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Abstract1: In this work, we introduce an efficient addressing 
scheme to  realize points near to  the knee of the tradeoff curves of 
an optimally shaped constellation. This scheme, called as the ad- 
dress decomposition, is based on decomposing the addressing into 
a hierarchy of the addressing steps each of a low dimensionality. 
As the memory size associated with a direct addressing scheme 
has an exponential growth with the dimensionality, this decom- 
position of the addressing results in a substantial decrease in the 
complexity. In this case, by using a memory of a practical size, 
we can move along a tradeoff curve which is nearly optimum. For 
example, in a space of dimensionality N = 32, we use a block of 
memory of 2.5 kilo-bytes per N dimensions to  achieve a shape 
gain of y, = 0.92 dB with CER, = 1.25, PAR = 2.95. This scheme 
has no associated computation, is straightforward to  implement 
and is adaptable to  the structure of a general coset coding scheme. 

1 Introduction 

Consider a discrete source producing one of M equiprobable sym- 
bols in each signaling interval. We are going to  transmit the 
sequence of the source symbols to  a receiver. Our transmission 
media is a channel which provides us with a given number of di- 
mensions per signaling interval. To achieve the transmission, we 
select M points over the channel space. Each source symbol is 
represented by one of these points. This is called a signal constel- 
lation. 

The constellation points are usually selected as a finite subset 
of a regular array of points bounded within a shaping region. In 
selecting the shaping region, the objective is t o  minimize the av- 
erage energy of the constellation. In continuous approximation, 
the distribution of the constellation points is approximated by a 
continuous uniform density of points within the shaping region. 
The reduction in the average energy per two dimensions due to  
the use of the region C as  the boundary instead of using a hyper- 
cube is called the shaping gain of C and is denoted as, y,(C). The 
price to  be paid for shaping (7, > 1)  involves: (i) an increase in the 
factor CER, (Constellation-Expansion-Ratio) which is defined as 
the ratio of the number of points per two dimensions to  the min- 
imum necessary number of points per two dimensions, [I], (ii) an 
increase in the factor PAR (Peak-to-Average-power-Ratio) which 
is defined as the ratio of the peak of energy per two dimensions 
to  the average energy per two dimensions, [I], (iii) an increase in 
the addressing complexity, where addressing is the assignment of 
the source symbols to  the constellation points2. 

In general, there exists a tradeoff between 7, and CER, and also 
between y, and PAR. An optimum shaping region is the region 
which optimizes both of these tradeoffs, 121. The major problem 
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'In a cubic constellation, addressing can be achieved independently along 
each dimension. This results in a low complexity. However, in a shaped 
constellation independent addressing is not applicable. 

associated with the optimum shaping in a high dimensional space 
is the addressing complexity. 

We use continuous approximation to  calculate the performance 
of our schemes. Usually, this results in a lower bound to  the actual 
performance. To justify this, consider a shaping region which is 
the union of some unity volume Voronoi regions. The centroid 
of the Voronoi regions are the constellation points. Using the 
orthogonality principle, the average second moment of the region 
with respect to  the origin is the sum of two terms, namely, the 
average second moment of the centroids and a second term which 
is the second moment of a single Voronoi region. In the discrete 
analysis, the second term is not present. 

In all our discussions, we assume that the dimensionality is even 
and the constellation points are used with equal probability. 

2 A simple example of shaping 

In Figs. 1 and 2, we see two examples of a 64-points 2-D signal 
constellation from the half integer grid. The one shown in Fig. 1 
has a cubic shaping region. Assuming a minimum distance of one, 
the average energy per dimension of this constellation is equal to  
5.25 . The constellation in Fig. 2 is obtained by replacing the four 
points of the highest energy in the cubic constellation with another 
four points of a lower energy. These are the points marked by the 
circles. As a result, the average energy has reduced to  5.125 . 
This corresponds to  the shape gain, y, 2: 0.1 dB. 

The cubic constellation employs 8 points per dimension. This 
is the minimum necessary number of points per dimension to  have 
64 points in two dimensions. However, in the shaped constella- 
tion, we have employed 10 points per dimension. Assuming that 
CER, is measured on a one dimensional basis, this corresponds 
to, CER, = 1.25. 

