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Abstract :  We propose some practical methods for applying a 
lattice-based uniform vector quantizer to a nonuniform source. 
The first method, denoted as cluster quantization, is based on 
using the k-fold cartesian product of a one-dimensional compan- 
der in conjunction with a lattice quantizer. This scheme has an 
asymptotic gain of 1.53 dB with respect to the optimum one- 
dimensional quantizer. The complexity is essentially the com- 
plexity of decoding of a lattice. The second method, denoted as 
quantizer shaping, is based on selecting an appropriate boundary 
for a lattice quantizer. By increasing the space dimensionality, 

'- this scheme becomes asymptotically optimum. As a practical 
shaping method, we use the Voronoi region around the origin of 
a lattice to shape the quantizer. By using b i n ~ y  lattices, we can 
construct quantizers with an integral bit rate. In an extension of 
this scheme, we use a lattice partition chain .I:/. . ./A,"/Am+' 
:o provide a set of rn + l Voronoi consteUations, c(A; /A~' ) .  
i = 0,. . . , m. A copy of the Voronoi region of A; is centered 
around each point of C(h&/.\'b+'). This results in higher res- 
olution for the partitions around the origin. This is denoted 
a s  a nonunifom Voronoi quantizer. The grou? property of the 
Voronoi constellations is used to decrease the complexity of the 
operations invovled in the quantization. These are the opera- 
tions of shaping, encoding, addressing and reconstruction. The 
overall complexity is in the order of the linear nappings. By us- 
iag binary lattices, we construct quantizers with a rate very dose 
to an integer number. This reduces the redundancy assodated 
with a binary ind&ng of the quantizer output. 

1 I n t r o d u c t i o n  

In quantizing a source s E S c R, R is the set of the real numbers, 
the objective is to represents using a discrete number of values, 
say i E 3 C R, which are dose to  s. We assume that the source 
symbols are processed on a k-dimensional basis, sE SL CRk, 
{ . )' denotes the k-fold cartesian product,-and are quantized 
to i E & C Rk. Obviously Sk C SL and S k  CS'. The probability 
deasity function of s  is denoted by f i ( s ) .  

The similarity between r a n d 3  is measured in te-ms of a dis- 
tortion measure which is a function defined on S x S ,  say d(s,  i ) ,  
a d  extended to  S k  x Sk, by, 

We use the r'th power of the l2 norm, i.e., 

as the distortion measure. This is the same distortion measured 
as used in [I]. 

Quantization it achieved by partitioning part of the source 
space Sk bounded within the region 72, into N disjoint and ex- 
haustive subregions Q;, i = 0,. . . , h; - 1, i.e., 

u ~ i = ~ , n S k  and Q i n Q j = O  if i f j .  (3) 
i 

The region 'Rq is denoted as the quantizer shaping region. 
Each Q; has a unique reproduction symbol Oi. W the source 

vectors s E Q; are quantized to d;. This is called a k-dimensional 
vector quantizer (VQ). 

The objective in the design of a VQ is to minimize the average 
distortion, namely, 

for fixed N where E [ .  I .]denotes the conditional expectation. To 
achieve this objective, the reproduction symbols Bi's are selected 
to minimize E [d(s, 5;) ( s  E Q;]. For the distortion meaure  under 
consideration, this results in, 

The indexing (labeling) process is the assignment of the indices 
i = 0,. . ., N - 1 to the parti:ions. In using a VQ, a source vector 
s E Q; is specified by the index i. For example, in a transmission 
system the indices are transsit ted to the receiver and in a digital 
storage media the indices are stored. 

The procedure of vector quantization is composed of shaping, 
encoding, addressing and reconstruction. For each source vector 
s, shaping is to dedc if s E Rq o r  not, encoding is to  find the 
region Q; such that s E Q;, addressing is to produce the index i 
if s E Q; aad reconstruction is the production of 8, from the index 
i. In general, shaping has no simple rule, encoding is achieved by 
an exhaustive sear& and addressing, reconstruction are achieved 
by the use of a Lookup table. For a VQ with a large number of 
partitions all these operations have high complexity. 

