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Abst rac t :  Shaping concerns the selection of the boundary of a 
signal constellation to reduce its average energy. Addressing is 
the assignment of the data  bits to  the constetlation points. A 
major concern of the shaping regions is their addressing com- 
plexity. In this work, we use a lookup table for addressing. The 
method is based on partitioning the two-dimensional sul~constel- 
lations into shaping shells of equal size and increasing average 
energy. A lookup table is used to  select a subset of the cartesian 
product of the partitions. This partitioning is compatible with 
a multidimensional trellis coded modulation (TCM) scheme. As 
part of the calculations, we have found a closed form formula for 
the weight distribution of the half integer lattice, zN 4- 
for dimensionality N = 4 , s .  

1 Introduction 

In a two-dimensional signal constellation, the poi11t.s near the 
boundary are of higher energy. By using these points less fre- 
quently, the average energy and the entropy of the set decreases. 
By appropriate selection of the probabilities, one obtains a lower 

- - 

average energy for a given entropy, [I]. The nonequiprobable 
use of the signal points reduces the entropy of the set. To have 
the same rate, more points are needed. This is a price to be 
paid for the reduction in the average energy and is denoted by 
Constellation-Expansion-Ratio, CER,. This will also increase 
the Peak-to-Average-power-Ratio, PAR, of the set. 

In a nonequiprobable signaling scheme, we are potentially 
faced with variable delay problem. Using an appropriate bound- 
ary in an N-dimensional space ( N  even) and using t,he N- 
dimensional points with equal probability is a way to avoid this 
problem. Another method is given in [I]. The reduction in the 
average energy due to  the use of the region CN for shaping is 
called the shape gain, y,, of CN. 

Another issue is the addressing complexity. This is the as- 
signment of the data  bits to  the constellation points. In an un- 
shaped constellation, which is equal to  the cartesian product of 
its two-dimensional subconstellations, addressing is achieved in- 
dependently along each two-dimensional subspace. In a shaped 
constellation, as some of the elements of the cartesian product 
are not allowed, independent addressing is not applicable and 
a more complex, generally N-dimensional, addressing scheme is 
needed. 

The factors y,, CER, and PAR are defined as, [2], 

where n = N/2, C2 is the two-dimensional subconstellation of 
C N ,  and ICI, P2(C) and Ep(C) are the cardinality, the energy 
per two dimensions and the peak energy of the constellation C.  

There exists a tradeoff between y, and CER, and also between 
y, and PAR. For a given dimensionality N, a spherical shaping 
region SN, results in the highest 7, but also has large values for 
CER, and PAR. As N -* co, the shape gain of SN tends to  1.53 
dB, [3]. This is an upper bound for the shape gain of all regions 
and is achievable a t  the price of CER, = co and PAR= co. 

In the work of Wei, [4], shaping is a side effect of the method 
employed to  transmit a nonintegral number of bits per two di- 
mensions. The addressing of this method is achieved by a lookup 
table. Forney and Wei generalize this method in [2j. Conway 
and Sloane in [5] introduced the idea of the Voronoi constellation 
based on using the Voronoi region of a lattice A, as the shap- 
ing region. The Voronoi constellations are further considered 
by Forney in [6]. In [I], Calderbank and Ozarow introduced a 
shaping method which is based on using the points of the two- 
dimensional subconstellations with nonequal probability. The 
structure of the optimum shaping regions together with the an- 
alytical expressions determining the optimum tradeoff are given 
in [7]. The idea of the combined shaping and coding over a mul- 
titone channel is introduced in [8]. The idea of the unsymmet- 
rical shaping, with application to  spectral shaping is introduced 
in [9]. 

In this work, we use a lookup table for the addressing of a 
shaped constellation in a TCM scheme. The method is based 
on partitioning the two-dimensional subconstellations into the 
shaping shells of equal size and increasing average energy. A 
lookup table is used to  select a subset of the partitions in the 
cartesian product. As part of the calculations, we have found 
a closed form formula for the weight distribution of the half 
integer lattice, zN + ( 1 / 2 ) ~ ,  for dimensionality N=4,8. 

