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Abstract: In selecting the boundary of a signal constellation
used for data transmission, the objective is to minimize the av-
erage energy of the set for a given number of points from a given

packing. Reduction in the average energy because of using the .

region C as the boundary instead of a hypercube is called the
shape gain of C. The price to be paid for shaping is: (i) an in-
crease in the factor CER, (Constellation-Expansion-Ratio), (ii)
an increase in the factor PAR (Peak-to-Average-power-Ratio),
and (iii) an increasein the addressing complexity. The structure
of the region which optimizes the tradeoff between the shape
gain and the CER, and also between the shape gain and the
PAR in a finite dimensional space is discussed. Examples of
the optimum tradeoff curves are given. The optimum shaping
region is mapped to a hypercube truncated within a simplex.
This mapping has properties which facilitate the addressing of
the signal points. We discuss two addressing schemes with low
complexity and good performance. In spectral shaping, the rate
of the constellation is maximized subject to some constraints on
its power spectrum. This results in a shaping region which has
different values of power along different dimensions (unsymmet.-
rical shaping). This spectral shaping also involves the selection
of an appropriate basis (modulating waveform) for the space.
Finally, we discuss the selection of a signal constellation for sig-
naling over a partial-response channel using both continuous
approximation and discrete analysis. We also present a closed
form formula for the weight distribution of the scaled D4 and
Ejg lattices.

1 Introduction

In a data transmission system, the data is encoded such that
in each signaling interval one of M equiprobable waveforms is
transmitted. The overall transmission system can be modeled
as a discrete-time system. In the discrete model, the channel
provides us with a given number of dimensions per signaling in-
terval. To achieve the transmission, we select M -points over the
channel space. Each of the transmitter waveforms corresponds
to one of these points. This is called a signal constellation.

In the design of a signal constellation, the overall objective is
to minimize the probability of the symbol error at the receiver
side. Our tools are: (i) the selection of the internal structure
of the constellation (channel coding), (ii) the selection of the
constellation boundary (shaping), and (iii) the selection of the
constellation basis (modulating waveforms). The figure of merit
is the reduction in the required average energy with respect to
a reference scheme. In the process, if the channel is nonflat,
the constellation shaping in conjunction with an appropriate
modulator can produce a nonflat power spectrum to match the
channel characteristics.

°t This work was supported by Natural Sciences and Engineering Re-
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The problem of the channel coding is a well established sub-
ject in the theory of communications. For example, by selecting
the constellation points from the lattice E, we obtain a channel
coding gain of 3 dB over the uncoded case (lattice Z%). This
lattice has a minimum distance of 4 resulting in 6 dB gain, and
aredundancy of 4 bits per 8 dimensions (|Z%/Es} = 24) resulting
in 3 dB loss.

Ungerboeck proposed the idea of producing dense packings
by the use of a trellis diagram. The use of trellis-based packings
resulted in a breakthrough in coding theory. For example, by us-
ing the lattice Eg with a 64-state trellis, the coding redundancy
reduces from four bits to one bit. This scheme, in conjunction
a simple shaping method, results in an overall gain of 5.4 dB,
1.

Unfortunately, the situation is not as good as the conven-
tional calculation methods based on the minimum distance to
the nearest neighbor shows. Forney mentions in [7} that, in a
general coset coding scheme, considering the effect of the error
coefficient, after the initial 3-4 dB, it takes on the order of a
doubling of complexity to achieve each 0.4 dB further increase
in the effective coding gain. Consequently, to achieve higher
gains, it is worthwhile to invest part of the complexity in shap-
ing rather than in more complex channel codes.

In shaping, one tries to minimize the average energy of the
constellation for a given number of points from a given packing.
The reduction in the average energy due to the use of the region
C as the boundary instead of using a hypercube is called the
shape gain of C and is denoted as 7,{C), (5]. The price to be
paid for shaping involves: (i) an increase in the factor CER,?,
(Constellation-Expansion-Ratio) (ii) an increase in the factor
PAR?, (Peak-to-Average-power-Ratio) and (iii) an increase in
the addressing complexity?.

For a given dimensionality N, a spherical shaping region Sy,
is the region with the highest possible v, but also with high val-
ues for CER, and PAR. It is well known that as N — oo, the
shape gain of Sy tends to 1.53 dB. This is an upper bound for
the shape gain of all regions and is achievable at the price of
CER, =0 and also PAR = 0. However, as we will see later,
an appreciable amount of this npperbound can be achieved over
a reasonable dimensionality and with low values of CER, and
PAR. Table 1, contains some examples of the achievable shaping
performance over dimensionality N =64. Column M denotes
the required number of points of the 2-D (two dimensional) sub-
constellations in a scheme carrying 7 bits per two dimensions.
For the same bit rate, an unshaped constellation needs 128 =27
points per 2-D subconstellations.