In a VQ with a large number of partitions, the major com- 
plexity is that of the encoding. In general, this is achieved by an 
exhaustive search. On the other hand, partitioning the space by 
the Voronoi region of a lattice has the same properties as in (a,, 
This is known as a lattice quantizer. The complexjty of quan- ; 
tization is that of decoding of the corresponding lattice. This 
is much easier than the exhaustive search assodated with the 
general VQ. The only problem is tha t  the partitions of a lattice 
quantizer have the same volume. This is a natural quantizer for 
a uniform source. 

We study three methods for the lattice quantization of a 
nonuniform source. The fint method is based on cascading 
a one-dimensional compander with a multi-dimensional lattice 
quantizer. We propose a practical method, denoted as duster 
quantization, to  implement this scheme. The second method 
is based on selecting an appropriate boundary (shaping region) 
for a lattice quantizer. As a practical shaping method, we use 
the Voronoi region around the origin of a lattice as the bound- 
ary of the quantizer. This is denoted as a Voronoi quantizer. 
The group property of the Voronoi constellations is used to de- 
crease the complexity of the shaping and encoding operations. 
We propose an indexing method which results in low addresshg 
complexity. By using this indexing method in conjunction with 
a set of suboptimum reconstxction vectors, we obtain a system 
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uith a low reconstruction complexity. The overall complexity is 
in the order of the linear mappings plus the decoding of a lattice. 
By using binary lattices, we construct quantizers with an inte- 
gral bit rate. In an extension of the Voronoi quantizer, we use a 
chain of the lattices to partition the space into a set of concentric 
subregions. The quantizer has nonequal resolutions in different 
subregions. 

Our analysis is based on continuous approximation. This is 
a usual approximation in calculating the performance measures 
associated uith a discrete set of points. This approxjmation is 
based on assuming a continuous density of points within the 
shaping region. Assuming a continuous approximation, the per- 
formance measures which are expressed in terms of a multiple 
summation, are approximated by a multiple integral over the 
shaping region. In general, such an inti'ral is easier to calcu- 
late. 

The performance of the proposed schemes is measured in 
terms of the degradation in the quantization Signal-t+Noise- 
.%ti0 (SAX) with respect to the optimum VQ. This is denoted 
as the pirfonnance loss (8). 

2 Optimum Vector Quantization 

Define a baseline source as a uniform source with the support 
[-1/2,1/2]. This source has a power of 1/12 per dimension. 
This is denoted as the baseline power. All the sources under 
consideration are normalized to have the same power. 

Assuming continuous approximation, the distortion of an opti- 
mum vector quantizer for a k-dimensional source with probability 
P k  is equal to, (11, [2], [3], 

where N"Ikc(k,r) is the distortion of the optimum N-point 
uniform quantizer applied to the baseline source. This is denoted 
by Db(N, k, r). The value of C(k, r) in dimensionality one and 
two are known, [4]. The corresponding quantizers are lattice 
quantizer. Lower and upper bounds on C(k, r )  are given in [2]. In 
the case of a lattice quantizer and r = 2 (mean square distortion 
measure), a conjecture for the upper bound of C(k, 2) is given in 
[S]. The asymptotic value of C ( k ,  2), k - w, is equal to l /2re ,  
PI. 

We assume that the source symbols are independent, i.e., 
Pk(s) = n ~ ~ ~ p ( s ; )  and Sk =Sk. Substituting in (6), we obtain, 

It is seen that the distortion is the composed of the product of 
the distortion of the optimum uniform quantizer and the factor, 

For a uniform source L(p, k, r )  = 1. It is easy to show that, for a 
Gaussian source, 

(;)'I' [k; r]'k+r'" 
Lip, k, r )  = - 

with the limiting value of Lip, m, r )  =(re/6)'f2. Similarly, for a 
Laplaaan source, 

with the limiting value of L(p, w, r) =(e2/6)'f2. Figure (1) 
shows the value of L(p, k,2) for the Gaussian and Laplaaan 

Fig. 1 L(p, k, 2) for the Gaussian and Laplaaan sources. 

sources as a function of k. This is the degradation in the op- 
timum quantization SNR of these sources comparing to the o p  
timum quantization of a uniform source (for the same rate). 

In the following we discuss some properties of the function 
Lip, k, r). We assume that the probability density p is a non- 
increasing function. This is the case for most of the interesting 
densities. 

Theorem: L(p, k, r )  is a non-increasing function of k with the 
limit erhr where hp is the differential entropy of the source. 