2 System model 

A general coset coding scheme based on the lattice partition 
Z N / n ,  Z N  is the N-dimensional integer lattice and A is a sub- 
lattice of Z N ,  is composed of two different parts. The first 
part selects a finite number of points from Z N  as the signal 
constellation. This selection is based on minimizing the aver- 
age energy of the set for a given number of points and given 
CER,. The second part selects a coset of A within the signal 
constellation. In the case that the selected coset has more than 
one point, a third part is used to  address one point within that  
coset. The first and second parts have t o  do  with shaping and 
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coding, respectively. In continuous approximation, the discrete 
set of the constellation points is approximated by a continuous 
uniform density within the shaping region. Assuming continu- 
ous approximation, all the parameters concerning shaping like 
y,, CER, and PAR are  determined by the  first part and all the 
parameters concerning channel coding are determined by the 
second part. The third part scales the number of the constella- 
tion points. 

Figure (1) shows the block diagram of the coding scheme un- 
der consideration. Signal space has N = 2n dimensions and car- 
ries Q bits per two dimensions. There is also one bit of coding 
redundancy per N dimensions. The  two-dimensional subcon- 

Coset 
kc bits Coding I 

Selector 

Fig. 1 Block diagram of the coding system. 

stellations are selected from the cross constellat,ion, [3]. In the 
case that  we need a nonintegral bit ra te  per two dimensions, the 
necessary number of points of the least energy from the larger 
constellation are added around the existing points. Each two- 
dimensional point is labeled by a two part label. The first part 
of the label is determined by the shaping block. The  second 
part of the  label is determined by coding block. 

For shaping, the two dimensional subconstellation containing 
M points are partitioned into K shaping shells of equal size 
and increasing average energy. The  shells have four way sym- 
metry. Each shell contains P = 2P points, M = h' x P, and is 
referenced by Dog2 K1 bits. All the  P points within a shaping 
shell use these bits as their shaping label. We refer t o  this par- 
titioning/labeling as the  shaping partitioning/labeling. Figure 
(2) shows an example of a 256 points constellation divided into 
4 shells. In all cases, a finer partitioning of 2K shells can be 
obtained from a constellation already divided into K shells by 
subdividing each shell into two subshells. 

The two-dimensional shaping shells partition the N-  
dimensional space into K n ,  n = N/2, shaping clusters. Shaping 
is achieved by selecting T = 2' clusters of the least average en- 
ergy. The t shaping bits entering the shaping encoder are used 
t o  address one of these T clusters. The shaping encoder adds T ,  

redundant bits t o  the incoming bits and the t + r ,  = nrlog, K 1  
bits a t  i ts output are  used in parallel t o  address one shaping 
shell within each two-dimensional subconstellation. The total 
information ra te  is equal t o  pn + t - 1 bits. 

Fig. 2 Example of the  two-dimensional shaping shells. 

For coding, the  signal constellation is partitioned into the 
cosets of A in ZN.  Assuming that  A is a binary lattice each coset 
of A is labeled by log2 IZN/1\1 =kc + 1 bits. The points within 
each coset have its label as  their coding label. This is denoted 
as the coding partitioningllabeling. In the  case that  A is one 
of the Barnes Wall lattices, [lo], coding partitioning/labeling 
is achieved by applying the Ungerboeck partitioningllabeling 
rules t o  the two dimensional subconstellations, [4]. Most of the 
interesting lattices, like Dl, Schlaffi lattice, and Es ,  Goaset lat- 
tice, belong t o  this group, [lo]. In the  coding part,  kc bits enter 
the  encoder. After adding one bit redundancy, the  kc + 1 bits 
a t  the encoder output areused t o  select one of the  2kc+1 cosets 
of A in the shaping cluster already selected by the shaping part. 
For this selection t o  be possible, each N-dimensional cluster 
should have an equal number of points from each coset of A. If 
A is one of the  Barnes Wall lattices, this condition is satisfied if 
in the shaping partitioning of the  two-dimensional subconstel- 
lations, each shaping shell contains an equal number of points 
from each partition of the Ungerboeck partition chain, [4]. This 
is the point where the shaping and coding potentially interfere 
with each other. 

To  transmit Q bits per two dimensions with one bit redun- 
dancy, we should have, pn + t = n Q  + 1, or, t = n(Q - p) + 1. 
For the coding partitioning t o  be  possible, we should have 
2kc+1 5 2pn o r  p 2 (kc + l ) /n .  To  transmit the total (coded) 
ra te  of nQ +1, we should also have, n (p+  log2 K)  2 nQ + 1, 
o r , log2K 2 Q - p + ( l / n ) .  

