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Abstract:  Signal constellations for representing data val- 
ues for transmission benefit from shaping of the constell* 
tion boundary. In the Voronoi constellations, the Voronoi 
region of a lattice, denoted as the shaping lattice, is used 
as the boundary of the signal constellation. In this work, 
some properties of the Voronoi constellations based on the 
shaping lattices DN and DN are discussed. The induced 
probability distribution on the two dimensional subspaces 
is found. A prefix coding scheme as an alternative for the 
addressing is presented. This code in some sense simulates 
the effect of the boundary by using the points of the sub- 
spaces with nonequal probability. 

1 Introduction 

Shaping concerns the selection of the boundary of a con- 
stellation to reduce its average energy. An unshaped sig- 
nal constellation with dimensionality N=2n is equal to the 
n-fold cartesian product of its two dimensional subconstel- 
lations. By employing a higher number of points per two 
dimensions and forbidding the N-dimensional points of high 
energy, one can reduce the average energy of the set. This 
is the major benefit of shaping. 

Addressing is the assignment of the data bits to the con- 
stellation points. In an unshaped constellation, addressing 
is achieved independently along the two dimensional sub- 
spaces. In a shaped constellation, this method is not appli- 
cable and a more complex addressing scheme is needed. 

In the work of Wei [I], shaping is a side effect of the 
method employed to transmit a nonintegral number of bits 
per two dimensions. The addressing of this method is 
achieved by a table lookup. Forney and Wei generalize this 
method in [2]. Conway and Sloane in [3] introduced the idea 
of the Voronoi constellation. The Voronoi constellations 
are further considered by Forney in [4]. In [S], Calderbank 
and Ozarow introduced a shaping method which is based 
on using the points of the subconstellations with nonequal 
probability. The structure of the optimum shaping regions 
is introduced in [6]. The idea of the combined shaping and 
coding over the multitone channel is introduced in [7]. The 
idea of the unsymmetrical shaping with application to spec- 
tral shaping is introduced in [8]. 

2 Voronoi Constellations 

A real N-dimensional lattice A is a discrete set of N- 
dimensional vectors in R N  which form a group under or- 
dinary vector addition. Around each lattice point is its 
Voronoi region consisting of all points of the space which 
are closer to that point than to any other point. A sublat- 
tice A, of a lattice A is a subset of elements of A that is 
itself a lattice. A sublattice A, induces a partition of A into 
equivalence classes modulo A,. The order of this partition 
is shown by IAlA.1. An N-dimensional binary lattice is an 
integer lattice (sublattice of ZN,  Z denotes the integer lat- 
tice) which has 2"ZN as a sublattice for some integer m. 
Any translate A + s  of A is the union of (A/A,( cosets of 
A,. A Voronoi constellation is the set of the coset leaders 
of these cosets. These are a subset points of A + s which 
fall within the Voronoi region around the origin of A,. 

In [4], the constituent two dimensional lattice A2 of a lat- 
tice h is defined as the projection of A onto a given pair 
of dimensions and the constituent two dimensional sublat- 
tice A: of a lattice A is defined as the cross section of A 
into a given pair of dimensions. It  is shown in [4] that the 
constituent two dimensional subconstellation of a Voronoi 
constellation based on the partition A/A, is a two dimen- 
sional Voronoi constellation based on the partition A2/A:,. 

The problem of ties occurs when some cosets of A, in A 
have more than one minimum norm element. In this case 
some points of the lattice A are located on the boundary of 
the Voronoi region of A,. The set of such points is denoted 
by [el, where e is the energy of the set. 