Proof: Using Holder's inequality [6], it can be shown that 
for any positive function j ,  ($ jll')' is a non-increasing function 
with respect to t. Substituting and t = k + r ,  proves the 
non-increasing property of the L(p, k, r). To calculate the limit, 
from the fundamental theorems of source coding, we know that 
in the limit of k - ca, the density Pi tends to the constant value 
e-kh r over a region of volume ekht and tends to zero outside of 
this region. Substituting in (6), proves the desired result. 

This theorem shows that increasing the dimensionality results 
in better performance. This theorem also means that in the 
limit, a Gaussian source is the most difficult source to quantize 
(a Gaussian source maximizes the hp). 

The proof of the second theorem is based on the following 
lemma. 

Lemma: The differential entropy of a monotonically decreas- 
ing density is positive. 

Proof: It  is easy to show that the set of the monotonicdy de- 
creasing probability densities with constant average power con- 
stitute a convex region. The baseline source corresponds to a 
point on the boundary of this region. Also, differential entropy 
is a convex cap function of the density function and has a unique 
maaimum point over the convex region (the m e m u m  point cor- 
responds to a Gaussian density). Consequently, the entropy in- 
creases as we move from the point corresponding to the uniform 
density toward the interior part of the region. Considering that 
the differential entropy of the uniform (baseline) source is zero, 
the desired result is proved. 

Theorem: L(p, k, r) is greater than or equal to one where the 
equality is satisfied for a uniform source. 

Proof: Combining the lemma and the first theorem means 
that L(p, k, r )  is a decreasing function with a positive limit and 
consequently is positive for the whole range of k. By the direct 
substitution in (8), it is easy to verify that for a uniform source 
L(p,k,r) = I .  

This theorem means that a uniform source is the easiest source 
to quantize. 

The following theorem gives a lowerbound to the performance 
of a uniform quantizer in conjunction with a nonuniform source. 



Theorem:  Let's Q,'s be a set of the congruent partitions of 
the region A. Let's C. H denote the set i f  density functions 
which are nonincreaoing, nondecreasing function of the 13 norm 
and have a constant measure, M, over A. The distortion as- 
sociated with the density function Pk € G U H ,  given in (4), is 
m u h i z e d  if Pk is constant over A. 

Proof: Consider a density Pk E C u H. Assume that the 
measure of PA over Q;, i = 0, .  . . , N - 1 is equal t o  M; where 
C i M i  =M. The total distortion 0 f . q  is equal to, D = C; Di 
where, 

Let's G'CG and H'C H denotes the set of the nonincreaoing, 
nondecreasing densities with the measure M,, i = 0,. . ., N - 1 
over Q,. We first show that for a density P; E C' U H', the dis- 
tortion D,, i = 0,. . . , N - I in (11) is maximized if Pi is constant 
over Q;. I t  is easy t o  show that :  (i] The sets G' and H' are con- 
vex sets with a boundary corresponding to a constant density. 
(ii) The set of the densities with the measure M,, i = 0,. . . , N - 1 
over Q; is a convex set. This is denoted as F. The  distortion 
given in (11) is a convex n function of Pk and h a s  a unique max- 
imum over each of the convex sets F, G' and H'. The maximum 
points over G' and H' can not be located inside of the regions 
because in this case, a s  G' c F and H' c F we should have two 
m k m u m  over the region F. This means that the maximum 
points over G' and H' are Iocated on their boundary (corre- 
sponding to  a uniform density). On the other hand, summing 
the Di's in (11) and considering that Qi's are congruent, it is 
easy to show that  the distortion of a density which is constant 
over each Q; and har a constant cord measure over d is a con- 
stant value independent of the individual measures. This means 
that such a density has the same distortion as a density which is 
constant over the whole A. This completes the proof. 

3 One-dimensional Companding 

Companding is a method of implementing a nonuniform quanti- 
zation scheme using a uniform quantizer. This is based on the 
cascade of a zero memory nonlinearity, denoted as the compan- 
der, followed by a uPiform quantizer and then followed by the 
inveme of the f i n t  nonlinearity. The optimum compander for di- 
mensionality one is known, [?I. The conditions for the existence 
of the optimum compander in higher dimensionalities are hard 
to satisfy, [a]. 