The peak of energy per dimension of the cubic and the shaped 
constellations are equal to 12.25 and 20.25, respectively. Assum- 
ing that PAR is measured on a one dimensional basis, the PAR'S 
are equal to, 2.33 and 3.95, respectively. 

In the cubic constellation, t o  map the six bits of data to  a con- 
stellation point, we can use three bits t o  select a point along one 
dimension and another three bits to  select a point along the other 
dimension. However, in the shaped constellation, this method is 
not applicable. In this simple example, we can use a lookup table 
with 64 memory locations to  achieve the addressing. However, for 
the same number of bits per dimension, namely 3, in dimension- 
ality 32, we need a lookup table with zg6 memory locations which 
is not practical. 

3 Previous relevant works 

In the work of Wei, [3], shaping is a side effect of the method 
employed to  transmit a nonintegral number of bits per two di- 
mensions. This method provides moderate shaping gain for low 
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Fig. 1 A GCpoints 2-D cubic constellation from half integer grid. 

Fig. 2 A 64-points 2-D shaped constellation from half integer 
grid. 

values of CER,. The addressing of this method is achieved by a 
lookup table. Forney and Wei generalize this method under the 
topic of the generalized cross constellation in [I]. 

Conway and Sloane in [4] introduced the idea of the Voronoi 
constellation based on using the Voronoi region of a lattice A, as 
the shaping region. In these constellations, the set of the points 
form a group under vector addition modulo A,. This property is 
used to achieve the addressing. The complexity of the addressing 
is that of a linear mapping plus the decoding of the shaping lattice 
A,. The Voronoi constellations are further considered by Forney 
in [S]. The idea of the trellis shaping is introduced in [6]. This is 
based on using an infinite dimensional Voronoi region, determined 
by a convolutional code, to  shape the constellation. 

In [q, Calderbank and Ozarow introduced a shaping method 
which is directly achieved on the 2-D subspaces. In this method, 
the 2-D subspaces are partitioned into equal sized shells of in- 
creasing average energy. A shaping codes is then used to specify 
the sequence of the 2-D shells. The shaping code is designed so 
that the lower energy shells are used more frequently. 

Lang and Longstaff in [a] use an addressing scheme which first 
divides the final constellation into energy shells. Then, a point 
in a shell is found by successively decomposing the space into 
lower-dimensional subspaces via generating function techniques. 
As noted in passing in [8], the same technique can be used for the 
addressing of a shaped constellation. It should be mentioned that 
prior to (81, a similar addressing scheme was used by Fischer in 
[9], to label the points of a vector quantizer with a pyramid quan- 
tization region. The addressing scheme of Lang and Longstaff is 
further discussed and nicely formulated by Kschischang in [lo] 
(see also Kschischang and Pasupathy, [ll]). Loria in [12], applies 
some ideas from a type of structured vector quantizer to the con- 
stellation addressing. This results in an addressing scheme similar 
to that of (91. 

In [13], Kschischang and Pasupathy discuss a shaping method 
which is based on using the 2-D points with nonequal probabil- 
ity (see also [lo]). In [14] (see also [15]), Livingston discusses a 
shaping method in which the 2-D subspaces are partitioned into 
annular shells of increasing size. In this method, the 2-D shells 
are used with equal probability inducing a nonuniform distribu- 
tion on the 2-D points. Recently, Kschischang in [16] discusses 
the structure of a prefix code which closely approximates the op- 
timum nonuniform probabilities of the 2-D points. 

The structure of the region which optimizes the tradeoff be- 
tween the y, and the CER, and also between the ?, and the 
PAR together with analytical expressions determining the opti- 
mum tradeoff is given in [2] (also refer to [I?], [18]). Indepen- 
dently, Kschischang in [lo] (also refer to Kschischang and Pasu- 
pathy, [ll]) and Loria in [12] arrive at the same shaping region. 
References [lo] and 1111 also give expressions for the optimum 
tradeoff curves using a different approach than than of [2]. 