An example of this partitioning with M =24  and K = 6  
( P  = 4) is shown in Fig. (3). The  coding partitions are denoted 
by A- 00, B o  10, C* 11, D o  01. The  shaping shells are 
denoted by the 000, 8 * 001, €3 o 010, 0 o 011, O * 
100, and 0- 101. The first two bits of the  label of each point 
is the coding label and the  last three bits is the  shaping label. 
Considering the  condition 2)<+' 5 2", this constellation can 



Fig. 3 An M = 24 point consteilation divided into K = 6 
shells. 

be used as long as IZN/hl < 2N, for example when A = Es,  
JZS/E8l = 2', or  when A = D 4 ,  IZ4/D41 = 23. 

The CER, of this scheme is equal to, 

In the receiver, we first do the channel decoding and decide 
which point is transmitted along each two dimensional subspace. 
After that, shaping labels of these points are concatenated and 
are passed through a system which inverts the effect of the shap- 
ing encoder to  recover the original shaping bits. 

3 N u m e r i c a l  r e s u l t s  

The parameters of some signal constellations obtained by em- 
ploying this shaping method are shown in Tables (1) and (2). 
The constellation points belong to  the half integer lattice, 
Z N  + ( 1 / 2 ) ~ .  The entries marked by the ,/ sign are of spe- 
cial interest. They achieve a good shape gain with low CER,, 
PAR and use a small lookup table. In general, a lookup table 
with t input and npog2K]  output bits can be implemented by 
a block of memory composed of 2' words of nrlog, K ]  bits. 

By employing a better shaping region (comparing to  that of 
the cross constellation) over the two-dimensional subconstella- 
tions, one can (possibly) improve the overall shape gain. This 
is achieved a t  the price of more points per dimension which, 
although not affecting the CER,, is important in practical con- 
siderations. 

For a fixed number of two dimensional shells (h'), by chang- 
ing the number of points per two dimension (M), we obtain 
constellations with different total rate but with essentially the 
same shaping performance and size of the lookup table. Indeed, 
assuming continuous approximation, this argument is exactly 
true. This is due to  the fact that  for a continuous approxima- 
tion, the shaping performance and complexity are determined 
by dimensionless quantities. 

For a given M, to  obtain the highest shape gain, the energy of 
the points in each two-dimensional shell should be equal. Such 
a partitioning can be achieved by grouping the points of the 

Q M K CER, PAR y, (dB) Encoder 
4 24 3 1.061 1.857 0.324 3-4 
4 24 6 1.061 1.857 0.324 5+6 
4 28 7 1.237 2.472 0.402 5 -6 
4 32 2 1.414 2.267 0.025 1-2 
4 32 4 1.414 2.429 0.324 3+4 

Table 1 Parameters of the signal constellations obtained by 
using a lookup table over dimensionality N = 4, Q is the number 
of bits per two dimensions, M is the number of points per two 
dimensions and K is the number of two-dimensional shells. 

Q M K CER, PAR y, (dB) Encoder 
4 20 5 1.051 2.194 0.296 9-12 

Table 2 Parameters of the signal constellations obtained by 
using a lookup table, over dimensionality N =8, Q is the num- 
ber of bits per two dimensions, M is the number of points per 
two dimensions and K is the number of two dimensional shells. 



Q M K CER. PAR y, (dB) Encoder 
4 24 6 1.061 1.857 0.324 5-06 

Table 3 Parameters of the constellations given in Table (1) 
for P = 4, Q is the number of bits per two dimensions, M is the 
number of points per two dimensions and K is the number of 
two dimensional shells. 

Q M K CER, PAR 7, (dB) Encoder 
4 20 5 1.051 2.194 0.296 9-12 

Table 4 Parameters of the constellations given in Table (2) 
for P = 4, Q is the number of bits per two dimensions, A4 is the 
number of points per two dimensions and K is the number of 
two dimensional shells. 

same shape into the shaping shells where the shape of an N- 
tuple is defined a s  the set of the magnitudes of its elements. 
This partitioning applied to  the constellations based of the half 
integer lattice results in the shells with 4, 8, 12 or 16 points. 
In general, the addressing of this scheme can be achieved by 
using a prefix code. To avoid the problems associated with 
prefix coding, we further subpartit,ion the shells with more than 
4 points into finer subshells of four points. The parameters of 
the signal constellations tabulated in Tables (1) and (2) when 
partitioned in this way are shown in Tables (3) and (4). 