We assume that the compander is equal to the k-fold cartesian 
product of a one-dimensional compander. In this case, it can be 
shown the average distortion is equal to, 

The performance loss with respect to the optimum quantizer is 
equal to, 

Figure (2) shows the 8 for the Gaussian and Laplacian sources 
as a function of k, r = 2. Using (9) and (IO), it is easy to show 
that the asymptotic value of 6 for the Gaussian source is equal 
to, 2.81 dB and for the Laplacian source is equal to, 5.63 dB. 

The gain with respect to  the optimum one-dimensional quan- 
tizer is, C(1, r ) /C(k,  r ) .  For example, for r = 2  (C(1,2) =1/12, 
[4]) in dimensionality k =8  using lattice Es, C(8,2) =0.071682, 
(41, r su l t s  in a gain of 0.65 dB and in dimensionality k = 24 us- 
ing lattice Az4, C(24'2) =0.065771, [4], results in a gain of 1.0 
dB. The asymptotic gain for r = 2 and k -ca is equal to  1.53 
dB, C ( c q  2) =I/2ne, (21. 

Fig. 2 The 8 of the cluster quantizer for the Gaussian and 
Laplacian sources, r = 2. 

Later, we will discuss a practical method denoted as the Clus- 
ter Quantization to implement this scheme. Before starting the 
main discussion, we first talk about the concept of the Voronoi 
consteUations, [9], [lo]. 

4 Lattices, Voronoi constellation 

A k-dimensional lattice A is a subset of points of Rk which form 
a group under ordinary vec:or addition. The points of a lattice 
can be written in form. 

where p 2 k, a,'s are integer numbers and the set of the k- 
dimensional vectors u;'s are a set of the generators for A. , A  
subgroup 11. of A, denoted ar A/&, is called a sublattice. A 
sublattice A, partitions A into (A/A,I cosets of A,. The set of the 
cosets form a group under addition modulo A,. This is denoted 
as the quotient group. .4 lattice A is called binary if Z"lh/2'Zk 
is a valid partition chain for some integer f. For binary lattices, 
lA/A,l is an integral power of two. 

Let's V(A) denotes the Voronoi region around the origin of the 
lattice A. A Voronoi constellation based on the partition b/A,, 
denoted as C(A/A,), is composed of the points of A located 
inside of V(A,). The number of such points is equal to  IA/A,l. 
The points of C(A/A,) are the coset leaders of the partition and 
form a group under vector addition modulo A,. To uniquely 
specify the Voronoi constellation C(A/A,), one should also solve 
the problem of ties. This occurs when some of the points of A 
are located on the boundary of A,, [lo]. 

In the case of binary lattices, we have, 

where a is a binary m-tuple (JA/h,l =2m) and G is an k x m 
binary matrix. The points of the Voronoi constellation C(A/A,) 
can be written in the form, [lo], 

The binary vector a can be recovered from c using, 

4.1 Cluster Quantization 

We employ a fine nonuniform quantizer with Zm points along 
each dimension. Then the partitions of this quantizer are 



mapped to the points of the Voronoi constellation C(Z/ZmZ) .  
This is the set of points fro= the integer lattice bounded 
within the region [-2"'-', 2"'-1]. Tine k-fold cartesian product 
space will be mapped t o  the points of the cubic constellation 
C(Zk/2"'Zk). The total rate of the resulting quantizer is equal 
to  km bits. Now, a lattice A,, where z ~ / A , / ~ " ' z ~  is a valid 
partition chain, is used t o  partition the cubic constellation into 
?ml = [ Z ~ / A , ~  clusters each containing ?"a = lhq/2"ZkI points, 
ml + m2 = km. Each cluster determines one of the final parti- 
tions. As a result of this grouping, the rate decreases by m2 bits 
resulting in a rate of ml bits for the final quantizer. To have 
consistency with the continuous approximation, the  lattice hq is 
selected such that m2 is a large number. 

Cluster Quantization can be also considered as a method for 
nonuniform partitioning of the space while the encoding has a 
low. complexity. Each partition is the union of some hypercubes. 
For larger values of m2, the hypercubes are s m d e r  which results 
in partitions with a smoother boundary. 

