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Abstract: Shaping concerns the selection of the boundary of a
signal constellation to reduce its average energy. Addressing is
the assignment of the data bits to the constellation points. A
major concern of the shaping regions is their addressing com-
plexity. In this work, we use a lookup table for addressing. The
method is based on partitioning the two-dimensional subconstel-
lations into shaping shells of equal size and increasing average
energy. A lookup table is used to select a subset of the cartesian
product of the partitions. This partitioning is compatible with
a multidimensional trellis coded modulation (TCM) scheme. As
part of the calculations, we have found a closed form formula for
the weight distribution of the half integer lattice, ZV + (1 /)N,
for dimensionality N =4,8.

1 Introduction

In a two-dimensional signal constellation, the points near the
boundary are of higher energy. By using these points less fre-
quently, the average energy and the entropy of the set decreases.
By appropriate selection of the probabilities, one obtains a lower
average energy for a given entropy, {1]. The nonequiprobable
use of the signal points reduces the entropy of the set. To have
the same rate, more points are needed. This is a price to be
paid for the reduction in the average energy and is denoted by
Constellation-Expansion-Ratio, CER,. This will also increase
the Peak-to- Average-power-Ratio, PAR, of the set.

In a nonequiprobable signaling scheme, we are potentially
faced with variable delay problem. Using an appropriate bound-
ary in an N-dimensional space (N even) and using the N-
dimensional points with equal probability is a way to avoid this
problem. Another method is given in [1]. The reduction in the
average energy due to the use of the region Cy for shaping is
called the shape gain, v,, of Cy.

Another issue is the addressing complexity. This is the as-
signment of the data bits to the constellation points. In an un-
shaped constellation, which is equal to the cartesian product of
its two-dimensional subconstellations, addressing is achieved in-
dependently along each two-dimensional subspace. In a shaped
constellation, as some of the elements of the cartesian product
are not allowed, independent addressing is not applicable and
a more complex, generally N-dimensional, addressing scheme is
needed.

The factors v,, CER, and PAR are defined as, {2},

_ ]CNPIR
'Ya(CN)— 6P2(CN)' (1)
CER,(Cy) = % (2)

_ Ep(C2)

PAR(Cy) = B(Cr)’ (3)
where n =N/2, C3 is the two-dimensional subconstellation of
Cy, and |C|, P2(C) and E,(C) are the cardinality, the energy
per two dimensions and the peak energy of the constellation C.

There exists a tradeoff between -y, and CER, and also between
v, and PAR. For a given dimensionality N, a spherical shaping
region Sy, results in the highest v, but also has large values for
CER, and PAR. As N — 00, the shape gain of Sy tends to 1.53
dB, [3]. This is an upper bound for the shape gain of all regions
and is achievable at the price of CER, = o0 and PAR = c0.

In the work of Wei, [4], shaping is a side effect of the method
employed to transmit a nonintegral number of bits per two di-
mensions. The addressing of this method is achieved by a lookup
table. Forney and Wei generalize this method in [2]. Conway
and Sloane in [5]introduced the idea of the Voronoi constellation
based on using the Voronoi region of a lattice A, as the shap-
ing region. The Voronoi constellations are further considered
by Forney in [6]. In [1], Calderbank and Ozarow introduced a
shaping method which is based on using the points of the two-
dimensional subconstellations with nonequal probability. The
structure of the optimum shaping regions together with the an-
alytical expressions determining the optimum tradeoff are given
in [7]. The idea of the combined shaping and coding over a mul-
titone channel is introduced in {8]. The idea of the unsymmet-
rical shaping, with application to spectral shaping is introduced
in [9].

In this work, we use a lookup table for the addressing of a
shaped constellation in a TCM scheme. The method is based
on partitioning the two-dimensional subconstellations into the
shaping shells of equal size and increasing average energy. A
lookup table is used to select a subset of the partitions in the
cartesian product. As part of the calculations, we have found
a closed form formula for the weight distribution of the half
integer lattice, Z¥ + (1/2)¥, for dimensionality N =4,8.

