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Abstract 
Wide-band array processing using Coherent Signal-subspace 
Method (CSM) is discussed. It is shown that an optimal focusing 
subspace exists that improves the performance of the estimation. 
An error based on the subspace fitting is introduced. This er- 
ror criterion gives the closest focused signal subspaces. Direct 
maximization of the criterion is very involved and the computa- 
tional complexity increases with the number of frequency samples. 
A sub-optimal method is introduced that operates very close to 
the optimal case. This method is based on deriving tight bounds 
on the error. The computational complexity of the  sub-optimal 
method is independent of the number of frequency samples. The 
sub-optimal method approaches the optimal case as the number 
of frequency samples increases. It is shown that the bias of the 
estimation is reduced by proper selecti~n of the focusing subspace. 

1. Introduction 
Recently, array processing techniques have heen widely used 

to locate wideband signals. A wideband signal h s  a bandwidth 
comparable to the center frequency. Different methods for the 
processing of the wideband signds using an array of sensors haw 
been proposed in the literature. The first step in  some of these 
techniques is to sample the signal in frequency domain. This 
sampling can be done through discreate Fourier transformation 
of the temporal samples of the signal or by using filter tanks. 
The method which has been used to create the shmples is not the 
concern of this paper. Here it is assumed only that J frequency 
samples of the signal are given. These samples can be uniformly 
or nonuniformly distributed in the frequency domain. 

hlost of the techniques in array processing use the concept of 
signal subspaces. The signal sub~poce is a space which is spanned 
by the location vectors of the array. Each location vector is a 
function of the observation frequency. Thus the signal subspace 
depends on the frequency of the observation. In wideband array 
processing the signal subspaces at different frequencies are differ- 
ent and do not overlap. This fact prevents the observation vecton 
in the frequency bins from being added to each other. Wang and 
Kaveh [l] proposed a method to transform the signal subspaces 
at different frequency bins into a predefined subspace and process 
them in this subspace. This is called focusing. They choose an ar- 
bitrary frequency, say jo the mid-band frequency, and transform 
all the subspaces of frequency bins into the subspace created by 
jo and then utilize the high resolution MUSIC algorithm to es- 
timate the directions of arrival of the sources.   he^ show that 
focusing reduces the threshold Signal-to-Noise Ratio (SNR). They 
also show that with very weak constraints on the signal covariance 
matrix, it is possible to handle coherent cases. Later, Hung and 
Kaveh, [2], proved that the best performance is obtained if and 
only if the mapping of the subspaces is done through a unitary 
transformation. They did not discuss how to choose the best fo- 
cusing frequency, jo. In [3] Hung and Iiaveh extend the coherent 
subspace method to the ESPRIT algorithm of Rov e t  a1 [4]. They 
show that CSM can be framed based on theESPRlT method. The 
selection of the focusing frequency is still arbitrary in their paper. 
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Recently, we introduced a method to select a sub-optimum 
focusing frequency [S]. The present paper is in the continuation 
of the previous work. Here we give more results for the focusing 
sutspace selection method. Also we frame the proposed method 
for the ESPRIT algorithm. Simulation results show an improve- 
ment in the performance of the CShl algorithm by reducing the 
peak bias and the threshold SM3. 

2. Problem formulation and CSM 
algorithm 

Consider an array of p sensors exposed to q < p far-field 
wideband sources that can be partially or fully correlated. The 
output of the sensors in the frequency domain is shown by 

where X ( ~ ) , B ( ~ , )  and n ( w )  are the Fourier transforms of the ob- 
servation. signal and noise vectors. respectively. The p x q ma- 
trix of location vectors is given by the full rank matrix A(w,B) = 
[a!,.. B l  ) . . .a(-, B,) ] .  It is assumed that the signal and noise sam- 
ples are independent identically distributed sequence of complex 
Gaussian random vectors with unknown covariance matrices S ( J )  
and 021. respecrively. LVith these assumptions the covariance ma- 
trix of the observation vector at the frequency wJ is given by 

where the superscript H represents the Hermitian transpose. In 
the sequel, we suppress the frequency variable and represent R(wJ)  
by RJ , x(wJ) by xl and so on. The CSM algorithm is based on 
forming new observation vectors, y, ,  as 

where Tjls are the unitary transformation matrices found from 

where 1(.1( is the Frobenius matrix norm. Then these transformed 
observation vecton are used to construct the sample correlation 
matrix for each frequency bin. An average of these aligned cor- 
relation matrices gives a universal sample correlation matrix that 
can be used for detection and estimation. 