5 Quantizer Shaping 

In this method, region ?Zq is selected to  act  as an interface match- 
ing the probability density of the source to  the (desired) uniform 
density in a lattice quantizer. In general, a uniform density of 
points within a region 72, induces certain marginal density dong  
the space dimensions. Define a symmetricd region a s  a region for 
which the marginal densities are the same. It can be shown that 
a convex region results in a monotonically decreasing marginal 
density. We assume symmetrical convex shaping regions. For a 
region which is not a hypercube, the marginal densities are de- 
pendert. For any region, as the dimensionaiity tends to  infinity. 
the marginal densities become independent of each other. 

From the fundamental theorems of the information theory, we 
know that for any probability density p there exist an infinite 
dimensional region 72- such that  a uniform density within that 
region results in an independent density equal t o  p along each 
dimension. It can be shown that a convex region 75- corre- 
sponds to a monotonicdy decreasing p and vice versa. For a 
Gaussian source, 72- is a sphere and for a Laplacian source R" 
is a pyramid. 

Consider a source s with the baseline power and with a non- 
increasing probability density function p of support 72. Obvi- 
ously, 72 2 1, with equality if p is uniform. The k-fold cartesian 
product of the source 8, has the support Rk = 7Zk, namely a hy- 
percube of edge length 72. 

If the whole region is quantized by a uniform quantizer. 
i t  is easy to  show that the performance loss with respect t o  the 
optimum scheme is equal to, 

where V( . ) denotes the volume. Tine density Pk has support 
on the region, ?Zk = ?Zk, V ( R k )  = [V(R)Ik.  Substituting in (18) 
results in. 

As k - w, R k  tends t o  a subset of 7Zk and [V(72i)]'fk - erh,. 
We also showed earlier that ar k - a, L(p, k, r )  - erhp. This 
mesns that  the asymptotic value of 9 in (18) is equal to  zero 
dB. This reflects the  fact that in an infinite dimensional space, 
the optimum qnantizer for any source is uniform. In extending 
this idea t o  a finite dimensional space, we use a region 7Z4C zk 
t o  select the source samples t o  be  quantized. 

I t  should be mentioned that  in an infinite-dimensional space 
the volume of a solid is concentrated on its surface. This fact 

Fig. 3 The 6 of the shaping by rounding to  the nearest point 
for a Gaussian source, r = 2. 

provides a connection between our way of looking a t  geometrical 
source coding and the one in (111, [12] and [13]. 

In the following, we study two methods for the geometrical 
source coding in a finite dimensional space. 

5.1 Shaping by Rounding to the Nearest Point 

In this method, a source vectors 4 a, is quantized to  the vector 
A(%) E 72, which minimizes 11s - A(s)(l$. I t  is easy to  show that 
the total distortion is equal to, 

- .  
(20) 

The region R, is selected t o  minimize the total distortion. 
For each source vec:or s, we first check if s belongs t o  2, or 

not. If s 4 K,, it is rounded to  the nearest point on the surface 
of 12,. After that the quantizer lattice is decoded. 

I t  is easy t o  verify that for a Gaussian source, the optimum 
region is a hypersphere. Denoting the radius of the hypersphere 
by a, the total distortion is found as, 

D(a)  = N " / ~ C ( ~ ,  r)(*a2)'f2 {r [ (k/Z)  + I ] ) - ' ~ ~  Y ( o )  + X(a)  , 
(21) 

where r( . ) denotes the gamma function, 

The parameter a is selected to  minimize the total distortion. 
The corresponding 8 for r = 2 and for dimensionality k = 4,8,24 
as a function of the rate per dimension, ( I l k )  log N ,  is shown in 
Fig. (3) .  

I t  is seen tha t  the geometrical source coding is more effective 
for alower number of quantizer partitions, N. However, as we are 
using continuous approximation, by decreasing N, the validity of 
the results decreases. 

5.2 Shaping by Clipping 

In this case asource vectors 4 72, is dipped to  zero. This scheme 
results in some degradation with respect to  the previous method 
but i t  is easier to  implement. The total distortion is equal to, 



It is easy to verify that the surface of the optimum K, is com- 
posed of the points with Pk(e)llall;=c. For a fixed number of 
quantizer regions, changing the constant c determines a scde  
factor to be applied to  the quantization lattice. This provides 
a tradeoff between the approximation and the clipping errors. 
The optimum value of c is selected to minimize the total distor- 
tion given in (24). In this method, the test for s € Kq is easily 
achieved by checking if Pk(s)llslls 5 c or not. 