2 System model

A general coset coding scheme based on the lattice partition
Z¥/A, Z¥ is the N-dimensional integer lattice and A is a sub-
lattice of Z¥, is composed of two different parts. The first
part selects a finite number of points from ZV as the signal
constellation. This selection is based on minimizing the aver-
age energy of the set for a given number of points and given
CER,. The second part selects a coset of A within the signal
constellation. In the case that the selected coset has more than
one point, a third part is used to address one point within that
coset. The first and second parts have to do with shaping and
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coding, respectively. In continuous approximation, the discrete
set of the constellation points is approximated by a continuous
uniform density within the shaping region. Assuming continu-
ous approximation, all the parameters concerning shaping like
vs, CER, and PAR are determined by the first part and all the
parameters concerning channel coding are determined by the
second part. The third part scales the number of the constella-
tion points.

Figure (1) shows the block diagram of the coding scheme un-
der consideration. Signal space has N = 2n dimensions and car-
ries Q bits per two dimensions. There is also one bit of coding
redundancy per N dimensions. The two-dimensional subcon-

t+r, =
t bits Shaping n[log, K1 Partition
—_
Encoder Selector
k. bit Codi kc+1 Coset
. fe bms |} Todne <t Selector
Encoder | ope of gk +1 ZN IA
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A in ZN
pn—k.~1 bits Point
Selector

Fig. 1 Block diagram of the coding system.

stellations are selected from the cross constellation, {3]. In the
case that we need a nonintegral bit rate per two dimensions, the
necessary number of points of the least energy from the larger
constellation are added around the existing points. Each two-
dimensional point is labeled by a two part label. The first part
of the label is determined by the shaping block. The second
part of the label is determined by coding block.

For shaping, the two dimensional subconstellation containing
M points are partitioned into K shaping shells of equal size
and increasing average energy. The shells have four way sym-
metry. Each shell contains P =2? points, M =K x P, and is
referenced by [logy K bits. All the P points within a shaping
shell use these bits as their shaping label. We refer to this par-
titioning/labeling as the shaping partitioning/labeling. Figure
(2) shows an example of a 256 points constellation divided into
4 shells. In all cases, a finer partitioning of 2K shells can be
obtained from a constellation already divided into K shells by
subdividing each shell into two subshells.

The two-dimensional shaping shells partition the N-
dimensional space into K*, n = N/2, shaping clusters. Shaping
is achieved by selecting T'=2' clusters of the least average en-
ergy. The t shaping bits entering the shaping encoder are used
to address one of these T clusters. The shaping encoder adds rs
redundant bits to the incoming bits and the ¢t +r, = n[log, K]
bits at its output are used in parallel to address one shaping
shell within each two-dimensional subconstellation. The total
information rate is equal to pn +t —1 bits.
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Fig. 2 Example of the two-dimensional shaping shells.

For coding, the signal constellation is partitioned into the
cosetsof Ain ZV. Assuming that A is a binary lattice each coset
of A is labeled by log, |Z¥ /A| = k. +1 bits. The points within
each coset have its label as their coding label. This is denoted
as the coding partitioning/labeling. In the case that A is one
of the Barnes Wall lattices, [10], coding partitioning/labeling
is achieved by applying the Ungerboeck partitioning/labeling
rules to the two dimensional subconstellations, [4]. Most of the
interesting lattices, like Dy, Schldffi lattice, and Eg, Gosset lat-
tice, belong to this group, [10]. In the coding part, k. bits enter
the encoder. After adding one bit redundancy, the k. +1 bits
at the encoder output are used to select one of the 2k +1 cogets
of A in the shaping cluster already selected by the shaping part.
For this selection to be possible, each N-dimensional cluster
should have an equal number of points from each coset of A. If
A is one of the Barnes Wall lattices, this condition is satisfied if
in the shaping partitioning of the two-dimensional subconstel-
lations, each shaping shell contains an equal number of points
from each partition of the Ungerboeck partition chain, [4]. This
is the point where the shaping and coding potentially interfere
with each other.