In (4 )  the focusing frequency, j o ,  is chosen arbitrarily. This 
value can be anything in the set of positive real numbers. In past 
practice the center frequency has been used. It is worth noting 
that (4 )  is an almost periodic continuous function of jo. The 
period depends on the angles of arrival. Once the angles of anival 
are given the period can be computed. This period which is an 
interval of the set of real numbers forms a compact set. If the 
focusing frequency is restricted to take its values in one period, 
according to the Weierstrass' theorem there will be an optimum 
value for jo that minimizes ( 4 ) .  In the following section, we use 
this concept to find a sub-optimum focusing frequency. 
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3. Focusing frequency selection using the known structure of the location matrices, the optimal 
In the present section we define a criterion based on the error value of the focusing frequency, jo, is found. Let us define, 

involved in the transformation of the signal subsr,nces. The opti- J 
A 

mization of this criterion gives the focusing frequclicy. Specifically. P I =  1 u : ~ o , ( A ~  ). (12) 
we seek an jo which minimizes ] = I  

J Then, the optimization problem is represented by 

* = I  
subject to TJ being a unitary matrix. By 11.11 we mean Frotenius 
norm. In (5). wl is a weighting factor which is proporrional to the The optimum value of jo can be found in two steps. First, we find 
signal-tenoise ratio a t  the j-th frequency bin. the singular values of the matrix A. by 

For a fixed Ao, it is already known. [?.6], that the optimal TJ P 

is given by max 1 ~ , o , ( A o )  
"JAo)  

(1 4 )  

T, = v,w;. ( 6 )  Q 

where VJ and Wl are the left and right singular vectors of AOA;. s.t. O?(AO) = pq. 

i.e. I= 1 

A ~ A ;  = V, E, w,H. 
In this case, it can be shown that the subspace fitting error is given 
by 

where a,(B!.  I = I , .  . . , q are the singular values of the matrix D 
arranged in nonincreasing order. In ( 7 )  we have used the equality 

In this equation the notation Re represents the real part of a 
complex number. It is worth mentioning that (S! also holds for 
sources in near field and any arbitrary array manifold. ' 

From (7)  it is seen that the optimization problem ( 5 )  is iden- 
tical to 

Direct minimization of (9) is very involved and the computational 
complexity increases with the number of frequency samples. In 
the sequel, we present a suboptimum method. This suboptimal 
technique is based on mwimizing an upper kound of (9). We 
show that in the vicinity of the optimum point the bound is tight. 
The tightness of the bound a t  the optimum point justifies the 
applicability of our method. We start  by presenting a lemma that 
has been adopted from [6]. 

Lemma 1. Zj A, B E M,,, are given matrices with respective 
ordered singular values o l ( A )  2 ... 2 u,(A) 2 0 and o l ( B )  2 
. . . 1 o,(B) 2 0, with q = min{m, n), then 

9 

llA - Bl12 1 C [ a i ( A )  - a,(B)I2. (10) 
1=1  

Application of Lemma 1 on (7) gives 

J 0 J P 

11 W~UAAOA,H) I C C w ~ ~ , ( A ~ ) u ~ ( A ~ ) .  (11) 
]=I ,=I J = I  ,=I 

Our proposed method is based on maximizing the right hand side 
of (11). The optimization is done in two st.eps. First. the optimal 
singular values for the location matrix A. are determineil. Then, 

where we have used the equation (8). The classic Lagrange mul- 
tiplier optimization method gives 

with the maximum value J p ~ ~ ~ = l  PC 
The objective is to  find the optimal focusing frequency, jo. 

The singular values of the optimal location matrix. A;, are given 
by (is).  We represent these optimal singular values by o:.i = 
I . .  . . . q. It is important to notice that the only unknown i n  the 
location matrix is the frequency of the processing. The structureof 
the location matrix is known. In practice no matrix with the given 
structure exists which has the singular values a:. i = 1,. . . , q. In 
such a case, we find a matrix that has the singular values close 
to a:. i = 1 : .  . . . q. This can be done by minimizing the following 
one-variible nonlinear equation, 

subject to the matrix A0 being a location matrix with the known 
structure. It is important to note that (16) is a convex function of 
the singular values o, (Ao) .  The optimum point a' = (a; . . . a,)  
is on the sphere with radius fi. The singular values of A. 
are continous functions of the frequency, jo. A procedure to 
solve (16) is to increase the focusing frequency by fine steps and 
compute the singular values. The complexity of this minimization 
is independent of the number of frequency samples. If more than 
one solution for (16) is found, the optimum value is selected by 
evaluating the criterion (5) for the candidate points. 

