  effect of the  
channel memory, the Mo-vector yo is the set  of Mo sym- 
bols prior t o  y ,  and n(0,  a2)  is the additive noise. The  term 
Coyo in (4) is the interference from the previous block. This 
is denoted as the  interblock interference. T h e  interference 
from the symbols within a block, denoted as intrablock in- 
terference, is due to  the  nondiagonal elements of C. 

The N x M demodulator matrix D is selected such tha t  
D C M  = I where I is the  N x N identity matrix. The  auto- 
correlation of the  noise a t  the demodulator ou tpu t  is equal 
to, 

& = U ~ D D I  + DC~M~R,M;C;D~,  (5) 

where the Mo x N matrix Mo is composed of the  last Mo 
rows of the M and R, is the autocorrelation of a. T h e  
whole system is equivalent to  an N-dimensional channel 
with an additive Gaussian noise of autocorrelation u 2 D D i  
and an intersymbol interference (ISI) term of autocorrela- 
tion DCoMoR,M$~Dt .  

We assume tha t  the  shaping region is obtained by the scal- 
ing of a baseline region B which is closed under the  sign 
changings and the permutations of the coordinates. In this 
case, i t  is easy to  show tha t  R, =A,. 

We assume that  the  decision is made independently along 
each dimension of the  output space. This is equivalent to  
maximum likelihood decision if k,, given in (5) is diagonal. 
The  equivalent noise power along the i'th dimension, denoted 
by u?, i E [0, N - 11, is equal to  the i'th diagonal element 
of k,,. To have equal minimum distance to noise ratio along 
all the dimensions, the  coding lattice should b e  scaled with 
a factor proportional to ui along the i'th dimension. 

In a class of the schemes, the last MO transmissions of each 
block are zero. This brings the  channel to zero s tate  a t  the 
beginning of each block and omits the interblock interference. 
This is obtained a t  the price of loosing Mo dimensions per 
each M-dimensional block. In this case, the last Mo rows of 
M are equal to  zero and the last Mo columns of C do not 
result in any output. As a result, M and C are written in 
N x N and M x N-dimensional forms, respectively. We refer 
to this scheme as the zero s ta te  block based signaling. In this 
case, the IS1 term in (5) is equal to  zero. The optimum mod- 
ulator for this  scheme, which minimizes the product of the 
noise powers (diagonal elements of k), is the input eigen- 
vectors of the channel, [2]. This  results in a diagonal R,,, i.e., 
uncorrelated (independent) noise along different dimensions. 

In this paper, we discuss the  selection of the matrices M 
and A,. In spectral shaping, the objective is to shape the 
power spectrum of y .  In signaling over a partial response 
channel, the objective is t o  maximize the  distance to  noise 
ratio of i. 

3 Spectral shaping 

The autocorrelation matrix of a sequence of M-dimensional 
blockwise uncorrelated vectors y k  is equal to, 

where E( . ] denotes the expectation over the set of vectors yk ,  
k is the block index and * denotes the Hermitian transpose. 
The power spectrum of y is equal to, [3], 

where, 
V(W) = [e-jW"' , rn = 0 , . .  , M - 11'. (8) 

If vectors in different blocks are uncorrelated, we have 
Ri =0, k # 0. In this case, we use the notation 
R, = [R,,(i, j ) ,  i ,  j = 0,. . . , M - 11 instead of R:. Any auto- 
correlation matrix is positive-semi-definite (has nonnegative 
eigenvalues). A positivedefinite R, (with all the eigenval- 
ues strictly positive) results in a strictly positive S,(w). A 
spectral null results in a zero eigenvalue. For a real process, 
the autocorrelation matrix is symmetrical. From now on, we 
assume real processes. 

Define dy(k) as, 

Using this notation for a real, blockwise uncorrelated y ,  
Eq. (7) reduces to, 

1 M-1 

S,(w) = - d,(k) cos (wk). 
M k 0  

(10) 

I t  is seen tha t  the power spectrum of the scheme is completely 
determined by the autocorrelation matrix but the reverse is 
not necessarily true. 