To transmit @ bits per two dimensions with one bit redun-
dancy, we should have, pn+t=nQ +1, or, t=n(Q —p)+1.
For the coding partitioning to be possible, we should have
2ke+1 < 9% or p > (k. +1)/n. To transmit the total (coded)
rate of nQ +1, we should also have, n(p+1logz K) > nQ+1,
or, logs K > Q = p+ (1/n).

An example of this partitioning with M =24 and K =6
(P =4) is shown in Fig. (3). The coding partitions are denoted
by A~ 00, B~ 10, C— 11, D« 01. The shaping shells are
denoted by the @+ 000, ® « 001, 8 < 010, @ « 011, ® «
100, and 0« 101. The first two bits of the label of each point
is the coding label and the last three bits is the shaping label.
Considering the condition 2k+1 < 97" this constellation can
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Fig. 3 An M =24 point constellation divided into K =6
shells.

be used as long as |Z¥/A| < 2%, for example when A= Ej,
|Z8/Es| = 2%, or when A= Dy, |2*/Ds| =23
The CER; of this scheme is equal to,

CER, = M x 279-(1/n) (4)

In the receiver, we first do the channel decoding and decide
which point is transmitted along each two dimensional subspace.
After that, shaping labels of these points are concatenated and
are passed through a system which inverts the effect of the shap-
ing encoder to recover the original shaping bits.

3 Numerical results

The parameters of some signal constellations obtained by em-
ploying this shaping method are shown in Tables (1) and (2).
The constellation points belong to the half integer lattice,
ZV 4+ (1/2)%. The entries marked by the |/ sign are of spe-
cial interest. They achieve a good shape gain with low CER,,
PAR and use a small lookup table. In general, a lookup table
with ¢ input and n[log, K] output bits can be implemented by
a block of memory composed of 2 words of n[log, K] bits.

By employing a better shaping region (comparing to that of
the cross constellation) over the two-dimensional subconstella-
tions, one can (possibly) improve the overall shape gain. This
is achieved at the price of more points per dimension which,
although not affecting the CER;, is important in practical con-
siderations.

For a fixed number of two dimensional shells (K'), by chang-
ing the number of points per two dimension (M), we obtain
constellations with different total rate but with essentially the
same shaping performance and size of the lookup table. Indeed,
assuming continuous approximation, this argument is exactly
true. This is due to the fact that for a continuous approxima-
tion, the shaping performance and complexity are determined
by dimensionless quantities.

For a given M, to obtain the highest shape gain, the energy of
the points in each two-dimensional shell should be equal. Such
a partitioning can be achieved by grouping the points of the

Q M K CER, PAR +4,(dB) Encoder
4 24 3 1.061 1857 0.324 3—4 \/
4 24 6 1.061 1.857 0.324 5—6
4 28 7 1.237 2472 0.402 5 —6
4 32 2 1.414 2.267 0.025 1-2
4 32 4 1.414 2429 0.324 3—4
4 32 8 1414 2519 0.482 5—6
5 48 3 1.061 2.071 0.324 3—4 /
5 48 6 1061 2071 0324 5—6
5 64 4 1414 3500 0324 34
5 64 8 1414 3580 0422 5-6
6 96 3 1.061 2169 0.305 3—4 |/
6 96 6 1061 2173 0.312 5—6
6 112 7 1.237 2380 0.432 5—6
6 128 4 1414 3.022 0.305 3—4
6 128 8 1414 3.112 0.432 5—6
7 192 3 1.061 2.156 0.314 3—4 |/
7 192 6 1.061 2.156 0.314 5—6
7 224 7 1237 2.642 0.412 5—6
7 256 4 1414 4.009 0.314 3—4
T 256 8 1414 4100 0.412 5—6

Table 1 Parameters of the signal constellations obtained by
using a lookup table over dimensionality N = 4, Q is the number
of bits per two dimensions, M is the number of points per two
dimensions and K is the number of two-dimensional shells.

