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Abstract :  In selecting the boundary of a signal constellation 
used for data transmission, the objective is to minimize the av- 
erage energy of the set for a given number of points from a given 
packing. Reduction in the average energy because of using the 
region C as the boundary instead of a hypercube is called the 
shape gain of C. The price to be paid for shaping is: (i) an in- 
crease in the factor CER, (Constellation-Expansion-Ratio), (ii) 
an increase in the factor PAR (Peak-bAverage-power-Ratio), 
and (iii) an increasein the addressing complexity. The structure 
of the region which optimizes the tradeoff between the shape 
gain and the CER, and also between the shape gain and the 
PAR in a finite dimensional space is discussed. Examples of 
the optimum tradeoff curves are given. The optimum shaping 
region is mapped to a hypercube truncated within a simplex. 
This mapping has properties which facilitate the addressing of 
the signal points. We discuss two addressing schemes with low 
complexity and good performance. In spectral shaping, the rate 
of the constellation is muimized subject to some constraints on 
its power spectrum. This results in a shaping region which has 
different values of power along different dimensions (unsymmet- 
rical shaping). This spectral shaping also involves the selection 
of an appropriate basis (modulating waveform) for the space. 
Finally, we discuss the selection of a signal cons~ellation for sig- 
naling over a partial-response channel using both continuous 
approximation and discrete analysis. We also present a closed 
form formula for the weight distribution of the scaled, D4 and 
E8 lattices. 

1 Introduction 

In a data transmission system, the data is encoded such that 
in each signaling interval one of M equiprobable waveforms is 
transmitted. The overall transmission system can be modeled 
as a discretetime system. In the discrete model, the channel 
provides us with a given number of dimensions per signaling in- 
terval. To achieve the transmission, we select M-points over the 
channel space. Each of the transmitter waveforms corresponds 
to  one of these points. This is called a signal constellation. 
In the design of a signal constellation, the overall objective is 

to  minimize the probability of the symbol error at the receiver 
side. Our tools are: (i) the selection of the internal structure 
of the constellation (channel coding), (ii) the selection of the 
constellation boundary (shaping), and (iii) the selection of the 
constellation basis (modulating waveforms). The figure of merit 
is the reduction in the required average energy with respect to 
a reference scheme. In the process, if the channel is nonflat, 
the constellation shaping in conjunction with an appropriate 
modulator can produce a nonflat power spectrum to match the 
channel characteristics. 
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The problem of the channel coding is a well established eub- 
ject in the theory of communication$. For example, by selecting 
the constellation points from the lattice Es, we obtain a channel 
coding gain of 3 dB over the uncoded case (lattice 2'). This 
lattice haa a minimum distance of 4 resulting in 6 dB gain, and 
a redundancy of 4 bits per 8 dimensions ( J z ' / E ~ ~  = 2') resulting 
in 3 dB loas. 

Ungerboeck proposed the idea of producing dense packings 
by the use of a trellis diagram. The use of trellisbased packings 
resulted in a breakthrough in coding theory. For example, by us- 
ing the lattice E8 with a 64-state trellis, the coding redundancy 
reduces from four bits to one bit. This scheme, in conjunction 
a simple shaping method, results in an overall gain of 5.4 dB, 

11 11. 
Unfortunately, the situation is not as good as the conven- 

tional calculation methods based on the minimum distance to 
the nearest neighbor shows. Forney mentions in [q that, in a 
general coset coding scheme, considering the effect of the error 
coefficient, after the initial 3-4 dB, it takes on the order of a 
doubling of complexity to achieve each 0.4 dB further increase 
in the effective coding gain. Consequently, to achieve higher 
gains, it is worthwhile to invest part of the complexity in shap- 
ing rather than in more complex channel codes. 

In shaping, one tries to minimize the average energy of the 
constellation for a given number of points from a given packing. 
The reduction in the average energy due to the use of the region 
C as the boundary instead of using a hypercube is called the 
shape gain of C and is denoted as y,(C), (51. The price to be 
paid for shaping involves: (i) an increase in the factor CER,', 
(Constellation-Expansion-Ratio) (ii) an increase in the factor 
PtLRZ, (Peak-t+Averagepower-Ratio) and (iii) an increase in 
the addressing complexity3. 

