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Abstract 

This  paper  first  tries  to  identify  the  primary  sources of dis- 
tortion in  a  non-recursive  time-scale modification (TSM) algo- 
rithm which  is  based  on  the  short-time  Fourier  transform  (STFT) 
(Portnoff, [l]). A  simpler  version of this TSM  algorithm is then 
proposed  for  processing  speech,  where  incremental  estimators 
eliminate  the need  for  explicit  linear  time-scaling  operations. 
Also featured in the design is a waueform structure  compensa- 
tion  stage  to  prevent excessive  deterioration of the  rate-changed 
output.  A  polar  (Le.  magnitude-phase)  synthesis  equation is 
used for  increased efficiency. The new TSM  method is capable 
of generating  high-quality  rate-changed  speech a t  a reasonable 
computational  cost. 

1. Introduction 

Time-scale  modification  (TSM) is a process  whereby  signals  are 
compressed or expanded  in  time in a manner which preserves 
(within  practical  limits)  their  original  frequency  characteristics. 
For  example, a listener  perceives  changes i n  the  apparent  rate 
of articulation of rate-changed  speech,  but  not  in  the  speaker 
dependent  features  such as pitch  and  timbre.  Potential  applica- 
tions  include  audio  monitoring,  reading  machines  for  the  blind, 
audio  data  compression/expansion  and  film-to-soundtrack  syn- 
chronization. 

At  least  two  approaches  to  the  problem of generating  rate- 
changed  speech  have  received  considerable  attention  over  the  last 
decade: 

Least-squares  error  estimation (LSEE) [2]. Recur- 
sive  technique  whereby a rate-changed  signal is estimated 
by minimizing,  in  the  mean-square  sense,  the  euclidean dis- 
tance  between  the  short-time  Fourier  transform  (STFT) of 
the original  and  rate-changed  signals. 

Time-frequency  models [ I ,  31. Usually  based  on the 
STFT,  these  models allow time  and  frequency  to  be  manip- 
ulated  independently  to  achieve  a  speech  modification  goal. 
The speech  signal is normally  represented as a  linear  combi- 
nation of sinusoids [4] or complex  exponentials [5]. 

LSEE algorithms, by the very  fact that  they  are  recursive  and 
transparent  to  the  characteristics of the  speech  signal,  are  more 
likely to  generate a structurally  sound  output  than  current “sin- 
gle  pass”  time-frequency  algorithms.  The  fragility of the  source 
models  used  in the  lat ter case  and  the  non-linear  transformations 
required to achieve TSM are  to  blame.  However,  the  performance 
impact of these  factors is currently  not well understood.  Further 
investigation in this  area  should  prove  useful, given the  speech 
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modification  potential of one  particular  time-frequency  scheme, 
sinusoidal speech modeling (SSM) [3]. 

We first  highlight the  causes  for  structural  distortion in rate- 
changed  speech.  A key paper in the field of time-frequency 
TSM  (Portnoff, [l]) will serve as the basis  for our discussion.  A 
novel method [6] which restricts  the  distortion  within  reasonable 
bounds is proposed  along  with  several  important  simplifications 
to  Portnoff’s  original  design.  The  revised  algorithm, which com- 
bines a new incremental  parameter  modification  scheme [6] with 
the  advantages of polar  synthesis  [4], is more  robust  than  its pre- 
decessors, while affording  high-quality  rate-changed  speech a t  a 
computational  cost  comparable  to, if not  less  than,  that of the 
SSM-based  version. 

2. Review and Definitions 

The  reader  is  assumed  to  be  familiar  with  the  material  presented 
in [l] and (51. Similar  notation will be  adopted. 

The signal or sequence z ( n ) ,  where n is integer  valued,  rep- 
resents  the  samples of a continuous-time,  bandlimited  waveform 
z ( t )  with the  sampling  interval  normalized  to  unity.  The  STFT 
of z ( n )  is defined as 

where w is  continuous  and h ( n )  is  an  analysis  window of length 
M .  The  STFT X ( n ,  w )  is periodic in w with  period 27r and  may 
be  regarded as a  sequence  in n with w treated as a parameter. 
The  STFT  synthesis  equation is 

The  time-scaling  factor of a sequence is represented by p, a 
rational  number.  The  range p > 1 corresponds  to  time-scale 
compression,  and the  range 0 < p < 1, to  time-scale expansion. 
The  rate-changed version of a sequence f(n,. . .) is written as 
fp(n,. . .), whereas  its  linearly  time-scaled  version,  as f ( p n , .  . .). 
In  general,  a  rate-changed  sequence is obtained  through non- 
linear  means. 