4 Spherical constellations based on Z N  and 
ZN + (1/2)N 

A spherical constellation has the least possible average energy 
(highest shape gain) for a given number of points from the cor- 
responding coding lattice. We study the coding lattices Z N  
and Z N  + (112)~ .  To calculate the parameters of the spherical 
constellations, we need the weight distribution function of these 
lattices. 

Mathematically, the weight distribution function of a lattice 

A is defined as, [ll], 

where llull denotes the norm of the vector associated with point 
u. The weight distribution function of the lattices Z2 and 
Z2 + (1 /2)' are equal to, 

+m 

Qza +(1/2)"(4 = @ 2 ( ~ )  = x qna 9 

ns-m 
(7) 

respectively. If a lattice is equal to  the cartesian product of 
some lower dimensional lattices, its weight distribution will be 
equal to  the product of the weight distributions of those lattices. 
As a result, the weight distributions of the lattices zN and 
Z N  + ( 1 1 2 ) ~  are equal to, 

where dl(n) is the number of divisors of n congruent to  1 modulo 
4 and d3(n) is the number of divisors of n congruent to  3 modulo 
4. Also define, 

d ( n )  = x d ,  (11) 
din, d+O (=.dl) 

where din means that d is a divisor of n. Using these notations, 
one can show, [12], 

00 

Q p  (q) = [03(q)I2 = 1 + 8 o' (n)qn , (13) 
n r l  

00 

Oz.(q) = [@3(q)14 = 1 + 16 x x(- l )n tdd3  qn (14) 
n=l [din ] 

For lattice Z N  + ( 1 / 2 ) ~ ,  N = 2,4,8, Eq. (9) is simplified to, 

where, 
n = 2W x n', n'odd. (18) 

Recently, Fortier in [13], has independently found the weight 
distribution of Z4+(l/2)'  given in Eq. (16). But, to  our knowl- 
edge, the closed form for the weight distribution of Z8+ (112)' 
given in Eq.(17) has not appeared before in the literature. 

Tables (5) and (6) show the parameters of the spherical sig- 
nal constellations obtained from lattices Z N  and Z N  + ( 1 / 2 ) ~ ,  
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Q N CER, PAR 7, (dB) 
4 4 1.282 2.625 0.414 

Table 5 Parameters of the spherical constellations based on 
lattice Z N ,  N = 4,8. 

Q N CER, PAR 7, (dB) 
4 4 1.414 2.519 0.482 

Table 6 Parameters of the spherical constellations based on 
lattice zN + ( 1 / 2 ) ~ ,  N =4 ,8 .  

N = 4,8. In comparing the Tables ( I ) ,  (2) and (3), (4) with Ta- 
ble (6), one should keep in mind that  in some cases by employing 
a circular constellation (instead of a cross constellation) over the 
two-dimensional subspaces the shape gain of the schemes given 
in Tables (I) ,  (2) and (3), (4) can be improved. But, in most 
of the cases, a cross constellation and a spherical constellation 
represents the same discrete set of points. 

Table (7) shows the parametersof the corresponding spherical 
constellation obtained by using continuous approximation, [6]. 

N CER, PAR y, (dB) 
4 1.414 3 0.46 

Table 7 Parametersof the spherical constellations, continuous 
approximation. 

5 Summary and conclusiolls 

We have discussed the structure of a TCM scheme focusing on 
the constellation shaping. The shaping is achieved by a lookup 
table. Numerical results for different rates and dimensional- 
ities N = 4 , 8  are presented. The results show several cases 
which may be of practical interest. We presented a closed form 
formula for the weight distribution of the half integer lattice, 
Z N  + ( 1 / 2 ) ~ ,  for dimensionality N = 4,8. These are used to 
calculate the parameters of the spherical constellations. It  is 
seen that the over agiven dimensionality, an appreciable amount 
of the maximum shape gain, corresponding to  a spherical con- 
stellation, can be obtained with much lower values for CER, and 
PAR than that  of the spherical case and with a lookup table of 
low complexity. 
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