From (lo),  i t  is seen tha t  different autocorrelation matrices 
with equal sum of the diagonal elements, dkls, result in the 
same spectrum. The selection among the available choices is 
based on maximizing the entropy cf the code. 



To realize a given autocorrelation matrix, it is enough to 
use its eigenvectors as the space dimensions and allocate a 
power equal to the corresponding eigenvalue to each dimen- 
sion. 

4 Spectrum of a modulated process 

The autocorrelation matrices of a and y in Fig. 1 are related 
by, 

R, = MR,M'. (11) 

The autocorrelation matrix and the power spectrum of the 
k'th column of M ,  m k ,  are equal to, 

respectively, where mk(i) denotes the elements of mk. 
A shaping region which is not a hypercube results in de- 

pendency between the distributions along different dimen- 
sions. In spite of this, under a set of mild conditions, the 
distributions are uncorrelated (autocorrelation matrix is di- 
agonal) and the corresponding spectrum is white. Assuming 
that M is an orthonormal matrix ( M M '  =I), R, will be di- 
agonal if: (i) Matrices R, and M are both diagonal. (ii) 
Matrix Ra is diagonal and has equal diagonal elements. On 
the other hand: (i) If the channel dimensions are used di- 
rectly as the constellation dimensions, M will be diagonal. 
(ii) If the region B is closed under sign changings of the cc- 
ordinates, Ra will be  diagonal. As already mentioned, if B 
is closed under the  sign changings and the permutations of 
the coordinates, we have Ra =A,. 

For R, = A,, i t  is easy to  show that ,  

and. 

Considering (13) and (IS), the spectrum of y depends only 
on the space dimensions,, M ,  and to the power allocated to 
each dimension, A,. T h e  important issue is that the power 
spectrum is independent of the  exact structure of the shaping 
region. 

5 Performance loss of a nonflat spectrum 

The price to  be paid for a nonflat spectrum is a reduction in 
the signal space volume. This is measured in terms of the 
power loss with respect to a reference scheme with a white 
spectrum. In this case, equating the entropies, the power 
loss, 5, is defined as the ratio of the second moments. The 
reference scheme for the system in Fig. 1 is M-dimensional. 
For a fixed entropy, the  general shape of the spectrum is inde- 
pendent of the structure of B. The  structure of B changes the 
spectrum (the total power) by a multiplicative factor which 
is minimum for a sphere and maximum for a hypercube, (11. 

Considering this fact, it is equally reasonable to select the 
shaping region of the reference scheme as spherical or cubic. 
In the following, we compute the 8 of a nonflat spectrum 
based on an N-dimensional elliptical/cubic shaping region 
with respect to an M-dimensional spherical/cubic reference 
scheme. Normalizing the energy per dimension to one, for 
the elliptical region we obtain, 

and for the cubic region, we obtain, 

For N = M ,  or Y 5 M when N and M are large, and for 
xi Xi = M ,  (16) and (17) reduce to, 

For N -+ oc, the eigenvectors tend to complex exponen- 
t i a l ~ ,  exp(-jw), and the eigenvalues tend to the power spec- 
trum, s , ( ~ ) .  In this case, it can be shown tha t  assuming an 
elliptical region, the average entropy per channel dimension 
of y tends to, 

1 1 
Ho(y) = /_: log [2*eS,(w)] dw = - log(2ieX), (19) 

2 

where, 

To have the same volume with an infinite dimensional spher- 
ical region, the required energy per dimension is equal to X 
given in (20). Using (18), the asymptotic value of 8 is found 
as, 

This is the reciprocal of the output power of the linear mini- 
mum mean square predictor for y .  As the distribution along 
the dimensions are independent Gaussian, the linear mini- 
mum mean square predictor is the optimum predictor and 
(21) is the reciprocal of the innovation power of y .  Using 
(20) and considering tha t  the process y has the same en- 
tropy as given in (19) but  with unit energy per dimension 
results in (21). 