The  model  used in [l, 51 views a speech  signal as the  response 
of a  linear  time-varying  filter to  an  excitation  source which is 
either  a  “quasi-periodic”  unit-sample  train in the  case of voiced 
speech, or white  noise in the  case of unvoiced  speech. Major 
speech  parameters  such  as  pitch  and  vocal  tract  filter  response 
are  expressed as a function of time  and  are  assumed  to  be  “nearly 
fixed”  for  the  duration of the vocal tract  filter  response. 

The  rate-changed version of the  speech  model is obtained by 
linearly  time-scaling  the  speech  parameters.  For voiced speech, 
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however, there  is  one  important  exception:  the values of the in- 
stantaneous  phase of the  excitation  source  must  be  scaled by 1/p 
t o  preserve  the  original  pitch  (and  bandwidth) of the signal [l]. 

The following polar  STFT  expression [5] is used to  estimate  the 
necessary  speech  parameters  for  implementing  the  rate-change 
modification: 

where 

M ( n , w )  = IX(n,w)l (5) 

a ( o , w )  = e ( o , w )  (7) 
d ( 0 , w )  = 0. (8) 

s (n ,w)  = argX(n ,w)  + 2al (n ,w)  (6) 

The  magnitude of the  frequency  response of the vocal tract filter 
is  proportional  to M ( n , w ) .  The  integer I ( n , w )  guarantees  the 
uniqueness of the unwrapped STFT  phase O(n,w).  The  quantity 
f?(n,w) is  expressed as the  sum of two  unwrapped  phase  terms, 
a(n ,w)  and 9(n ,w) ,  which are  both unknown. The  phase  mod- 
ulation  term a ( n , w )  represents  the  phase  induced by the slow 
variations in the  source pitch  and  the  vocal t ract  filter  response. 
The  frequency  modulation  (FM)  term zP(n,w), by comparison, 
vanes much more quickly  in n because  it is proportional  to  the 
instantaneous  phase of the  excitation  source.  Portnoff  developed 
an  algorithm  for  estimating  both  phase  quantities  from e (n ,w) .  

The  accuracy of the  STFT-based  magnitude  and  phase  estima- 
tors  depend  to  some  extent on the design of the analysis  window. 
The  duration of h ( n )  should  be sufficiently short  (no  greater  than 
20ms) so that  the  speech  parameters  appear  nearly fixed  over the 
analysis  interval.  In  spectral  terms,  the  bandwidth of the analy- 
sis window should  be wide enough  to  pass  the  speech  parameters 
with negligible distortion.  However,  this  bandwidth  should  be 
less than  one half the  source  pitch  to allow proper  resolution of 
voiced speech  spectra [5]. If h ( n )  is a 20ms  Hamming  window, 
an  “accurate”  bandpass  STFT  representation of a voiced  speech 
signal  can  be  obtained  only if its  pitch  exceeds 200Hz [l]. Port- 
noff argued  that  the  same  analysis filter  bandwidth is adequate 
for processing  both voiced and unvoiced speech [5]. 

The  rate-changed version of X(n ,w)  was  postulated as 

= M(Pn,w)exp [ j ( a ( P n , w ) +  9 ( p n , w ) / o ) ] . ( l o )  

Rate-change  modifications  are  achieved by linearly  time-scaling 
the  original  STFT  and  applying a non-linear  phase  modification 
to  preserve  the  original  bandwidth.  It  was  suggested  that  the 
result is suitable  for  both voiced and unvoiced  speech [l]. The 
rate-changed  signal x@(n) is obtained by substituting (9) into  the 
S T F T  synthesis  equation. 

