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Selection of the Focusing Frequency in Wideband Array Processing
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Abstract
Wideband array systems can be decomposed into several narrowband
systems by sampling in the frequency domain. Focusing is the com-
pination of these narrowbands by transforming them into a focusing
subspace. Corresponding to each focusing subspace there is a focusing
frequency. So far, there has been no optimal way for choosing the fo-
cusing frequency ~ usually it is chosen to be the mid-band frequency. In
this work we propose a technique to choose the focusing frequency. Our
method is based on minimizing a subspace fitting error. The simulation
results show that using the selected frequency for focusing improves the
performance of the estimation by decreasing the resolution threshold and
reducing the bias.
1. Introduction and Problem Formulation

In the literature, several methods have been proposed to process
wideband signals. In this paper, we investigate the Coherent Signal-
subspace Method (CSM), [1]. The method is based on transformation of
the signal-subspaces for all the frequency bins into the signal-subspace
created by fo, the mid-band frequency. This transformation reduces the
computational load and improves the efficiency of the estimation. It is
shown that with very weak constraints on the signal covariance matrix,
it is possible to handle coherent cases. Hung and Kaveh, [2], showed
that the best performance is obtained if and only if the mapping is done
through a unitary transformation. They did not discuss how to choose
the best focusing frequency, fo. In this paper we introduce a subspace
fitting error and optimize it to find a suitable focusing frequency.

Consider an array of p sensors exposed to ¢ < p far-field wideband
sources That can be partially or fully correlated. The output of the
sensors in the frequency domain is shown by

x(w) = Alw, 8)s(w) + n(w), (€3]

where x(w), s(w) and n(w) are the Fourier transforms of the abservation,
signal and noise vectors, respectively. The px ¢ matrix of location vectors
s given by the full rank matrix A(w,9) = [a(w,8;)...a(w,8;)]. It is
A}sur_ned that the signal and noise samples are independent identically
dutn.buted sequence of complex Gaussian random vectors with unknown
covariance matrices S(w) and oI, respectively. With these assumptions
the covariance matrix of the observation vector at the frequency w; is
given by

R(w;) = A(wj, 8)S(w; )JAH (wj, 8) + 0°1, 2

where the superscript H represents the Hermitian transpose. In the
%equel, we suppress the frequency variable. Then R; represents R(w;),
X, represents x(w;) and so on. The CSM algorithm is based on forming
“ev observation vectors, Y;. as

3

¥; = Tix;
“here T's are the unitary transformation matrices found from
minjjAo - T;Al, j=1,...,7 (4)

,'h“' 1l is the Frobenius matrix norm. The observation vectors that are
::h;d by (3) are in the focusing subspace and their correlation matrices
N ¢ added together directly to make the universal correlation matrix.
04 universal correlation matrix is then used in the MUSIC algorithm
nd the directions of arrival.

w 2. Selection of the focusing frequency
* find the optimized focusing frequency by minimizing

b
min min Y llAq - TAGIF, %
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subject to T; being a unitary matrix. For a fixed Ao, it is already
known, [2], that the optimal T; is given by

T, = VWY, ®

where V; and W; are the matrices of the left and right singular vectors
of AgA¥. It can be shown that the error is given by

7 J q
3 A= TiA;R = 27pg =23 Y ai(AcAT), (7
j=1 j=li=1
where ;(B),i = 1,...,¢ are the singular values of the matrix B arranged
in decreasing order. The optimization problem is the same as
7 ¢
"
n}na.xz 3 ai(AcAf). (8)

i=lis1
Direct minimization of (8) is very involved and the computational com-
plexity increases with the number of the frequency samples. We have
shown that

J 9 U q
Y3 ci(acAlN €3 ailAdei(A]). (®)
J=ti=1 j=li=1

Our proposed method is based on maximizing the right hand side of (9)
subject to I, 03(Ag) = pg. We have shown that (9) is a tight bound
in the vicinity of the optimum point. The optimization is done in two .
stepa. First, the optimal singular values for the location matrix Ag are
determined. Then, using the known structure of the location matrices,
the optimized value of the focusing frequency, fo, is found.

The classic Lagrange multiplier optimization method gives

_mpe i=1,...,4 (10)
V21=x“7

where u; = 2;!:1 o:{A;). It is important to notice that the only un-
known in the location matrix is the frequency of the processing. We find

oi(Ag) =

a matrix that has the singular values close to o7(Ao),i=1,...,¢. This
can be done by minimizing
q
miny {0:(Ag) ~ o7 (Ao, 3
jin 2 [oi(A0) = oi(Ao)] ()

subject to the matrix A, being a location matrix.

In our simulation, we examined an array of six sensors exposed
to two uncorrelated sources. Finding the error of subspace fitting for
different frequencies, we observed that the mid-band frequency is not
necessarily the best point for focusing. We used the optimized point
found by the algorithm and the mid-band frequency for focusing. It was
observed that with the selected point by the algorithm as the focusing
frequency, some sources can be resolved that otherwise would not be. We
also investigated the bias of estimation. The bias of the estimation was
minimized for the optimized frequency selected by the proposed method.
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