'The CER., is ratio of the employed number of points per two dimensions
to the minimum necessary number of points per two dimensions.

3The PAR is ratio of the peak of the energy per two dimensions to the
average energy per two dimensions.

3 Addressing is the assignment of the data bits Lo the constellation points.
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CER, PAR 4, M
1.02  2.18 0.48 131
1.07 241 0.72 137
1.19 286 1.00 153
141 3.53 1.18 181
12.04 33.0 1.31 1542

Table 1 Performance of the optimum shaping region in di-
mensionality N =64, the last row corresponds to a spherical
region.

The major problem associated with shaping in a high dimen-
sional space is the addressing complexity. For example, for 2-D
subconstellations composed of 128 points, in an N =32 dimen-
sional space, a direct addressing scheme using a lookup table
requires a block of memory with 112 x 2!12 bits per N dimen-
sions, where 112 arises from 7 bits per channel use times 16
channel uses per sigraling interval. This is undoubtly impracti-
cal.

2 Previous work

In the work of Wei, [11], shaping is a side effect of the method
employed to transmit a nonintegral number of bits per two di-
mensions. This method provides moderate shape gain for low
values of CER,. The addressing of this method is achieved by
a table lookup. Forney and Wei elaborate and generalize this
method under the topic of the generalized cross constellations in
[5]. Conway and Sloane in [4] introduced the idea of the Voronoi
constellation based on using the Voronoi region of a lattice A,
as the shaping region. In these constellations the set of the
points form a group under vector addition modulo A,. This
property is used to achieve the addressing. The complexity of
the addressing is that of a linear mapping plus the decoding of
the shaping lattice A,. The Voronoi constellations are further
considered by Forney in [8]. In [2], Calderbank and Ozarow in-
troduced a shaping method which is directly achieved on the
2-D subconstellations. In this method, the 2-D subconstella-
tions are partitioned into equal sized subregions of increasing
average energy. A shaping code is then used to specify the se-
quence of the subregions. The shaping code is designed so that
the lower energy subregions are used more frequently. The idea
of the trellis shaping is introduced in [9]. This is based on using
an infinite dimensional Voronoi region, determined by a convo-
lutional code, to shape the constellation.

3 Optimum shaping

In the following we discuss the structure of the region which
optimizes the tradeoff between the v, and the CER, and also
the tradeoff between the 4, and the PAR in a finite dimensional
spaces. Assuming that the CER, and the PAR are measured on
a 2.D basis, it can be shown that the optimum region is equal
to,

An(¥) = {S(Rz)}" 0 S (Rw), (1)

where Sy (R) denotes an N-D sphere of radius R, n = N/2 and
¥ =R%/nR3. For ¢ =1, we have Ay = {S2(R3)}". This results
in the starting point on the tradeoff curves. For 1/n<¥ <1,
by decreasing ¥, we move along the optimum tradeoff curve.

Finally, for ¥ = 1/n, we obtain the spherical region Sy(Rx). By
applying a change of variable denoted as the shell mapping, the
region Ay is mapped to an n = N/2-D hypercube of edge length
one truncated within a simplex of edge length 4 = R% /R3. This
region is denoted as TCa(1, 3).

Shell mapping has the following properties:

¢ A uniform density within Ay results in a uniform density
within 7C,. This allows us to achieve the shaping, address-
ing on the equal volume partitions of 7C,.

e Unlike the Ay region, the boundaries of 7C, are hyper-
planes. This makes the partitioning and addressing of 7C4
an easier task than that of Ay.

o For f = n/2, the 7C, region is equal to the Voronoi region
of the lattice D} in the positive coordinates. This allows
us to use a Voronoi constellation, [8], for the addressing.

In {10}, the integral of a function of the general form F(X3 +
...+ X%_,) over the Ay region is calculated. This integral
is used to calculate the 4,, the CER, and the PAR. Figure 1
shows the optimum tradeofl between the CER, and the v, for
different values of N. The curve corresponding to N =00 is
extracted from [5). The marked point in each case corresponds
to the addressing scheme based on the lattice D}.
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------ N=32
— - N=24

Shape Gain (dB)

Fig. 1 Optimum tradeoff between CER, and 4,.

In general, the initial part of the optimum tradeoff curve has
a steep slope. This means that an appreciable portion of the
maximum shape gain, corresponding to a spherical region, can
be obtained with a small value for CER, and PAR.