3. Distortion in Rate-Changed Speech 

The  structural difference  between X(n,w)  and X@(,,,) is  the 
major  cause of distortion  in  rate-changed  speech.  Since  X(n,w) 
is a function of a finite  number of samples, a “regular”  STFT  can 
be  said  to have  finite  memory.  Though  it  may  be  argued  that 
X(pn,w)  has  finite  memory  also,  X@(n,w) clearly  does not- 
the r9(pn1 w ) / p  term  has infinite memory  (i.e.  each  phase value 

depends  on  the  location of the  time  origin,  as  integer  multiples 
of 2r are  not  invisible  for p # 1). Therefore, F M  component 
estimation  errors  accumulate  in X@(,, w )  indefinitely. 

Even if the  quantity 29(pn,w) were  known exactly,  some  degree 
of phase  error in X@(,,,) would still  be  unavoidable. Since the 
F M  component will often  deviate  from  the  local  phase  linearity 
assumption of the  speech  model,  the 1/p scaling  factor in (10) 
merely  ensures that  the average frequency of X@(,,,) matches 
that  of X ( n ,  w ) .  The  phase  deviations  may  occur  within  the  scope 
of an  STFT  frame  due  to waveform transients or other  features 
which violate  the  source  model. 

The  accumulation of phase  disturbances  eventually  destroys 
the original  phase  relationship of the  frequency  components, 
thereby  impairing  the waveform structure of z@(n) .  The  next sec- 
tion  proposes  a  method which restricts  the  memory in X@(,, w )  
to  improve  long-term  performance. 

4. Waveform Structure Compensation 

Suppose  that  the  speech  signal z ( n )  is  segmented  into  a  string 
of contiguous  sub-waveforms or segments z , (m),  each of length 
L (in  samples).  The  sample  index m spans  the  segment  length 
and is linearly  related t o  n ,  i.e. n = m + iL. The  STFT of the 
i-th  segment,  X,(m,u),  is  just  X(n,w) expressed as a function 
of i  and m. 

The  goal  is  to  construct  the  rate-changed signal E @ ( , )  by con- 
catenating  its individually  rate-changed  segments z f ( m ) .  Each 
one of these is synthesized  from  the  rate-changed version of 
X,(m, w ) ~  namely 

where Ig,(O,w) = 0. The  initial  condition  on  the F M  component 
indicates  that  the  STFT  phase  unwrapping  process is reset a t  
intervals of L samples  on  the ori inal  time-scale. 

As Figure 1 illustrates,  the zi ! ( m )  are not  necessarily  phase- 
continuous  at  their  edges  because  the  average  frequency of each 
rate-changed  component w is  preserved while the  segment  lengths 
are  altered by a factor of 1/p. The  initial  phases  (at m = 0) of 
the  frequency  components in each  segment  are  not  affected by 
a rate-change  modification, as (11) confirms.  Consequently, the 
quantities  argX,(O, w )  serve as a convenient  reference for correct- 
ing  the  phase  relationship of the  frequency  components. 

a )  . . . x(n) 

Fig. 1 a)  Original  signal  with  segment  boundaries. b )  Con- 
catenation of individually  rate-changed  segments. 

In  order  to  prevent  the  phase  error of one  segment  from  prop- 
agating  to  future  segments,  it is proposed  to  force  adjacent  rate- 
changed  segments  to  be  phase-continuous.  The  amount of phase 
correction  required at  the  i-th  segment  boundary  per frequency 
component is 
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where LB = LL/pJ. The floor operator 1.1 truncates  the  frac- 
tional  part of its  argument.  The  operator  adds or removes 
multiples of 2~ to  its  argument  until  the  results lies  in the -a 
to  a range.  The  quantity X f ( L @ ,  w )  corresponds  roughly  to  the 
same  sample  index  along zB(n) as X;+l(O,w) .  The  constant E,+I 

offsets the  starting  phase of Xi+l(m,w) to  reduce  the  amount 
of phase  correction  for  perceptually  important  frequency  compo- 
nents.  Since ~ , + l  is in effect a complex  plane  rotation  factor,  the 
waveform structure of the ( i  + 1)-th  segment  remains  intact.  The 
phase offset for the  i-th  segment  is given by 

e, = J _ : ~ , _ ~ ( w ) d ~ ~ [ a r g ~ , ( 0 , w ) - a r g ~ , ~ - , ( ~ ~ , w ) ] d w . ( 1 3 )  

The  operator is identical t o  d,[.] operator,  except  that  the 
final result lies in the 0 t o  2n range.  The weight function W,-l(w) 
favors  the  perceptually  important  frequency  components of the 
( i  - 1)-th  segment.  The weights  may  be  chosen  on the basis 
of spectral  energy  and  absolute frequency. The  human  ear will 
be  more  sensitive  to  distortion  at  the lower end of the  auditory 
spectrum. 