In our work, [19] (also refer to [18]), some practical address- 
ing schemes to achieve (or approximate points) on the optimum 
tradeoff curves is given. Laroia et a1 in [20] suggest methods to 
reduce the computationill complexity of the addressing scheme 
based on the same general idea as in, [8], [12]. 

In this work we introduce an efficient addressing scheme to re- 
alize tradeoff points with negligible suboptimality. This is based 
on decomposing the addressing into a hierarchy of the address- 
ing steps each of a low dimensionality. As the memory size of 
a direct addressing scheme has an exponential growth with the 
space dimensionality, this scheme results in a substantial decrease 
in the complexity. It should be mentioned that this work is being 
reported in part at [18], [19]. 

4 Shell mapping 

Assume that CER, and PAR are measured on a 2-D basis. In 
an N-D optimally shaped region, AN, a 2-D sphere of radius Rz, 
S2(R2), is the boundary of the 2-D subspaces and an N-D sphere 
of radius RN, S N ( R ~ ) ,  is the boundary of the whole space, i.e., 

By applying the change of variable, 

to (I), the region AN is mapped to  the following n-D solid, 

This is a hypercube of edge length one truncated within a simplex 
of edge length P .  We refer to the N-D space as the N-domain 
and to the n-D space as the n-domain. 

The change of variable in (2) is denoted as the shell mapping. 
This mapping has an important property that : A uniform density 
within AN results in a uniform density within ?en. 

Now, consider an optimum shaping region in an N =  Nfnf-D 
space. Without loss of generality, we assume that the shaping 
(truncation within the N-D sphere) is achieved on the n'-fold 
cartesian product of an Nf-D unshaped region ( { s ~ ) ~ ' I ~ ) .  By the 



use of the shell mapping, each { ~ 2 ) ~ ' / ~  is mapped to  an TCn(l,  n) 
where n = N1/2. By applying the change of variable, 

each TC,, o r  equivalently each AN#,  is mapped to  one of the 
dimensions of an T in#  in a domain denoted as  the n'-domain. 
Fig. (3) shows an example of such a two-level shell mapped con- 
stellation for N = 8 ,  N' = 4 and K = 4. 

Each of the AN# regions is partitioned into K energy shells 
of equal volume. The partitioning of the ANI'S result in equal 
volume partitions in the n-domain produced by the radial hyper- 
planes, refer to  Fig. (3). The partitions of each AN# correspond to  
the set of the points {U,, i = 0, .  .., K )  along the corresponding 
dimension of the ?Cnr. To achieve the shaping, a subset of the 
elements in the nl-fold cartesian product of the set of the parti- 
tions is selected. The corresponding addressing is achieved using 
a lookup table. 

I n-domain I 

Fig. 3 Example of a two-level shell mapped constellation. 

A point Ui along a dimension of IT%,# corresponds to  the region 
AN# with p = Ui. Using the results of [la], the volume of this 
region is equal to, 

where n = N1/2. To obtain partitions of equal volume, the points 
Ui should satisfy, 

Equations (6) can be used to  calculate the points Ui (for example 
using a bisection algorithm). 

The partitioning of the N'-D subspaces results in K n l  equal vol- 
ume partitions (clusters) in the N-domain. Each of these clusters 
corresponds to  a parallelepiped in the nl-domain. A parallelepiped 
located a t  point (UI,, .... UI ), IJEIo ...., ,,L,) E (0, .... K }  is 

shown by, 

Shaping is achieved by selecting T of the N-D clusters with the 
least second moment. In the example of Fig. (3), we have T = 10. 
Considering that the first moment of Tint is proportional to  the 
second moment of the N-domain, the selected subset corresponds 
to  the parallelepipeds with the least average first moment. This 
procedure in fact uses a quantized version of TC,,, denoted by 
=Cnt, as the shaping region in the n'-domain. The final region 
is denoted by Q~;'(K, T). 

In a parallelepiped the average first moment is equal to  the sum 
of the average first moments along different dimensions. Using 
this fact and some other results from [la], it can be shown that, 

n (p  - k)n+l + k(n + 1 ) ( ~  - k)" 
(n + I ) !  