For a given dimensionality N, a spherical shaping region SN, 
is the region with the highest possible y, but also with high val- 
ues for CER, and PAR. It  is well known that as N -. oo, the 
shape gain of SN tends to 1.53 dB. This k an upper bound for 
the shape gain of all regions and is achievable at  the price of 
CER, = oo and a h  PAR = oo. However, M we will see later, 
an appreciable amount of this upperbound cap be achieved over 
a reasonable dimensionality and with low d u e s  of CER. and 
PAR. Table 1, contains some examples of the achievable shaping 
performance over dimensionality N = 64. Column M denotes 
the required number of points of the 2-D (two dimensional) sub- 
constellatio~ in a scheme carrying 7 b i b  per two dimensions. 
For the mane bit rate, an unshaped constellation nee& 128=2' 
points per 2-D subconstellatione. 

'The CER. is ratiooi the employed number of points per two dimenrionr 
to the minimum nutuary number o i  pointr per two dimenrionr. 

'The PAR i m  ratio of the peak of the energy per two dlmenrions to the 
average energy per two dirnenrions. 

'Addreuingis the aarignment ofthe data bits lo the conrtellation point#. 
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over the conventional schemes. The second method outperforms 
the first one. The calculation of the error probability is based 
on using the weight distribution of the lattice. As part of the 
calculations, we have found a new closed form formula for the 
weight distribution of the scaled D4 and E8 lattices. The cal- 
culation is based on using the trellis diagram of the lattice, [6]. 
Each branch in the diagram is labeled by the weight distribu- 
tion of the corresponding 2-D coset. The weight distribution of 
a path is obtained by multiplying the weight distribution of its 
branches. The weight distribution of the scaled lattice is ob- 
tained by adding the weight distribution of the parallel paths in 
the diagram. Using this approach, we have derived new results 
for the weight distribution of the scaled D4 and E8 lattices. The 
final results are, 

and, 

where e2 and 03 are the Jacobi theta functions, [3], and DJ is 
the minimum square distance along the j'th 2-D subspace. 

A Block-based Eigensystem of the 1 =t D and 1 - DZ 
systems 

An N-dimensional 1 - D system have an (A' + I )  x h. trans- 
fer matrix with the i'th column equal to, 
[(o)', a/?, f d l ? .  (o)~- ' - ' ] .  An A'-dimensional 1 - D system 
has an ( N  + 2) x N transfer matrix with the i'th column equal 
to, [(0) ' ,fi/2,0,-45/2, (o)~-'-']. 

For an N-dimensional 1 - D system, the input eigenvectors 
are equal to the sine basis, [lo], i.e., 

x ( i  + l ) ( n  + 1)  
m i ( " )  = sin + , 

N + l  (4) 

where i, n = 0, .  . . , N - 1 .  The corresponding eigenvalues are 
equal to, 

.r(i + 1) 
4 ,  = 1 - cos -. 

( N  + 1) 

Using (4) in Am, = &mi, the output eigenvecton of the 
1 - D system are found as, 

wheren=O ,..., N and i=O ,..., N-1. 
The input and output eigenvectora of 1 + D eyetern are ob- 

tained by multiplying (4) and (6) with (-I).. The eigenvdues 
are the same ra the 1 - D system given in Eq. (5). 

An N-dimensional 1-D2 system, N even, can be considered 
as two time multiplexed N/2-dimensional 1-D systems. Con- 
sequently, the eigenvalues are in pair equal to, 

The two eigenvectors corresponding to a pair of eigenvd- 
ues are of the general form o l m , ( 2 n )  + 0 2 m , ( 2 n + 1 )  where 
0: + a3 = 1 and m , ( n )  is the eigenvector of an N/2-dimensiond 
1 - D system. 
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