We  define a phase-modulated version of z f ( m )  as 

where 

The  amount of phase  correction is uniformly  distributed so as to  
minimize the  amount of distortion  per  sample.  Hence,  the  aver- 
age  frequency of X f ( m , w )  is shifted by a fixed quantity which 
does  not exceed a /L@. To  summarize (14), p ; ( m , w )  ensures  that 
y!(m) is phase-continuous  with ~ ! + ~ ( m ) ,  while E ,  reduces  the 
perceptual  impact of phase  modulation in ~ & ~ ( m ) .  

5 .  Synthesis  and  Parameter  Modification 

In  practice,  the  discrete  version of the  STFT  synthesis  equation 
(and  analysis  equation) will be  used,  i.e. 

where w k  = 2xk/N.  The  constant N denotes  the  number of fre- 
quency  samples. If (16) were computed  using  an  N-point  Fast 
Fourier  Transform (FFT) algorithm,  a  polar  to  rectangular  coor- 
dinate conversion  would be required  before (11) could be  substi- 
tuted  into  (16). Since the  unwrapped  STFT  phase B r ( m , w k )  is 
readily  available  (because  it  serves in estimating  the  exponential 
phase  term of (ll)), it is more efficient t o  synthesize $ ( m )  from 
the  polar  rather  than  rectangular  representation of Xf(m,wk) .  
Furthermore, z f ( m )  is real,  and so (16)  can be reduced  to 

Unlike the SSM synthesis  equation [3, 41, (17)  uses  the en-  
tire  spectrum  as well as fixed rather  than  time-varying  base fre- 
quencies.  The  advantages of (17)  become  more  apparent when 
X,(m,w)  is downsampled in time:  the  interpolation  procedure 

for  polar  parameters is usually  simple  for  achieving  high-quality 
synthesis  due to  their  relative  smoothness 14). This  property  may 
be  further  exploited  for  evaluating X,!(m, w k ) .  The following in- 
cremental  estimators  are  proposed: 

k f ( m ,  Wk) = Mi( p m ]  7 w k )  (18) 

i ! ( m , ~ k )  = B i ( O , w k )  + CV&llei(lJrJ,wk),  (19) 
m 

r = l  

with the  initial  conditions 

k ! ( O , w k )  = Mi(O,wk) (20) 
i f ( 0 , W k )  = e i ( 0 , w k ) .  (21 1 

The  Vi[.]  operator is the  first  backward difference  with respect 
to  9. Equations (18) and (19) define a TSM  system  where  no ex- 
plicit linear  time-scaling  nor  multiplications by 1/p  are  required. 
Time-scale  compression ( p  > 1) is in  effect  achieved by periodi- 
cally  deleting  sample  “intervals”  from z , (m),  whereas  time-scale 
expansion (0 < p < 1)  consists of periodically  repeating  sample 
L‘intervals”  in z , (m).  

Due  t?  its  incremental  structure,  the  rate-changed  phase se- 
quence $(m,  w k )  retains  essentially  the  same  smoothness  prop- 
erties as the  original.  However, 2 f ( m , w k )  is in general dis- 
continuous, which is of no great  concern  because M,(m,wk)  is 
relatively smooth. Since the  above  scheme  disregards  the  source 
model  entirely,  the waveform deterioration  process is expected  to 
be  more  rapid. 

Incorporating  the  phase  modulation  terms  and  the  incremental 
estimators  into  (17) yields 

pt(m1 w k )  + E i  + w k m )  * (22)  

The  rate-changed  signal zfl(n) is constructed by concatenating 
the y f (m) .  