0 M K _CER, PAR 7, (dB) Encoder
4 20 5 1051 2194 0286 9—I2
4 24 3 1261 2311 0521 5—8
4 24 6 1261 2358 0.609 9—12
4 28 7 1472 3119 0659 9—12
4 32 2 1682 2720 0.064 14
4 32 4 1682 3030 0533 58
4 32 8 1682 3156 0.710 9—12
5 40 5 1051 2130 0337 9—I2
5 48 3 1261 2622 0535 5.8 |/
5 48 6 1261 2636 0618 9—12
5 64 4 1682 4451 0616 5—8
5 64 8 1682 4511 0674 9-12
6 80 5 1051 2120 0404 9—12
6 96 3 1.261 2732 0555 5—8 ./
6 9 6 1261 2769 0613 9—12
6 112 7 1472 2996 0680 9—I12
6 128 4 1682 3838 0590 5—8
6 128 8 1682 3932 0695 9—12
7 160 5 1.051 2.163 0.361 9—-12
7 192 3 1261 2.707 0550 58 ./
7 192 6 1.261 2.739 0.602 9—12
7 224 7 1472 3326 0.660 9—12
7 256 4 1682 5056 0570 58
7 256 8 1682 5165 0.662 9—12

Table 2 Parameters of the signal constellations obtained by
using a lookup table, over dimensionality N =8, Q is the num-
ber of bits per two dimensions, M is the number of points per
two dimensions and K is the number of two dimensional shells.
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K CER, PAR 4, (dB) Encoder
6 1.061 1.857 0.324 5—6
7 1237 2472 0.402 5—6
8 1414 2519 0.482 5—6
12 1.061 2071 0.324 7—8
16 1414 3.596 0.442 7—8
96 24 1.061 2.179 0.325 910
28
32
48
56
64

1.237 2388 0447 9—10
1.414 3.130 0457 9—10
1.061 2.164 0331 11-—12
1.237 2.661 0443 11—-12
1.414 4.132 0446 11—12

N I E I EN Y s
=3
o>

Table 3 Parameters of the constellations given in Table (1)
for P =4, Q is the number of bits per two dimensions, M is the
number of points per two dimensions and K is the number of
two dimensional shells.

K CER, PAR 4+, (dB) Encoder
20 5 1051 2194 0.296 9—12

6

7

1.261 2358 0.609 912

1.472 3119 0.659 9—12

32 8 1682 3.156 0.710 912

40 10 1.051 2131 0.340 13—16
48 12 1261 2643 0.630 13—16
1.682 4.565 0.725 13—16
80 20 1.051 2.125 0415 17—20
96 24 1.261 2.787 0642 17—20
112 28 1472 3.016 0.708 17-20
128 32 1.682 3956 0722 17—20
160 40 1.051 2.187 0.409 21—24
192 48 1.261 2.767 0.646 21—24
224 56 1472 3363 0.708 21—24
256 64 1682 5226 0.7T13 21—24

B e - - AR I S N
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o

Table 4 Parameters of the constellations given in Table (2)
for P =4, Q is the number of bits per two dimensions, M is the
number of points per two dimensions and K is the number of
two dimensional shells.

same shape into the shaping shells where the shape of an N-
tuple is defined as the set of the magnitudes of its elements.
This partitioning applied to the constellations based of the half
integer lattice results in the shells with 4, 8, 12 or 16 points.
In general, the addressing of this scheme can be achieved by
using a prefix code. To avoid the problems associated with
prefix coding, we further subpartition the shells with more than
4 points into finer subshells of four points. The parameters of
the signal constellations tabulated in Tables (1) and (2) when
partitioned in this way are shown in Tables (3) and (4).

4 Spherical constellations based on Z¥ and
Z¥ +(1/2)¥

A spherical constellation has the least possible average energy
(highest shape gain) for a given number of points from the cor-
responding coding lattice. We study the coding lattices Z¥
and Z¥ 4+ (1/2)". To calculate the parameters of the spherical
constellations, we need the weight distribution function of these
lattices.