6 Spectral shaping using fixed basis 

This concerns selecting a fixed M and using only A, to  ma- 
imize the entropy of the code. This method is suboptimum- 
However, by the appropriateselectionof M ,  one can dwea*  
the computational complexity. For a spectrum with S P ~  
nulls, M is selected as an orthonormal basis with the we 
nulls. For the case of no spectral null, sine b ~ b  u d -  
First, we discuss the basis with spectral nulls. 



Fig. 2 Modulation with the output eigenvectors using the 
input eigenvectors. 

6.1 Bases with spectral nulls 

Consider an M x N matrix A. The input eigenvec- 
tors/eigenvalues of A are the eigenvectors/eigenvalues of 
A'A. The output eigenvectors/eigenvalues of A are the 
eigenvectors/eigenvalues of the AAL. From the M output 
eigenvalues, M - N are equal to zero.. The N nonzero out- 
put eigenvalues are equal to the input eigenvalues. These 
are denoted by d;, i E [0, N - 11. The  input eigenvector, mi, 
and the output eigenvector, mi, corresponding to the same 
eigenvalue, &, satisfy, 

As A'A and AA' are both symmetrical, the input and the 
output eigenvectors form an orthonormal basis. 

If the system A has spectral null a t  certain frequencies, 
its output eigenvectors form an orthonormal basis with the 
same nulls. 

Considering Eq. (22), to  modulate a signal with the out- 
put eigenvectors, we can use the cascade combination shown 
in Fig. 2 where (&)-I = diag [I/&, . . . , l/m. This 
results in, 

where @ = diag [do,. . . , $N-l]. 

. The 1 f D and 1 - D2 systems are three important ex- 
amples of the partial response channels, [4]. For a null 
at zero/Nyquist frequency, A is taken as 1 - D l 1  + D sys- 
tem. The 1 A D  systems has an ( N  + 1) x N transfer matrix 
with the i'th column equal to, [(o)', &/2, f d / 2 ,  (o)~-'-']. 
For a null a t  both zero and Nyquist frequency, A is 
taken as 1 - D2 system. This has an ( N  + 2) x N- 
dimensional transfer matrix with the i'th column equal to, 
[(o)', f i /2 ,0 ,  - d / 2 ,  (0)~-'-'1. 

6.2 Block-based Eigensystem of the  l r t D  
and 1  - D2 systems 

For the 1 - D channel, the input/output eigenvectors are 
equal to, [5], 

where, k, n = 0, .  . . , N - 1, and, 

fi(n) = /= cos * (k  + l ) ( n  + 0.5) 
N + 1  N + 1  (25) 

where, n = 0,. .. , N  and k = 0,. . . , N  - 1,  respectively. The 
corresponding eigenvalues are equal to, 

The input and output eigenvectorsof 1 + D channel are ob- 
tained by multiplying (24) and (25) with (-1)". The eigen- 
values are the same as the 1 - D channel given in Eq. (26). 

For the 1 f D channels, the product of the nonzero eigen- 
values is equal to, [5], 

An N-dimensional 1 - D2 channel, N even, can be consid- 
ered as two time multiplexed N/2-dimensional 1 - D chan- 
nels. Consequently, the eigenvalues are in pair equal to, 

The two eigenvectors corresponding to a pair of eigenval- 
ues are of the general form almk(2n) + azmk(2n + 1) where 
a: + cr,Z = 1 and mk(n) is the eigenvector of the 1 - D chan- 
nel given in (24). For the 1 - D 2  channel, we have, 

In all the three cases, the matrix M, in Fig. 2 is either 
sine matrix or closely related t o  it. This reduces the com- 
putational complexity of the modulation by using fast sine 
transform algorithms. 

