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Abstract 
In  this  paper, we propose  a new algorithm  for  the  processing 
of signals by an  array of sensors.  The  objective is to  find the 
number  and  the  Directions Of Arrival  (DOA) of signals  impinging 
on  a  linear  array.  The  Predictive  Stochastic  Complexity  (PSC) 
criterion of Rissanen is used to  select  the  best  model  order.  To 
reduce  the  computational  load,  the  algorithm  operates with a 
sub-optimal  estimator while maintaining  the  consistency of the 
estimator.  The  proposed  method is on-line and can  be  utilized 
in time-varying  systems  for  target  tracking.  The  method  can  be 
used for  bot,h  correlated  and  uncorrelated  signals. 

1. Introduction 
In  this  paper we address  the  problem of finding the  number 

and  Directions Of Arrival  (DOA) of signals  impinging  on a lin- 
ear  array.  Suppose we have  a  linear  omnidirectional array of p 
sensors which are  exposed  to q < p far-field  sources.  The sig- 
nals  from  the  sources  can  be  partially  or fully correlated.  The 
fully correlated  case,  also  called  the coherent  case,  stems  from 
the  multipath  propagation or smart  jamming  and is of practical 
importance in signal  processing. We assume  narrowband  signals 
with  known  center  frequency.  Signals  arrive at  the  array  from 
distinct  directions 6’1,. . . , 8,. The  objective is t o  find the  number 
of sources, q ,  and  their  directions of arrival, 6 9  = [e,, . I . ,e ,] .  

The  approaches  taken so far  are  based on Akaike’s Infor- 
mation  Criterion  (AIC)  and  Rissanen’s  Minimum  Description 
Length  (MDL) [1,2,3]. These  two  criteria  are  described by 

AIC(N)  = -log !(x”, e ~ )  + k, (1 1 
MDL(N)  = - log f ( X N ,  i,) + - log N ,  

where x N  is the  observation  up  to  time N ,  8~ is the  Maximum 
Likelihood (ML)  estimate of t,he parameter  vector  and k is the 
number of free  elements of the  parameter  vector.  In  these  formu- 
lae,  the  first  term is the  log  likelihood  function of the  observation. 
The  generating  model  class is shown by f .  

Asymptotic  study of the AIC estimator  indicates  that  it is 
not  consistent.  It  tends  to  over-estimate  the  true  order of the 
system  as  the  number of observation  increases.  The  advantage 
of Rissanen’s  MDL is its  consistency.  In  both  methods,  buffering 
of da ta  is essential.  Thus,  neither of them can  be used on- 
line.  In  this  paper, we develop an  algorithm  based on Rissanen’s 
Predictive  Stochastic  Complexity  (PSC), [4,5]. This  algorithm 
is consistent  and  its  structure  makes  it  suitable  for  on-line  use. 
The  PSC is based  on  the  concept of predictive  coding.  Rissanen 
proves  in [5] that  this  criterion  achieves  the  shortest  code  length 
of the  data  relative to  the  generating  model  class.  The  concept 
of the  codelength  minimization  stems  from  the  fact  that  the 

k 
2 (2) 

INRS-TClCcommunications 
UniversitC du QuCbec 
Verdun,  Quebec, H3E 1H6 

best  model which fits to  the  data is the  one  that gives the  most 
information  about  it.  The  Minimum  Description  Length (MDL) 
is  also  based  on  minimization of the  codelength  with  a  special 
method of coding.  For  the MDL, the  restriction of the  coding 
method  increases  the  codelength.  This  increase in the  codelength 
makes us skeptical  about its optimality. 

The  predictive  stochastic  complexity of the  observation vec- 
tor xi, i = 1 , . . . , N ,  is defined by 

N 
PSC(N)  = - C l o g  !(Xi, e,-& (3) 

r = l  

where Bi-1 is the  ML  estimate of the  parameter  vector  with 
respect  to  the  observations up  to  time (i-1). The  shortcoming of 
the PSC is its high computational complexity.  In  this  paper we 
modify the  criterion by using a sub-optimal  recursive  estimator. 
We will discuss the  strength of the  estimator. We have  also 
proved that  the  estimator is consistent,  but  this  issue will not 
be  discussed in the  present  paper. By using  this  estimator,  the 
multivariate  nonlinear  optimization is decomposed  into  several 
one-variable  nonlinear  problems.  The  simulation  results  show 
that  with  the new estimator, PSC performs  better  than MDL. 