4 Address decomposition

For a fixed rate per dimension, the complexity of an address-
ing scheme using a lookup table grows exponentially with the
dimensionality. This can result in an impractically large mem-
ory. In this section, we describe a method to decompose the
addressing into steps of low dimensionality and thereby avoid
the exponential growth of the complexity. Consider an N'.D
unshaped constellation, i.e., Ay = {S2}¥ ‘12, This constella-
tion is partitioned into K energy shells of equal volume. The
2-fold cartesian product of the set of the partitions is shaped
by using a lookup table. We have found analytical expressions
for the corresponding tradeoff, [10]. The calculations show that
by selecting {K,i=1,...} = {64,64,128,256, ...} we can essen-
tially achieve the optimum tradeoff. This property allows us to
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decompose the addressing of a constellation into some interme-
diate steps achieved on the 2-fold cartesian product of a set with
low cardinality. We have called this method as the address de-
composition. For a dimensionality N = 2%, this results in u —1
addressing steps. The ’th step, i € [0, s ~ 1], is achieved on the
2'-D subspaces and results in dimensionality 2'*'. We assume
that the subspaces involved in the i’th step are partitioned into
Ki=2" shells. The i'th addressing step requires a memory with
2k; % 22% bits. The last step requires 2k, x 22:="+ bits. Figure
2 gshows the final tradeoff curves. It is seen that the subopti-
mality is negligible. This addressing scheme does not have the
problem of ties or the constraint on the constellation total rate
as encountered in the Voronoi constellations. It has no asso-
ciated computation and is easy to implement. Also, it can be
easily used in conjunction with the coding schemes of [11].

1.2 +~ ™~ T T ™
Ne32, timum =
Mad2, RAe286 —
Welf, Optimum -ooo
Nel$, XI=128 —

0.8

— - —_—

1 1.0% 1.1 1.18 1.2
o

Fig. 2 Tradeoff between CER, and v, using the address de-
composition method.

As an example, for N =32, and M =128 points per 2-D sub-
constellations, we need M, =44 kilo-bytes per N dimensions
to achieve v, =0.89, CER, =1.19, PAR = 2.8. This point can
not be distinguished from the optimum curve. As an alternate
point, our method needs M, = 36 kilo-bytes per N dimensions
to achieve 94, = 1.02, CER, =1.41 and PAR = 3.42 while the op-
timum point corresponding to N =32 and CER, = 1.41 satisfy,
PAR =3.45 and 4, = 1.06.

5 Unsymmetrical Boundary Shaping,
Shaping

Spectral

Assuming continuous approximation, the selection of the con-
stellation is composed of selecting a basis for the space and a
shaping region for the points. In some applications, we need a
constellation which has nonequal second moments along differ-
ent dimensions. For example, this nonequal energy allocation in
conjunction with a nondiagonal modulating matrix can be used
to shape the power spectrum of the transmitted signal. This
results in an unsymmetrical shaping problem. In this case, one
tries to maximize the volume of the shaping region subject to
having the second moment J; along the i’th dimension. Without
additional constraints, elliptical regions are optimum.

The unsymmetrical region can be obtained by scaling of a
symmetrical baseline region. The baseline region can be selected
independently of the scale factors and the basis. The scale fac-

tors and the constellation basis are computed by an optimization
procedure. This procedure maximizes the rate of the constella-
tion subject to some constraints on the power spectrum. The
following constraints are considered in detail: (i) A fraction of
the total power equal to F, is located in the frequency band
[0,w.]. and/or (ii) The spectrum has spectral nulls at the zero
and/or at the Nyquist frequency. It is shown that this max-
imization is equivalent to maximizing the determinant of the
correlation matrix subject to some linear constraints on its ele-
ments. In an optimized basis analysis, the optimum correlation
matrix is found. In a fixed basis analysis, the eigenvectors of the
correlation matrix are fixed and the eigenvalues are optimized.
The eigenvectors are selected to reduce the computational com-
plexity of the modulation by using fast transform algorithms.
We also given analytical expressions for the eigensystems of the
1+ D and 1 - D? partial response channels. Appendix A con-
tains the final results. The output eigenvectors provide an or-
thonormal basis with spectral null(s) at zero and/or Nyquist
frequency. The important point is that the eigenvectors are
closely related to the sine basis. This allows for the use of the
fast transform algorithms for the modulation.

6 Block-based signaling over a partial response
channel, combined shaping and coding

We discuss the selection a signal constellation for use over a
partial-response channel. The constellation design is composed
of three parts: (i) selection of the internal structure of the con-
stellation (channel coding). and (ii) selection of the constellation
boundary (shaping), and (iii) selection of the constellation di-
mensions (modulation). The objective is to minimize the degra-
dation caused by the channel memory and the additive white
Gaussian noise.