6.3 Optimization procedure 

For a fixed basis, the Fp-constraint is formulated as, 

and Sk(w) is the spectrum of the k'th dimension of M. For 
spectral nulls and/or Fp-constraint, the energy constraint is 
always active. This can be verified by considering that  in- 
creasing the total energy increases the entropy while not af- 
fecting the constraints. The optimization procedure is for- 
mulated as, 

N-1 
Maximize log (At), 

k=O 
N-1 

Subject to: XtBk(wc) I Fp ,  
k 0  

(32) 
N-1 

This is a convex optimization problem. 
For Fp € [Fmin, Fmu], the F,-constraint is active. For 

Fp < Fmi,, the optimization problem has no answer. For 
Fp > F,,, the Fp-constraint is not active and the power- 
ratio is equal to F,,. The F,, can be calculated by re- 
laxing the F,-constraint and finding the power-ratio of the 
answer. Without spectral null constraint, this results in a 
white spectrum and F,, = wc/n. 

Assuming that the F,-constraint is active and using the 
Lagrange method, we obtain, 
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Fig. 3 Performance loss (in dB) as a function of the 
cutoff frequency, fixed basis, Fp=O.l, with and with- 
out spectral null a t  zero frequency, cubic shaping region, 
M = N + l = 4 , 8 , 1 6 .  

where and $, are determined by solving, 

N-l N - l  

C Bk(wc) = F p ,  and 1 = M .  
k=O $1 Bk(wc) + $2 k=o $1 Bk(wc) + $2. 

(34) . , 

The solution with $2 2 0 is unique and corresponds to 
the global optimum point. 

Figure 3 shows the 8 as a function of the cutoff frequency 
using fixed basis, Fp= 0.1, with and without spectral null a t  
zero frequency, cubic shaping region, M = N + 1 = 4,8,16. 

In the case that  the Fp-constraint is not active, the opti- 
mum answer is obtained by allocating equal energy to all the 
dimensions. 

6.4 Spectral null 

-0 .5  - 0 . 4  -0 .3  -0 .2  -0 .1  0 0.: 0 . 2  0.3 0.4  0 . 5  
Normallzed Frequency 

Fig. 4 Spectrum of the maximum entropy (narrowest null 
width) with spectral null. 

Using Eq. (18), the asymptotic value for 8 is zero dB. The 
power spectrum is equal to, 

where Sk(w)'s are the spectrum of the output eigenvectors of 
1 - D system. Figure 4 shows the corresponding spectrum 
for different values of N .  

I t  can be shown that  this is the maximum entropy spec- 
trum with a spectral null a t  zero over dimensionality N + 1. 
I t  can be also shown tha t  the I;,,,, with spectral null is equal 
to. 

6.5 Example 
In the following, we consider the case of a null a t  zero fie- We consider fixed basis analysis with a spectral null a t  zero 
quency in more detail. In this case, A is the 1 - D system. frequency. For N = 2, the basis (output eigenvectorsof 1 - D 
In general, by changing the Xk's while keeping XI, = N +1, system) is equal to, 
one can tradeoff the width of the null and the entropy of the 
code. One interesting case in this tradeoff corresponds to, h / 2  &/6 

N + 1  x d k  , (35) M = [ 0 -&/3] . (421 
Xk = - 

N 2 &/6 

where h ' s  are the eigenvalues of the 1 - D system. This Within a scale factor, the  shape of the power spectrum 
results in, is determined by the ratio of So and S,. By changing this 

Ry=- N + l  XAA',  (36) ratio, we can tradeoff the width of the null and the entropy 
N of the code. Figure 5 shows the corresponding spectrums- 

and, For So = Sl, the volume of the region is maximum. From 
S,(w) = 1 - cos (w) . (37) Fig. 5, it  is seen that  this case is closer to a white spectrum 

In this case, it  can be shown that,  than the other cases. 