6 Vorono i  Quantizer 

A set of lattice points c; partition the space into a set of the 
congruent Voronoi regions. This set of the partitions in con- 
junction with a uniform source results in the reproduction vec- 
ton,  is =ci ,  V i  corresponding t o  a local optimum VQ. A par- 
tition chain A,/& results in a VQ with N = lAq/A,l, R q = A , ,  
Q; = V(A,), V i  and c; € C(A,/A,). This is denoted as a Voronoi 
quantizer. In this case, shaping is achieved by the decoding of 
A, and encoding is achieved by the decoding of Aq. 

In a Voronoi quantizer, the effectiveness of a shaping lattice 
depends on the statistic of the source. As there is no cost (except 
for the decoding complexity) assodated with shaping, we always 
use the best shaping lattice. In  general, the Voronoi region of 
a lattice with lower C(k,2) is more circular. Such a lattice is 
appropriate in quantizing a Gaussian source. I t  seems that for a 
Lapladan source, the Voronoi region of the lattice D;V is more 
similar to a pyramid and achieves better performance. 

In a Voronoi quantizer, the indexing h a s  an important effect 
on the addressing and reconstruction complexities. Considering 
(16), if the partition centered a t  c is indexed by a. (17) provides 
an easy way for the addressing. If instead of the optimum 5;'s in 
(j), we use i, = c.. (16) provides an easy way for the decoding. 
Obviously, this results in some degradation. 

7 N o n u n i f o r m  Voronoi Q u a n t i z e r  

In the following, we use a chain of the lattices t o  partition the 
space into a set of concentric partitions of different resolutions. 
Recently, Joeng and Gibson in [14] and [IS] have proposed the 
structure of a multi-dimension compressor. They use a set of 
the concentric radial bands (with respect to ll o r  12 norm), t o  
partition the space. T h e  integer lattice (Zk) is used for the quan- 
tization. The density of the lattice points is increased by a con- 
stant multiplicative factor as we pass from one radial band to 
the next one closer t o  the origin.  he main difference between 
their work and our method is that here, instead of the concentric 
radial bands, we use a set of the nested lattice Voronoi regions 
to  partition the space. Their method makes use of the optimum 
shaping region (for a given source statistics). Obviously, from the 
shaping point of view, their method is superior. However, as we 
will see later, in our method, the group property of the lattices 
is the source of a number of useful properties which decrease the 
complexity of the quantization. 

Consider the lattice partition chain, A!/A:, . . . AY/Ayf l. For 
each partition AF-~/A?-'+~, i = 0,. . . , m, a copy of v(A~")  is 
centered around each point of c ( A ~ - ' / A ~ ; ~ + ~ ) :  This results in 
a set of partitions such tha t  the resolution increases in m steps 
as we get closer t o  the  origin. 

To calculate the number of the total partitions, N, we know 
that in the i 'th step, the number of the partitions increases by 
the factor, I A Y - ~ / A ~ - ~ + *  I - 1. Consequently, 

From now on, we assume the chain of the binary lat- 
tices, AQ/2Aq,. . . , Z ~ A ~ / ? * + ~ A , .  For this chain we have 

I?'r\,/?'+'A,l = Zk. k is the space dinensiondity, and (?5) re- 
duce; to, 

N = ( m + l ) ? & - m .  ( W  

In this care, to increase the quantization resolution. we c a n  use 
the lattice 2 i ' ~ ~ q  to partition the  Voronoi regions of 2'Aq into 
2pk congruent subregions. As a result of this subpartitioning, the 
quantizer bit rate increases by p bits per dimension. 

We m u m e  that the partitions of the nonuniform Voronoi quan- 
tizer are indexed by Rt = pog Nl binary digits. The  redun- 
dancy is equal to r = Dog N] - logl N. In the case of the binary 
lattices, if we select m + 1 = 2., using (26) and the inequality 
log, z 2 I - (l /z),  i t  can be shown that, 

and the redundancy satisfies, 

This usually results in a negligible redundancy. The rate per 
dimension is equal to R = 1 + (u/k). 