In the following, we first talk about the complexity of 
using a lookup table for the addressing of a Voronoi con- 
stellation. In the partition ZN/2kA,/2k+1ZN, tBe Voronoi 
region of 2 k ~ ,  is a subset of the Voronoi region of 2k+1ZN. 
As a result, the Voronoi constellation based on the parti- 
tion ZN/2'n, is a subset of the Voronoi constellation based 
on the partition ZN/2k+1ZN. The Voronoi constellation 
based on the partition zN/2' + 'ZN is the N-fold cartesian 
product of the Voronoi constellation based on the partition 
Z/2'+ '2. In this constellation, addressing can be achieved 
independently along each dimension and has a trivial com- 
plexity. To address the original constellation, we need a 
means to specify the desired 2kN+J,  2J = IZN/A,l, points 
of the constellation based on the partition z ~ / ~ ~ A ,  among 
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the total 2 k N + N  points of the constellation based on the 
partition ZN/2'+ lZN.  This task can be achieved by using 
a lookup table with kN + J input line and kN + N output 
lines. 

2.1 Voronoi constellations based on the 
lattices DN and Dk 

Lattice DN is a modulo-2 binary lattice defined as, [lo], 

DN = {(XO, XI ,  ..., XN-1) E z N ;  XO + ... + XN-i even) . 
(1) 

The set of the 2N(N - 1) nearest neighbors in this lattice 
are located a t  points [(f I ) ~ ,  ( O ) N - ~ ] .  The Voronoi region 
is determined by the set of the nearest neighbors. The con- 
stituent two dimensional sublattice of DN is equal to !RZ2. 
We have IZN/DNI = 2. 

Lattice D> is a modulo-2 binary lattice defined as, [lo], 

The set of the closest points to the origin in the first set 
consist of 2N points of the form [(f 2),(0)~- '1 and the 
closest points in the second set consist of 2N points of the 
form [(f l)N]. The Voronoi region is the intersection of 
the Voronoi regions determined by these two sets. We have 
IZN/DNI = 2N-1 and IDN/DkI = 2N-2. 

The Voronoi constellation obtained from the partition 
zN/2'DN consist of 2kN+1  points and is appropriate in 
a TCM carring k bits per dimension with one bit coding 
redundancy per N-dimensions. Its constituent two dimen- 
sional subconstellation is a Voronoi constellation based on 
the partition z ~ / ~ ~ % z ~ .  The Voronoi constellation ob- 
tained from the partition ZN/2kD> consist of 2(k+ 
points. Its constituent two dimensional subconstellation is 
a Voronoi constellation based on the partition Z2/2k+1Z2. 

In the following, we compute the induced probability 
distribution on the points of the two dimensional subcon- 
stellation in a Voronoi constellation based on the parti- 
tion Z N / ~ , .  The space dimensions are labeled by X i ,  a = 
0 ,... , N - 1. We draw from every point of the (C2)N-2, 
C2 is the two dimensional subconstellation and (C2)N-2 is 
its (N - 2)-fold cartesian product, a two dimensional plane 
parallel to a given two dimensional subspace say (Xo, Xl).  
We find the part of this plane which is located inside of the 
Voronoi region of A,. The intersection of such a plane with 
the Z N  lattice is a Z2 lattice. The points of this lattice 
which are inside the Voronoi region of A, will be mapped 
to the corresponding points of the (Xo, XI)  subspace. By 
counting the number of times that a given point on the 
(Xo, XI)  subspace is used the desired probability distribu- 
tion will be calculated. 

The Voronoi region of the lattice 2QN is the region 
bounded by the hyperplanes, 

Based on the general approach, we draw a two dimensional 
plane from the point (X2, ..., XN - E (C2)N-2 parallel to 

Fig. 1 The shells of the equiprobable points, case (1) cor- 
responds to a > 2'-' and case (2) corresponds to a < 2'-'. 

the (Xo,X1) subspace. The projection of the part of this 
plane which is interior to the Voronoi region of 2'DN onto 
the (Xo,Xl) subspace is the interior part of the region 
bounded by the lines, 

Define, 
a = min (2' - 1 ~ ~ 1 ) .  

i€{2, ..., N-1) 
( 5 )  

As the point (X2, ..., XN E (C2)N-2 spans the set 
(C2)N-2, a takes value from the set {0,1, ...,2k). This 
can be verified considering that, lXil 5 2k. Correspond- 
ing to each value of a, the points in the (Xo,Xl) sub- 
space which are inside or on the sides of the rectangle 
Xo = f a ,  X1 = f a  are used one more time. This is 
used to calculate the induced probability distribution on 
the two dimensional subspaces. This also means that the 
points of the constituent two dimensional subconstellations 
which are located on the sides of the rectangles, 

are used with equal probability. Figure (1) shows the 
equiprobable points for the two cases of a<2k-1 and 
a > 2'-l. 