This is used to  calculate the average first moment of the selected 
subset of the parallelepipeds, Fm(Q.TCnr). The average energy per 
2-D of the N-domain is equal to, 

I t  is easy to  show that the volume of Qd;' is equal to, 

Equations (9) and (10) can be used to  calculate the tradeoff. The 
final results for n' = 2 is shown in Fig. (4). The optimum tradeoff 
curves ( K  = m) are extracted from 121. 

Fig. 4 Tradeoff between CER, and 7, using a finite number of 
the energy shells in the N/2-D subspaces. 



5 Address decomposition 

Referring t o  Fig. (4), for moderate values of CER, in an N-D 
space, one can closely approximate the optimum tradeoff using a 
small number of equi-volume energy shells per N/2-D subspaces. 
A similar effect over dimensionality two was observed for the first 
time in [A. This property allows us t o  decompose the addressing 
of a constellation into some intermediate steps achieved on the 
2-fold cartesian product of a set with low cardinality. We call this 
method as  the address decomposition. 

For a dimensionality N = 2., this results in u - 1 address- 
ing steps. The i'th step, i E  [ l , u  - 11, is achieved on the 
2 , - ~  subspaces and results in dimensionality 2i+1. We as- 
sume that  the subspaces involved in the i'th step are parti- 
tioned into K, = 2'' shells. Referring t o  Fig. (4), we select 
{ki, i = 1,. . .) = {6,6,7,8,. . .). The i'th addressing step requires a 
memory with 2ki x 2''' bits. The last step requires 2ki x 2''i-'* 
bits, where r, = (N/2) log2 CER,. An upper bound t o  total mem- 
ory size, Mt, is obtained by setting r, = 0, (CER, = 1). 

Figure (5) shows the final tradeoff curves. The optimum trade- 
off curves are extracted from [2]. I t  is seen that  the overall sub- 
optimality is negligible. 

11-16. *ti.,. 
1-16, X3-128 -- 

1 - 
N-8, Onti.,. - 
N-I, X2-64 

N-4, *ti.,. --- 
N-4, Xl-64 -- 

____..____..__.___ ..--- 

1.05 1 . 1  1 . 1 s  1 .2  1.25 1.3 
m 

Fig. 5 Tradeoff between CER, and 7, using the address decom- 
position method. 

The introduced addressing scheme has some similarities with 
the scheme of 18). The key point t o  the scheme of [8] is that  
the weight distribution of the  integer lattice (or more generally 
a lattice which is equal t o  the cartesian product of some lower 
dimensional sublattices) is equal t o  the convolution of the weight 
distributions in its subspaces. This fact is used in [8] t o  suc- 
cessively decompose the addressing into lower-dimensional sub- 
spaces via generating function techniques. The major difference 
is the here, by aggregating the energy shells in higher dimensional 
spaces, we have been able t o  avoid the computation of the con- 
volutions. This substantially reduces the complexity while the 
suboptimality is negligible. 

I t  should be mentioned that  by selecting smaller values for the 
kils, one can further decrease the size of the memory a t  the price 
of some performance degradation. I t  is specifically appropriate 
t o  use a small number of partitions in the first u - 2 addressing 
stages, and a large number a t  the last stage. This is due t o  the 
facts that: (i) shaping is achieved a t  the last stage and, conse- 
quently, a higher resolution a t  this stage has a more important 
effect on the overall performance, (ii) even for a large k,-l, due 
t o  the subtraction of r,, the addressing of the last stage does not 
need a large lookup table. Table (1) shows some examples of the 
performance and complexity of the proposed scheme. 

N CER, PAR 7, dB Mi {k , , i= l , .  . .} 
16 1.25 2.86 0.79(0.81) 1.5 k {4,4,6) 
16 1.35 3.12 0.84(0.87) 1.0 k {4,4,6) 
16 1.50 3.52 O.gO(0.92) 2.6k {4,5,7) 
32 1.25 2.95 0.92(0.96) 2 .5k {4,4,5,7) 
32 1.35 3.21 O.gS(1.03) 2 .0k {4,4,5,7) 
32 1.35 3.25 l.OO(1.03) 1 2 k  {5,5,6,8) 

Table 1 Parameters of the point achieved using the addressing 
decomposition method. The values inside parenthesis are the op- 
timum 7,.  Column Mi is memory size in bytes (8 bits)/N-D (no 
computation). 