The  paper is organized as follows. The problem is formulated 
in the  next  section.  The  concept of subspace  decomposition 
which is widely used in array  processing is discussed  in  Section 
3. Detection  and  estimation  parts of the  problem  are  the issues 
which are  described in Sections 4 and 5 .  A recursive  estimator 
that  can  be  utilized to  reduce  the  computational  complexity 
is also  introduced in Section 5. In Section 6, we present  the 
simulation  results  and  compare  two  methods,  MDL  and PSC. 

2. Problem Formulation 
Let u s  define t,he  observation  vector ( p  x 1) by x ( t ) ,  the signal 

vector ( q  x 1) by s ( t )  and  the noise  vector ( p  x 1) by n(t). For 
the  linear  multisensor  problem  the  following  equation  holds, 

x ( t )  = A(B)s( t )  + n ( t ) ,  (4) 

where A(@) = [a(&).  . .a(@,)] is the p x q matrix of steer- 
ing  vectors,  and a(8,) = [l ,p i  p: . . . pp-’IT, where k ,  = 
exp(jw,dsin(O,)/c).  In  this  formula,  the  distance  between  two 
consecutive  sensors is represented by d ,  the wave speed is shown 
by c and  the  center  frequency of the  source  signal is given by 
W O .  It is further  assumed  that every p collection of the  steering 
vectors a(O,), i = 1, .  . . , p  is independent,  for all possible 6,’s. 

It is also  assumed  that  the  signal  samples  are  i.i.d.  sequence 
of complex  Gaussian  random  vectors  with  an  unknown  covariance 
matrix S. The noise  samples  are  i.i.d.  sequence of Gaussian 
random  vectors  with  unknown  covariance  matrix ozI and  are 
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independent of the  signal  samples.  With  these  assumptions,  the 
observations will be  the  samples of a  complex  Gaussian  process 
with  zero  mean.  The  probability  density  function of this  process 
is given by 

f(xle9) = - 1 
T P  detR9 

e x p { - ~ ~ [ R 9 ] - ~ x } ,  ( 5 )  

where  the  correlation  matrix of observation  vector, is defined by, 

R9 = E[xxH lP ] .  (6) 

I t  is straightforward  to show that,  

Rq = A(@q)SAH(6'9) + u*I, 
= Q + 021. ( 7 )  

The  correlation  matrix R9 is  a  function of q ,  0 9 ,  u2 and S. 
It  might  be  thought  that  the  unknown  parameters of Rq can  be 
found by jointly  maximizing  the  likelihood  function.  However, 
the  maximum  value of the likelihood  function is an  increasing 
function of the  order of the  system. In other  words,  direct  ML 
estimation  always gives the  maximum  value  for  the  number of 
sources, q .  For  this  reason, in the  AIC  and MDL a  second  term is 
added  to  the likelihood  function to  penalize  the  over-estimation. 

It is assumed  t,hat q < p ,  which yields q E P = {0 ,1 , .  . . , p  - 
l}. For  any k E P, based on an  observed  sequence,  an  appropriate 
model of order k can  be  constructed. In  order  selection  methods, 
p models  run  simultaneously. The  corresponding  model  for a 
given k E P is described by 

x(t)  = A(Ok)sk( t )  + n( t ) ,  ( 8 )  

where A ( @ )  is t,he paramet,erized  steering  mat,rix wit,h respect, 
t o  the  parameter  vector @ k ,  and s k ( t )  represenh  the  signal vec- 
t,or with  dimension IC. The  probability  density  function of the 
observation  vector  for  model k is given by 

1 
f W k )  = n p  d e t R k  exp{-xH[Rk]]-'x}, (9) 

where Rk is the  correlation  matrix of the  observation  vector  and 

R'; = E[xxHl8';]. (10) 

For each  model,  a  quantity which can  be  AIC or MDL is com- 
puted.  The  best value of q is obtained by minimizing  this  quan- 
tit,y. In this work we apply  the  PSC  criterion. 

The  Predictive  Stochastic  Complexity  for  model k, at t,ime 
instant N ,  is computed  as 

N 

P S C k ( N )  = - p o g f ( x , I & ) ,  (11) 
,=I  

N 
= C(1ogde t  Rf-l + X ~ [ R ~ - ~ ] - ' X , ) ,  (12)  

where at-, is the ML estimate of the  correlation  matrix  based 
on  the  observations  up  to  time ( i  - 1) and  with  respect  to  the 
system of order k. The  correlation  matrix is estimated  from  the 
sample  correlation  matrix 

,=I 

1-1 - 
R,-1 = - 1 XIXI".  