This provides us with a method to subdivide the points 
of the two dimensional subconstellations into the address- 
ing partitions such that the Voronoi constellation can be 
built up by forbidding some elements of the product space 
(N/2-fold cartesian product of the set of two dimensional 



Table 1 Points of the Voronoi constellation based on the 
partition Z4/4D4, [4]. 

partitions with itself). In the following, this method is fur- 
ther explained by the use of an example. 

The  Voronoi constellation based on the partition Z4/4D4 
consists of the points shown in table ( I ) ,  [4]. The  shape of 
a $-tuple is defined as the set of the magnitudes of i ts  el- 
ements. The  listing is by shape in order of the increasing 
norm. For each shape, there is also listed its norm Ilel12, 
the total number n ( e )  of points in Z 4  of that  shape that  
can be obtained by permutation and sign changes of the co- 
ordinates, the number I [el I of nearest neighbors in 4 0 ,  to 
any 4-tuple of that  shape, and finally the number n ( e ) / J  [el I 
of 4-tuples of tha t  shape included in a constellation with 
resolved ties. The  two dimensional subconstellation is a 
Voronoi constellation based on Z2/4WZ2, Fig. (2). To find 
the induced probability distribution on the points of the 
(Xo,XI)  subspace, we draw a two dimensional plane from 
every point of the (Xz,  Xs) subspace parallel to the (,Yo, XI )  
subspace. The general shape of the part of this plane which 
is located inside of t he  Voronoi region is shown in Fig. (1). 
Figure (2) shows the shells of the equiprobable points, de- 
noted as  A, B, C, D and E. 

In this case, (5) reduces to, 

a = min (4  - IX,I) . 
rEI2,31 

Using (7), i t  is easy to verify that  for the planes drawn 
from the points of the shell A in (Xz, ,&) subspace, we 
have a = 4, similarly for the shell B, we have a = 3, for C, 
a = 2, for D ,  a = 1 and for the shell E, a = 0. The total 
number of times tha t  shell A is used is equal to the total 

Fig. 2 The  two dimensional subconstellation of the 
Voronoi constellation based on t he  partition Z4/4D4. 

Shell f n P 
A 41 1 0.363 

Table 2 Induced probability distribution on the  two di- 
mensional subspace of the Voronoi constellation based on 
the partition Z4/4D4. 

number of planes with 0 5 a 5 4. Similarly, shell B is used 
when 1 5 a 5 4, C is used when 2 5 a 5 4, D is used 
when 3 5 a 5 4 and E is used when a = 4. This can be 
used to find the  frequency of the two dimensional points. 
Table (2) shows the result of these calculations where f is 
the number of times tha t  a shell is used, n is the  number of 
points in the shell and P is the  probability of using a shell, 
P(i)  = f (i)/ C, f (j). I t  is seen that  C,,,,,,,,, f (i)n(i) = 
849 which is equal t o  the  total number of points in the 
original constellation, table (1). The  obtained probability 
distribution is in agreement with table (1). 