Using Eqs. (21) and (37) or Eqs. (18) and (38) results in an 
asymptotic value of 3 dB for 8. 

Another interesting case corresponds to the spectrum with 
the maximum entropy. This is obtained by equal allocation 
of energy. In this case, 

7 Signaling over partial response channels 

We put the restriction of having equal minimum distance to 
noise ratio along all the dimensions where the n o i s  (PC 
sum of the Gaussian noise and I S .  In general, the s t a t s w  
of the IS1 depends on the source and is not Gaussian 
is the major problem associated with the and* 

The decision is made independently along each 
sion. This is equivalent to maximum likelihood d d o n  
for Eta = 4, the i(, in (5) is diagonal. This wi l l  br IY 



Fig. 5 Power spectrum of the example. 

scheme, independent of the  channel structure, results in a 
white spectrum for y. 
Remarks: This work was mainly based on using the con- 
tinuous approximation. Using this approximation, rate and 
energy distributions can be treated independently. In prac- 
tice, rate is a discrete quantity. More importantly, in most 
of the practically interesting boundaries, the rate per two di- 
mensional subspaces is restricted to be an integer. This im- 
poses more restrictions on the  optimization problem. In this 
case, the rate  and the energy distribution should be jointly 
selected to maximize the total rate. The procedure will be 
quite similar to  the one given in (61. 

8 Summary and conclusions 

case if 0 2 D D t  is diagonal and the IS1 term in zero (zero 
state signaling). The equivalent noise power along the i'th 
dimension, denoted by u:, i E [0, N - 11, is equal to the i'th 
diagonal element of k,,. To have equal minimum distance to 
noise ratio along all the dimensions, volume of the Voronoi 
region around each point of the input constellation should 
be proportional to ni 0;. Define the entropy of the channel 

The entropy of a flat channel is equal to zero. Using this 
notation, the entropy of a is equal to, 

where H(a ) ,  H ( M )  are given in Eqs. (1) and (3), respec- 
tively. The  optimum N, M and ha are found by solving the 
following optimization problem, 

Maximize H (a) , 
Subject to : Trace (MAaMf  ) = M , (45) 

where, Trace(MA,Mt) is the total energy of y. This  results 
in a spectrum for y which is matched to the channel char- 
acteristics. In this case, unlike to the  case of the spectral 
shaping, M is not necessarily orthonormal. Optimization 
over N can be achieved by decreasing N (starting from M) 
until the optimum value is found. 

In the  zero s tate  signaling, the ol's are equal to  the 
diagonal elements of u2DDt .  Under the constraint of 
Trace(MAaMt) = M, H(a )  + H(M) is maximized when the 
Xi's are all equal and M is orthonormal. I t  can be  shown that  
H ( C )  is minimized when M is the set of the N input eigen- 
vectors of the channel corresponding to the largest eigenval- 
ues. Similar to the previous case, optimization over N can be 
achieved by a search. This omits the intrablock interference 
resulting in uncorrelated (independent) noise along different 
dimensions. By allocating equal energy to the input eigenvec- 
tors of the channel corresponding to the largest eigenvalues, 
both of these terms are simultaneously optimized. These re- 
sults are consistent with those obtained in [2]. In  this case, 
the dimensions are used in an on-off manner in the  sense that  

We have studied the selection of a constellation for spectral 
shaping. This  is achieved by the use of an optimization pro- 
cedure which maximizes the rate  of the constellation subject 
to some constraints on i ts  power spectrum. The constella- 
tion basis is fixed and is selected to reduce the computational 
complexity of the modulation. The  power allocated to each 
dimension is optimized. We also discussed how to match the 
power spectrum of a line code to a specific channel charac- 
teristics. The  procedure ws based on assuming an effective 
additivenoise composed of the sum of the Gaussian noise and 
the intersymbol interference. In this case, the optimization 
procedure maximizes the rate  of the constellation subject to 
having equal minimum distance to noise ratio along all the 
dimensions. 
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