2 - 1  
(13) 

I = 1  

Most of the high resolution  methods  for  the  estimation of the 
angles of arrival  use  the  subspace  decomposition  method.  This 
issue is of great  importance in array  processing. In the following 
section we apply  this  concept  to our problem. 

3. Subspace  Decomposition 
Let us assume  that  the  p-dimensional  complex  vector  space 

is represented by C P .  In  the  subspace  decomposition  approach, 
this  vector  space is split into  two  orthogonal  subspaces.  For a 
given model of order k, the  columns of the  matrix A(@) span 
a  sub-space of C P  called the  signal subspace. An estimate of the 
signal  subsyace  can  be  obtained  through  estimation of the  angles 
of arrival, Bk. The  signal  subspace  for  the  model k at  time  instant 
i is shown by Cfi. This is the column span of the  matrix A ( @ ) .  
The dimension of this  subspace is determined by the  number of 
sources.  For a model of order k dimension of the  signal  subspace 
is equal to  k. The  nobe subspace, Cki, is the  orthogonal  space  to 
the  signal  subspace.  The  dimensionality of the noise  subspace for 
a  model of k signals is ( p - k ) .  The  true  signal  and  noise  subspaces 
are  represented by C,P and C i ,  respectively. It  should  be  noted 
that once  the  signal  subspace is given, the  corresponding DOA 
can  be  determined uniquely. 

Decomposition of the  observation  vector,  x,  into  its  compo- 
nents in the  two  subspaces  yields, 

x = G [ 3  

= x ,   + x , ,  

where G is a  unitary  coordinate  transformation  and 

We present a lemma which proves the uniqueness of the 
decomposition. 

Lemma 1. For noncoherent  sources,  a  fired 89 and  indepen- 
den t  steering  vectors, a(@,),  i = 1, .  . ., q, the  subspace decompo- 
sition a's unigue. 

Proof It is possible to  show that  for every  space, Cq = 
span(a(8,); i = l , . . . , q } ,  there is a unique  set, 6' = {e,;  i = 
1 , .  . . , q } ,  that  generates  this  space  and vice versa.  Due  to  the 
uniformity of the  array  and  the far-field sources  the  basis is 
Vandermonde.  Hence  the  steering  vectors a(@,) are  independent. 
We claim that  this basis is unique. If it is not  the  case,  there will 
be another  set, A ( $ )  = {a($jt); i = 1, .  . . , q } ,  with  Vandermonde 
structure, which is also a basis  for C9. Then every  vector  in Cq 

could be  represented  with  respect  to  this  basis.  Take  for  instance 
a(Ol).  The  independence of the  steering  vectors  suggests  that 81 
has  to  be in the  set $ = {$,; i = 1,. . . , q } .  The  continuation of 
this  argument  implies $ = 8. 

It is also  worth  noting  that  almost  surely  for i 2 p the  sample 
correlation  matrix, R , ,  is of full rank.  Thus,  the  columns of 
Rl-l, z > p ,  span C P .  

Lemma 2. For noncoherent  sources  the  column  span of A(@*) 
coincides with the  span of the eigenvectors of Rq which correspond 
t o  the q largest  eigenvalues. 

This is a  standard  result  (see  [6].) 
The  projection  matrices  onto  the  two  subspaces  are given by, 

The  projection of t,he sample  correlation  matrix  onto  the  signal 
and  noise  subspaces  yields, 

The  assumptions for the noise  vector  makes  this  representation 
possible. The noise  samples  are  generated by a  white  process. 
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Thus,  the  components of the noise in the noise  subspace  are in- 
dependent of the  components of the noise and  the signal in the 
signal  subspace.  It is then  possible  to find a  unitary  transforma- 
tion G ,  which decomposes  the  correlation  matrix  into  two  inde- 
pendent  parts in the  orthogonal  subspaces.  Thus  the following 
structure  can  be  constructed  for R9, 

where  square  matrix R!* has q eigenvalues  presented by XI,. . .,X, 
and R,, has  an  eigenvalue, u2, with  multiplicity ( p  - q ) .  

An alternative  formulation  for  the  correlation  matrix is pos- 
sible  based on  the  subspace  decomposition. Specifically, it is 
possible to  split Rq into two parts in the signal  and noise sub- 
spaces, 

Rq = RZ + RP,, (211 
where 

R: = P,(Bq)R9P,(B9), (22) 
RP, = P , ( B ~ R ~ P , ( B ~ ) .  (23) 

Uniqueness of the  decomposition (21 )  implies that 

Thus,  maximum  likelihood  estimation of the  correlation  ma- 
trix  can  be  based  on  the  estimation of two  correlation  matrices 
in the  signal  and  noise  subspaces. We shall  discuss  this  issue in 
the  next  section. 