Mathematically, the weight distribution function of a lattice

A is defined as, [11],
oa(g) = Y o*I* = 3~ N(n)g*, (5)

w€A

where ||u|| denotes the norm of the vector associated with point
u. The weight distribution function of the lattices Z2 and
Z2 4 (1/2)? are equal to,

+o0
0n(9)=03(g) = Y VD, (6)
+00 N
Oz 4as2p(@)=0200)= Y ¢~ , ™

respectively. If a lattice is equal to the cartesian product of
some lower dimensional lattices, its weight distribution will be
equal to the product of the weight distributions of those lattices.
As a result, the weight distributions of the lattices Z¥ and
ZN +(1/2)¥ are equal to,

Ozn(g) = [Os(]V? (8)
Ozn 4 (1/2(9) = [O2()V? . ©

Define,
8(n) = di(n) — ds(n) , (10)

where d;(n) is the number of divisors of n congruent to 1 modulo
4 and d3(n) is the number of divisors of n congruent to 3 modulo
4. Also define,
o'(n) = > d, (11)
din, d#0 (medd)
where d|n means that d is a divisor of n. Using these notations,
one can show, [12],

Oz:(g) = O3(g) =1+4 Y 8(n)g". (12)
n=1

0s(q) = [Os(@f = 1485 o(m)g" ,  (13)
n=1

Oz (g) =[Oa(q))' =1+ 16§: [z(—l)"*"d"] . (14)

n=1 | d|n

For lattice Z¥ + (1/2)", N =2,4,8, Eq. (9) is simplified to,

Ozi41/20(9) = O2(9) = 4g™/2 Y 8(2 - 1)g" ,  (15)

n=1

Oz4q/20(0) = [@2(q)F =163 o'(2n - 1)¢*™*! ,  (16)

n=1

O 04 (1720(9) = [O2(g)]* = 256 x (8)* 3 [E da] ¢, (1)
n=1 |din’
where,
n=2%xn', nlodd. (18)

Recently, Fortier in [13], has independently found the weight
distribution of Z*+ (1/2)* given in Eq. (16). But, to our knowl-
edge, the closed form for the weight distribution of Z2 +(1/2)3
given in Eq.(17) has not appeared before in the literature.
Tables (5) and (6) show the parameters of the spherical sig-
nal constellations obtained from lattices Z¥ and Z¥ + (1/2)¥,
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CER, PAR 4, (dB)
1282 2625 0414
1525 2944  0.454
1.425 2945 0455
1.398 2.982 0.456
1.945 3.731  0.731
2.339 4.846 0.727
2.326 4943 0.730
2.240 4942 0.729

PO | PO Ta
o 0 o ool |

Table 5 Parameters of the spherical constellations based on
lattice ZN¥, N =4,8.

CER, PAR 4, (dB)
1414 2519  0.482
1326 2715 0442
1.326 2688  0.457
1414 2889 0.455
1682 3.156 0.710
1.997 4.197  0.730
2.155 4.706  0.727
2.181  4.779  0.729

~ o ol oo ald
00 00 00 0o s W i i)'

Table 6 Parameters of the spherical constellations based on
lattice Z¥ +(1/2)¥, N=4,8.

N =4,8. In comparing the Tables (1), (2) and (3), (4) with Ta-
ble (6), one should keep in mind that in some cases by employing
a circular constellation (instead of a cross constellation) over the
two-dimensional subspaces the shape gain of the schemes given
in Tables (1), (2) and (3), (4) can be improved. But, in most
of the cases, a cross constellation and a spherical constellation
represents the same discrete set of points.

Table (7) shows the parameters of the corresponding spherical
constellation obtained by using continuous approximation, [6].

N CER, PAR 7, (dB)
4 1414 3 0.46
8 2213 5 0.73

Table 7 Parametersof the spherical constellations, continuouns
approximation.

5 Summary and conclusions

We have discussed the structure of 2 TCM scheme focusing on
the constellation shaping. The shaping is achieved by a lookup
table. Numerical results for different rates and dimensional-
ities N =4,8 are presented. The results show several cases
which may be of practical interest. We presented a closed form
formula for the weight distribution of the half integer lattice,
Z¥ +(1/2)¥, for dimensionality N = 4,8. These are used to
calculate the parameters of the spherical constellations. It is
seen that the over a given dimensionality, an appreciable amount
of the maximum shape gain, corresponding to a spherical con-
stellation, can be obtained with much lower values for CER; and
PAR than that of the spherical case and with a lookup table of
low complexity.
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