6. Simulation 

A software  simulation of the  TSM  system previously  described 
was performed  using a 20ms  Hamming  analysis window (= h ( n ) ) ,  
a 512-point  short-time  Fourier  analysis  stage  and a sampling  rate 
of 16kHz (= fl) .  Each  (discrete)  STFT  frame was computed  at 
sample  intervals  equal  to M/4, where M is the  length of h(n).  
Both  the  original  STFT  magnitude  and  unwrapped  phase se- 
quences  were  upsampled  via  linear  interpolation by a  factor of 
M/4 so that  the  parameter modification  procedure given by (18) 
and (19) could be  applied. 

In  the  absence of any  parameter modification ( p  = l), the 
original  speech  signal  (Figure  2)  and  its  reconstructed version 
(Figure 3) were virtually  indistinguishable.  The  result  suggests 
that  the  distortion  caused by polar  parameter  interpolation is 
negligible. 

TSM tests were conducted  over  the  range  0.5 5 p 5 2.0  using 
speech  signals in the male  and  female  speaker  categories.  Exam- 
ples are  shown in Figure 4 and  Figure 5 .  In general,  rate-changed 
signals  whose  voiced  portions  satisfy  the  minimum  pitch  bound 
which ensures  proper  resolution of voiced speech  spectra  can  be 
rated as “very  good” to  “excellent”-the output is free  from  ar- 
tifacts  and  its  subjective  quality is similar  to  that of the original 
signal.  Some  distortion  due to  poor  resolution of voiced  speech 
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Fig. 2 Original  signal  represented as two  consecutive  parts. 

Fig. 3 Reconstructed version ( p  = 1) of Figure  2.1. 

spectra  occurs  for  lower-pitched  signals,  particularly  for  those 
in the  male  speaker  category.  Time-scale  compression  tends  to 
mask  this  distortion  because  the  rate of articulation is acceler- 
ated.  For  time-scale  expansion,  however,  quavering  in  the voiced 
portions  (especially  near  unvoiced-to-voiced  speech  boundaries) 
and  smearing  in  the  unvoiced  portions  become  more  evident as p 
is  decreased.  Expanded  speech  signals in the male  speaker  cate- 
gory  can  be  rated as "good"  because  they  are  free  from  artifacts 
and  are  still  quite  intelligible. 

The  speech  segment  lengths L = 1100 x 10-3f3J  for p > 1 and 
L = [loop x 10-3f3J for 0 < p < 1 gave  good  results.  The  sam- 
pling  frequency f J  affects the quality of rate-changed  speech in 
at least  three ways.  As f3 is  increased, 

the  granularity of the  incremental  estimators  decreases. 

the effect of the waveform structure  compensation  section 
becomes  less  noticeable  because  the  amount of phase  correc- 
tion is distributed  over a larger  number of samples. 

less  frequency  aliasing  and  phase  unwrapping  errors  occur 
for perceptually  important  frequency  components  because 
they  are  shifted  away  from  the  Nyquist  frequency. 

Injecting  background  noise  (eg.  speech or music)  into  the 
source  signal  resulted  in  no  significant  loss of quality  in  the  rate- 
changed  output. 

7. Conclusion 

Current  time-frequency  TSM  algorithms  suffer  from  at  least  two 
weaknesses: the  irremediable  time-frequency  resolution  compro- 
mise of the  STFT analysis  filter  and  the  cumulative  structural 
distortion  caused by the non-linear  transformations  involved.  In 
general,  the  quality of rate-changed  speech  signals is better  for 
higher  pitched  sources  (>200Hz).  Waveform  structure  compen- 
sation  does  not  address  the  fundamental  problem of estimating 
the  unwrapped  phase of the  unknown  rate-changed  STFT. Ide- 
ally, @ ( n , u )  should  be  a  non-linear  function of past  and  future 
rate-changed  samples in the vicinity of n on  the new  time-scale. 

t I 

I I 

Fig. 4 Expanded  version ( p  = 0.5) of Figure  2.1. 

Fig. 5 Compressed  version ( p  = 2.0) of Figure 2. 

I t  is not likely, therefore,  that @ ( n , u )  can  be  estimated  from 
phase  data  calculated  on  the  original  time-scale  alone,  without 
some  form of recursion or analysis-by-synthesis.  However,  the 
simple  TSM  system which has been  described  may  be  more  than 
adequate  for  certain  applications.  Moreover,  variable  TSM  can 
be  easily  implemented by letting p vary as a function of time in 
(18)  and  (19). 
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