For the chain of binary lattices, A,/2h,/. . . / 2 m ~ q / 2 m c ' ~ q ,  
define the region A,. i = 0.. . . , rn, as the set of the V(2*h,) cen- 
tered around the points, 

Ai = [c : c $? ~(2 ' - 'A , / ? ' d~) ,  and c E c ( ? ' A ~ / ~ ' + ~ A ~ ) ]  . 
(29) 

Using (16), the points of A, can be written as, 

Using (30), the points of A, a re  indexed by concatenating the 
binary representation of i (with nog2(m i 111 binary digits).dnd 
the k-dimensional binary vector a. This method of indexing, 
denoted as the natural indexing, will be very efficient if m + I  is 
an integral power of two. 

7.2 Shaping, Encoding 

Given a source vector s, shaping and encoding is achieved by 
decoding the set of lattices Aq, A:, . . . , ?"+'Ap. This is used t o  
find the set A; defined in (29) and the nearest point c E A; to s. 
A source vectors 4 ~ ( 2 ~ + l A ~ )  is truncated to  zero. 

7.3 Addressing 

For a given set A, and point c E A;, the binary vector a is calcu- 
lated by substituting c in, 

This is concatenated with the binary representation of the index 
i to  achieve the addressing. 

7.4 Decoding 

If the optimum reconstruction vectors given in (5) are used, the 
decoding is achieved by a lookup table. However, this may not 
be practical for large values of N. 

In a suboptimum method, the  reconstruction vectors, Lils, are 
selected as the centers of the Vomnoi regions. This is useful 
in conjunction with the natural indexing. In this case, the two 
parts of the label are used in (30) to produce the reconstruction 
vector. 



8 Examples 

An example of a nonuniform Voronoi quantizer bared on 
the lattice partition chain Z / ~ Z / ? ' Z / ~ ~ Z / ~ ' Z  is shown in 
Fig. (4). Similar examples based on the partition chain 
22/2Z2/?222/2JZ2/24~2 and RZ2/2ZZ2/?2RZ2/23RZ2 are 
shown in Figs. (5) and (6),-9 is the rotational operator, (41. 

Fig. 4 The positive part of the one-dimensional nonuniform 
Voronoi quantizer based on the integer lattice, u = 2 ( m  = 3) and 
p = 1. The reconstruction levels are shown by the @ sign. 

Fig. 6 The regions A, for a two-dimensional nonuniform 
Voronoi quantizer based on the partition chain RZ2/ . . ./2%Z2. 
This structure is speaally useful in conjunction with a Laplaaan 
source. 

[4] J. H. Conway and N. J. A. Sloane, "Sphere padrings, Lat- 
tices and groups." Springer-Verlag, 1988. 

[5] J.  H. Conway and N. J. A. Sloane, "A lower bound on the 
- average error of vector quantizers," IEEE Trans. Infonn. 

Theory, vol. IT-31, pp. 106-109, January 1985. 

[6] R. G. Gallager, Information theory and reliable cornmuni. 
cation, John Wiley k Sons, New York, NY, 1968. 

Fig. 5 The regions A; for a two-dimensional nonuniform (71 B. Smith, " Ins t~ taneous  companding of quantized sig- 
Voronoi quantizer based on the integer lattice, u = 2 (m = 3) and rials," Bell Syst. Tech. J . ,  vol. 5?, pp. 653-709, May 1957. 
p = 0. The region V(16Z2) is not shown. 

[8] J. -4. Buddew, "A note on optimal multidimensional com- 
panders," IEEE Tranr. Inform. Theory, vol. IT-29, p. 279, 

9 Summary and Conclusions: March 1983. 

[9] J. H. Conway and N. J. 4. S l o ~ e ,  "A fast encoding method 
We have proposed some practical methods to apply a lattice- for lattice codes and quantizers," IEEE Trans. Inform. 
based VQ to a nonuniform source. The duster quantization, uses Theory, vol. IT-29, pp. 820-824, November 1983. 
the k-fold cartesian product of a one-dimensional compander to- 
gether with a lattice quantizer. This scheme has an asymptotic 
gain of 1.53 dB with respect to the optimum one-dimensional 
quantizer. The quantizer shaping, is based on selecting an appro- 
priate boundary for the quantizes. This scheme is asymptotically 
optimum. The Voronoi quantizer is based on using the points of 
a Voronoi constellation to partition the space. The group prop 
esty of the lattice points is used to decrease the complexity of 
the operations. In an externsion of this scheme, we used a chain 
of binary lattices to partition the space into a set of concentric 
partitions such that the quantization resolution increases in m 
steps as we get closer to the origin. 
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