6 Comparison with other techniques 

In the following, we compare our addressing schemes with the 
schemes of [5], [6] [A, and [20]. 

As we are essentially able t o  closely approximate any point up 
t o  the knee of the optimum tradeoff curves, in Table (2), we have 
compared some of the values obtained in [5] and [A with the 
optimum values calculated in [2]. 

vc, [5] CP, (71 
N r. CER, PAR 7, CER, PAR 
4 0.37 1.41 (1.09) 4.62 (2.27) - ------ --- 

Table 2 Comparison between the the Voronoi constellations 
(VC) and the Calderbank, Ozarow method (C/O) with the opti- 
mum constellations, the values in the parenthesis are the optimum 
values of CER,, PAR for the given 7,.  

I t  should be mentioned that  by applying the peak constraint 
- -  . 

technique, it is possible t o  modify the Voronoi constellation in 
such a way that  the 2-D points outside a circle of selected ra- 
dius are not allowed, (51. This constraint can be applied t o  the 
minimum distance decoder, [21], of the lattice. Such a modifi- 
cation, t o  some extent, improves the performance of a Voronoi 
constellation. For example, our simulation results show that for 
the lattice Ee, one can achieve almost all the shape gain given in 
Table (2) but with CER, = 1.7 and PAR = 4 instead of CER, = 2 
and PAR = 6.98. I t  should be mentioned that  most probably for 
the higher dimensional lattices (like A'*), the improvement will 
be more pronounced. 

As a more detailed comparison, a four state trellis diagram of 
(61 (in conjunction with the peak constraint technique) achieves 
7, = 0.97 dB, CER, = 1.5, PAR=3.75. For N =32, a two- 
level shaping code of [q achieves, 7, = 0.86 dB, CER, = 1.46, 
PAR= 3.40. In [20], an example for N =64 is given which 
needs 15 multiply-adds per 2-D, together with a total mem- 
ory of 1.5 kilo-byteslN-D, t o  achieve a tradeoff point with 
CERz = 1.5 near to  the optimum curve (the optimum 7, for 
N =64, CER, = 1.5 is equal to, 1.2 dB). 

Table (1) contains some examples of the performance of our 
scheme. I t  seems that  our method, which has no associated com- 
putation, is easier to  implement. 



7 Application to lattice vector quantization 

The ideas presented here for the addressing of the 7C,/AN regions 
can be naturally used in conjunction with a lattice vector quan- 
tizer with a pyramid/spherical shaping region. Generalization to  
the case of a region with nonequal values of power along differ- 
ent dimensions (for example in the case of the transform coding) 
and/or to  the case that the quantization region is composed of a 
set of nested regions with nonequal densities in different layers, 
[22], [23], is straightforward. 

8 Summary and conclusions 

We discussed an addressing scheme based on partitioning the con- 
stellation into clusters of equal volume and then selecting a subset 
of the clusters with the lowest average energy. The addressing of 
this subset is achieved by a lookup table. By using the address 
decomposition method, we have substantially decreased the size 
of the lookup table while the suboptimality is negligible. The 
key point is that  for moderate values of CER, in an N-D space, 
one can closely approximate the optimum tradeoff using a small 
number of equi-volume energy shells per N/2-D subspaces. This 
method uses a modest amount of memory, has no associated com- 
putation, and can be easily used in conjunction with a general 
coset coding scheme. I t  is also possible to  achieve the shaping 
in higher dimensional spaces and use its lower dimensional sub- 
spaces for the channel coding. As an example of performance, in 
an N = 32-D space, by increasing the number of the 2-D points by 
25% and using 2.5 kilo-bytes of memory, we realize a shaping gain 
of 0.92 dB. I t  seems that after the initial coding gain associated 
the Ungerboeck's schemes, (241, or with the Wei's schemes, [3], 
this is the easiest way to  obtain higher gains. 
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