Assuming continuous approximation, shaping, coding ard
modulation can be selected independently. The procedure is
similar to the case of a flat channel. The main difference is that
here some of the dimensions may be empty. In the scheme pro-
posed in [10], the determination of the nonempty dimensions
is based on minimizing the degradation caused by the channel
memory. This degradation is measured in terms of the power
loss with respect to a reference scheme over a unity gain flat
channel with the same additive noise. The optimum modulator
is the set of the channel input eigenvectors, {1]. In the con-
ventional schemes, to reduce the computational complexity, the
optimum basis is usually replaced by the Fourier basis. Refer-
ring to appendix A, it is seen that the optimum modulation over
the 1+ D and 1 - D? channels can be achieved by using a fast
sine transform algorithm. In [10], numerical results for the op-
timum basis and also for the Fourier basis over 1 £ D channels
are presented. The optimum basis shows about 0.5 dB improve-
ment with respect to the Fourier basis while the computational
complexities are the same.

In the discrete case, shaping and coding depend on each other.
In this case, a combined shaping and codirg method is used.
This concerns the joint selection of the shaping and coding to
minimize the probability of error. We introduce two methods
to do this. In the first method, the minimum distance to noise
ratio along all the nonempty dimensions is the same. In the sec-
ond method, this restriction is relaxed. This freedom is used to
reduce the effective number of the nearest neighbors of the cod-
ing lattice. Neither of these methods increases the complexity



over the conventional schemes. The second method outperforms
the first one. The calculation of the error probability is based
on using the weight distribution of the lattice. As part of the
calculations, we have found a new closed form formula for the
weight distribution of the scaled Dy and Ej lattices. The cal-
culation is based on using the trellis diagram of the lattice, (6].
Each branch in the diagram is labeled by the weight distribu-
tion of the corresponding 2-D coset. The weight distribution of
a path is obtained by multiplying the weight distribution of its
branches. The weight distribution of the scaled lattice is ob-
tained by adding the weight distribution of the parallel paths in
the diagram. Using this approach, we have derived new results
for the weight distribution of the scaled Dy and Ej lattices. The
final results are,

00, (9) = 82(40)03(q1) + 83(90)83 (q1), 9, = ¢*D1, 5 =0,1, (2)

and,

eEA(Q) =
62(q0)82(91)63(42)83 (92) + 63(90)63(91)03(g2)63(g2)+
82(90)63(91)63(92)03(ga) + 62(40)82(1)63(92)63(ga)+
82(q0)83(1)63(92)83(qa) + 63(90)93(91)63(92)63(g3)+  (3)
62(90)83(91)63(92)63(g3) + 63(90)63(91)63(92)93(g2)+
862(q0)02(91)82(92)82(43)83(g0)03(g1)82(g2)83(g2),
q) = q‘Dlv J = 0v1|2|31

where 8 and 83 are the Jacobi theta functions, {3}, and D, is
the minimum square distance along the j'th 2-D subspace.

A Block-based Eigensystem of the 1+ D and 1 - D?
systems

An N-dimensional 1 — D system have an (N + 1) x N trans-
fer matrix with the 'th column  equal to,
[(0Y’, V2/2, 2272, (0)¥='""]. An N-dimensional 1 — D system
has an (N + 2) x N transfer matrix with the "th column equal
to, [(0),v2/2,0,-v2/2,(0)¥ '~

For an N-dimensional 1 — D system, the input eigenvectors
are equal to the sine basis, (10}, i.e.,

2 . 1+ 1 1
m.-(n)=\,N+l in "('*N)i';‘* ), )

where i,=0,...,N-1.
equal to,

The corresponding eigenvalues are

#(i+1)
) )

Using (4) in Am; = +/&;1h;, the output eigenvectors of the
1 = D system are found as,
x(i + 1)(n +0.5)

() = | 7oy coeTENLLON )

where n=0,...,Nand i=0,...,N=1.

The input and output eigenvectors of 1+ D) system are ob-
tained by multiplying (4) and (6) with (=1)*. The eigenvalues
are the same as the 1 — D system given in Eq. (5).

An N-dimensional 1-D? system, N even, can be considered
as two time multiplexed N/2-dimensional 1-D systems. Con-
sequently, the eigenvalues are in pair equal to,

r(i+1)

=1~ —_1=0,...,0.5N 1. 7
¢ =1 COSO.5N+1’1 0,...,0.5N =1 (7)

¢i =1~ cos

The two eigenvectors corresponding Lo a pair of eigenval.
ues are of the general form aym,(2n) +aym,(2n +1) where

al +af =1 and m,(n) is the eigenvector of an N/2-dimensional
1 = D system.
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