4. Detection 
The  problem  which was described  earlier  can  be  split  into 

detection and e~tirnation parts.  The  detection  problem  concerns 
finding the  true  number of sources, q .  The  determination of the 
DOA of the  signals is the  goal of the  estimator. In the  proposed 
algorithm,  on  arrival of each  sample,  detection  and  estimation  are 
done  consecutively. If the  number of sources is fixed, the  problem 
collapses to  an  estimation  procedure.  The  algorithm  includes p 
models  running in parallel.  The  PSC  criterion  for all p cases is 
computed.  At  each  time  instant,  the  task is to choose the  best 
model through  minimization of the  PSC. 

Taking  determinant of both sides of (20 ) ,  recall that  G is 
unitary, we get 

det[R9) = det(R!,) det(RP,,). (26) 

Correspondingly,  the  sample  correlation  matrix is written  as 

As i increases, R , - 1  tends  to Rq and  the  matrices R s s , - l  and 
R,,,-, approach R,, and R,,, respectively.  In  such  a  case, 
det& can be decomposed  into  two  parts in the signal  and 

where IBI is the  multiplication of the  nonzero  eigenvalues of the 
matrix B. Since xs  and x ,  are  independent,(see ( 2 1 ) ) ,  

^ k  A 

Rt-1 = + (29) 

The  PSC is a function of the  parameter  vector  The 
PSC  criterion  uses  the  ML  estimate. If Of-l is the ML estimate 
of the  true DOA, it  can  be  shown  [7]  that, 

= R L , ,  (30) 
pi:,-, 1 = (&*(e!-l))p-k, (31 1 

where. 

The  projected  sample  correlation  matrices R!,-, and Ri i - l  
are given by (18) and (19), respectively. With ML estimation, 
it is also  possible to show that R!i- l  has a single  eigenvalue of 
order ( p -  k) which can  be  calculated from (32). The  eigenvectors 
of and  are  identical.  Thus Rf , - ,  can  be  obtained by 
a linear  transformation Tfi, on  the  matrix R f i - , .  Being  more 
specific, we propose  the following estimator, 

(33) 

(34) 
- 

where XI, I = 1, . . . , p - k, are  non-zero  eigenvalues of R,,-, and 
VP-k is the p x ( p  - k) matrix of the  corresponding  eigenvectors. 
The ML estimate of the noise  power a2(8fi_,) is given by (32). 

Therefore  the  PSC  criterion will be  equal  to 
N 

PSCk(N) = C[loglR:i_l I + i p  - k) l o g ( ~ 2 ( ~ f ; - 1 ) ) +  
i = l  

x ~ ( ( f l : , - ,  + T ~ - l R k , - l ) - ' ~ i ] .  (35) 

It is seen that  the  computation of PSC relies  on the  estima- 
tion of the  angles of arrival, et-,. In  the following section we shall 
propose  an  algorithm to estimate 

5 .  Estimation 
To  obtain  an  estimation  problem has to  be solved. A 

suitable choice for  the  cost  function is given by 

C k  = argmjn{log(+2(0))}, (36) 

= argmjn  tr[~,(C)fl,l .  (37) 

If the  dimensionality of the  signal  subspace is fixed, the  trace 
of the  projected  matrix is minimum if and  only if the  projec- 
tion is done  onto  the  space  spanned by those  eigenvectors of R ,  
which correspond  to  the  smallest  eigenvalues. In other words, 
minimization of the  criterion (36) for a model of order k is the 
same  as choosing the  eigenvectors  corresponding to   the  largest k 
eigenvalues of Ri as  the basis  for  the  projection  operator, P,(Bk). 
From  the  observation  vectors, we can  compute  the  sample  corre- 
lation  matrix, R i .  Therefore  according  to  Lemma 1 and  Lemma 
2 ,  minimization of the  criterion (36) gives a unique  vector of an- 
gles of arrival  and a subspace which is an  estimate of the  actual 
signal subspxe.  Because of the  nat,ure of (36) we call  it  the noise 
eatamator. 