In the following, we specify the  signal constellation as  a 
subset of the  two fold cartesian product of t he  two dimen- 
sional subconstellation. To do  this, the  two dimensional 
subconstellation is partitioned into the set of the  equiprob- 
able shells, Fig. (2). Then, certain elements in t he  cartesian 
product of the set of the  partitions are forbidden. Table (3) 
shows the allowed combinations with t he  points tha t  they 
represent. The  points are obtained from the  shown 4-tuples 
by the following rules: (i) Permutation and sign changes of 
the elements of the  first two tuple and the  second two tuple 



Combination Points N E 
AA 0000 1 0 

Table 3 Four dimensional combinations of the Voronoi 
constellation based on .the partition Z4/D4. 

are allowed. (ii) Permutation of the first two tuple with 
the second two tuple is also allowed. Column N shows the 
number of points obtained from each 4-tuple and column 
E shows the average energy of that 4-tuple. This table 
includes all the points of table (1). 

In practice we are faced with two problems. First, what 
to do with the problem of ties to obtain a constellation with 
an integral bit rate. Second, how to map the data bits to 
the signal points. To solve these problems, we subdivide 
each equiprobable shell into subpartitions each carring an 
integral bit rate and forbid certain elements in the cartesian 
product. This subpartitioning is achieved with such a reso- 
lution that makes it possible to obtain the desired number 
of points (512 in the constellation based on the partition 
Z4/4D4). Here, we are faced with a tradeoff between the 
complexity of the resulting lookup table and the average 
energy of the constellation. A finer subpartitioning reduces 
the average energy but requires an encoder with a higher 
complexity. 

In the following, we consider an example of the signal con- 
stellation based on the partition z4/4D4 when Z4 is shifted 
to the points = (112)'. The points of this constellation with 

shape llelj2 n(e) I [el 1 II(e)/l [el 1 
1111 1 16 1 16 
1113 3 64 1 64 
1133 5 96 1 96 
1333 7 64 1 64 
3333 9 16 1 16 
1115 7 64 1 64 
1135 9 192 2 96 
1335 11 192 3 64 
3335 13 64 4 16 
1117 13 64 4 16 

512 

Table 4 Points of the Voronoi constellation based on the 
partition Z4/4D4, s = (l/2)', [4]. 

Combination Points N E 
AA 1111 16 4 

Table 5 Four dimensional combinations of the Voronoi 
constellation based on the partition Z4/D4, s= (112)'. 

the shape multiplied by two are listed in table (4), [4]. The 
constituent two dimensional subconstellation consists of the 
points of Z2 + (1/2)2 bounded within the Voronoi region of 
4RZ2. Figure (3) shows this constellation divided into the 
equiprobable shells, namely A, B1, B2, C1, Cz and D. We 
also notice that each subpartition has four way symmetry 
and contains an equal number of points from each parti- 
tion of the Ungerboeck partition chain. These are practical 
considerations in using the constellation in a coset coding 
scheme, [I]. Table (5) shows a 512 points signal constella- 
tion obtained from the original constellation by discarding 
some combinations of the highest energy. In this table E 
is the energy of the combination and N is the number of 
points in the combination. The average energy of this con- 
stellation is equal to 3.375 per two dimensions. It  is also 
seen that the shell D is not. This reduces the CER.. 

To map the data bits to the signal points we employ the 
prefix coding scheme shown in table (6). The first bits 
select the combination and the following bits indicated by 
' x '  select a point of that combination. It  is seen that 
the lookup table has many "don't care" ( x )  entries. This 
facilitates the hardware realization of the scheme. 



3 Summary and conclusions 

Fig. 3 The two dimensional subconstellation of the 
Voronoi constellation based on the partition Z4/4D4, 
s = (112)~. 

Table 6 A prefix code for the direct addressing of the two 
dimensional subconstellation of the Voronoi constellation 
based on the partition Z4/4D4, s =  (112)'. 

In this work, we studied the Voronoi constellations based 
on the shaping lattices DN and D;. The probability distri- 
bution induced on the two dimensional subspaces is found. 
This is used to determjne the structure of a prefix coding 
scheme for the addressing. An example of such a coding 
scheme is presented. The corresponding lookup table con- 
tains many 'don't' care entries and is relatively easy to im- 
plement. 
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