It  should  be  noted  that for stochastic  signals,  the ML esti- 
mator is given by 

# 

8 

As a comparison of the  two  cost  functions, (36) and (38), we 
considered  two  sources  and  computed  the  costs  for  them.  The 
results  are  shown  in  Fig. 1 and  Fig. 2.  Both  criteria have  global 
optimum  points  on  the  true  values of the  angles of arrival.  The 
ML  algorithm is played by prominent  local  minima which can 
cause  problems  with hill climbing  optimization  procedures. 

Estimation of the  angles of arrival is a multivariate  nonlinear 
optimization  problem.  To  reduce  the  computational  complexity 
we introduce a recursive  algorithm which is very similar to  the 
Alternating  Maximization  method of Ziskind and  Wax [a]. 
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uncorrelated  correlated 
SNR sources sources 

(dB) MDL  PSC MDL  PSC 
1 80  68  11  7 
2 70 40 7 4 
3  57  39  6  3 
4 44 30 9  5 
6 23 15  9 7 
8 2 0 0 9 1  
1 0 2 0 6 3  

Fig. 1 The  cost  for  the ML estimator  as a function of 
the  angles 91 and 8 2 .  

Fig. 2 The cost,  for the noise estimator  as  a  function of 
the  angles 91 and 8 2 .  

In the new algorit,hm,  optimization is done wit,h respect, t,o 
one  element of the  parameter  vector, keeping the  rest of the 
elements  constant.  Therefore,  ML  estimation is decomposed  int,o 
several  one-variable  nonlinear  optimization  problems. 

To give more  insight  into  the  algorit,hm, we present  a  simple 
example.  Suppose we are  dealing wit,h a model of order  3. We 
use the value of e!:), t,o determine 

Let us assume e!:), = [a,-l b,-l c,-1IT. To  obtain e,‘”, a 
minimization  problem is solved 3 times  to get, a,, b, and  c,. At 
each  step we use the  latest  computed values of the  elements of the 
parameter  vector. In other  words,  optimization is accomplished 
in the following manner, 

ai = arg min C ( a ,  b+1, ~ ~ - 1 )  

b, = argmin C ( a ,  , b , q-1 )  

c, = argmin C(o, , b, , c )  

a €  D. 

b € D s  

CEDC 

where C is the  cost  function defined earlier. D, = 
[-$, b , - l ] ,  Db = [a ,  , .,-I] and D, = [b,  , $1 are  the  inter- 
vals of search. It. is seen  that  for  a  model of order k, the cost 
function is optimized k times  to  get @ .  

Once  the  optimum  value of  is determined,  the  PSC  can 
be  computed.  The  comput,er  simulations, which are given in the 
following section,  show  that  the  method  works in  both  correlated 
and  uncorrelated  cases. 

Table 1 Percent  failure  to  detect  for  MDL  and  PSC 
6. Simulation  Results 

A configuration  with  6  omnidirectional  sensors is investi- 
gated.  The  spacing  between  two  consecutive  sensors is taken 
t o  be  equal  to  half  the wave length.  In  the  first  experiment  there 
are  three  uncorrelated  sources.  These  sources  are in the  far field 
and at  the  angles 0, 10 and 20 degrees.  The  signals  have  unit 
power  and the  SNR is defined as lolog(&).  We perform 100 
Monte-Carlo  runs  and  count  the  numher of times  that  MDL  and 
PSC, fail to  detect  the  true  order of the  system.  The  data window 
is  10 samples. We have  chosen a small  width  for  the  data win- 
dow to  emphasize  the differences  between the  two  methods.  The 
performancesof  both  methods for large da ta  windows are  almost 
equal. The  results  for  uncorrelated  and  correlated  sources  are 
given in Table  1.  For  correlated  case, a scenario of two  sources in 
the  angles 10 and 20 degrees is considered.  The  phase  difference 
hetween  the  signals  at  the  reference  point of the  array is equal  to 
-30 degrees. The superiority of the  PSC is clear  from  the  data 
for  the  uncorrelated  case.  However, in correlated  situation  the 
differences are  less  dramatic. 

7. Summary 
In  this  paper we int,roduced  a new method  for  the  detection 

of the  number of signals,  using  a  linear  array.  Our  approach is 
based  on  Rissanen’s  Predictive  Stochastic  Complexity. To apply 
PSC  for  array  processing, we utilized the  concept of subspace 
decomposition. We also used a hill climbing  method  for  the 
estimat,ion of t,he direction of arrivals.  This  method  reduces  the 
computational  complexity involved in the use of PSC.  Simulation 
results  show that  the  PSC  performs  better  than  the MDL in both 
correlated  and  uncorrelated  cases. 
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