4. Bias of the estimation 
Despite the fact that the CSM algorithm is very effective 

in wideband array processing, it suffers from asymptotic peak 
bias. The bias increases with the bandwidth of the murces and 
the deviation of the focusing points from the true DOA. Two 
alternative methods are introduced in the literature to  reduce the 
bias of the estimation 17, 81. In this section we show that there . . 
is an optimal point for the focusing frequency that minimizes the 
bias of the estimation. 

It is important to notice that MUSIC estimator is asymtoti- 
cally unbiased. Thus the peak bias which is created in the CSM 
algorithm is a consequence of the focusing. A proper selection of 
the focusing frequency minimizes the bias of the estimation. We 
show that the proposed method for the focusing frequency selec- 
tion also minimizes the peak bias. We start by discussing the 
mechanism that generates the bias. 

The array manifold is a curve in the pdimensional complex 
space that is created from the location vectors a ( i .  8), for all 8 and 



all w i n  the source bandwidth. For every pure delay environment 
the norm of the location vector is equal to the square root of the 
number of the sensors. Thus the array manifold lies on the surface 
of a sphere with the radius fi. We represent this sphere by S. 
It is also important to note that the array n~anifold is continous 
on w and 8. The hfUSIC algorithm finds the intersection of the 
signal subspace (the space spanned by the eigenvectors of the 
correlation matrix corresponding to q largest eigenvalues) wi th  the 
array manifold. If the true correlation matrix is applied in  hlL'SIC. 
the directions of arrival are estimated without bias. However, 
deviation from the true signal subspace will cause bias in  the 
estimation. 

Now consider the case in which several location matrices. A,. 
are transformed by the unitary matrices, T,, to the vicinity of the 
focusing location matrix, Ao. The transformed location matrices 
form a cluster around Ao. It is quite clear that the closer the trans- 
formed matrices are, the better the performance is. In an ideal case 
all the transformed location matrices superimpose on Ao. Lye call 
this case complete jocusing. In complete focusing the column vec- 
t o n  of the location matrix A, are transformed to t he correspond- 
ing column vectors of Ao.  his is also see11 from the characteristic 
of the Frobenius norm - the square of the Fro1,enius norm of a 
matrix is equal to addition of the square of the Euclidean norm of 
the column vectors. Hung and Kaveh [?] show that for successful 
application of the unitary transformation method i t  is necessary 
to add two extra directions of arrival at f 0.?5B11. (BeamiVidth) 
of the estimated DO.\. For instance if the i-th DOX is found at 8, 
by the pre-process, the,focusing points fcr the i-th angle are cho- 
sen at (8, - 0.25811. . 8, . 8, + O.?jBl%.). These angles determine 
an interval on the array manifold. If this interval is small, i t  is 
transformed to a correspollding interval at the krray ~uanifold wi th  
the processing frequency 1.0. This is attributed to the continuity 
of the array manifold and the unitary transfarmation. Thus i n  
complete focusing the location vectors of each frequency Lin that 
are located at the true DO.\ are transformel tc, the correspond- 
ing vectors at the focusing manifold; hence unbiased estimation. 
In practice complete focusing is not satisfied. The transformed 
matrices are clustered around Ao. The closest distance between 
these matrices is obtained if  and only if A. is on the centroid of 
the transformed matrices. To see this take any p x q matrix C 
that has column vectors on the sphere S. To have a tight cluster, 
we should minimize 

min min 1 wJIIC - T J ~ , I 1 2 .  
CES =, ,=, 

subject to TJ being unitary. The minimum of (17) is obtained for 

where K is a diagonal normalization matrix. It is seen that C 
is formed by the centroid of the transformed location vectors for 
each source. The method that we proposed gives the closest A. 
to the matrix C. This suggests that the bias is also minimized at 
the selected focusing frequency. 

5. Tightness of the upper bound 
Earlier we stated that the upper bound of (9) is tight in the 

vicinity of the optimum point. In this section we discuss this issue. 
It is already shown that 

where IJ,. I = I . .  . . , q ,  are given by ( I? ) .  We make some observa- 
tions on (19). 

The right-hand-side of (19) is independent of the focusing 
frequency. 
If A0 = T J A J , j  = 1 . .  . ., J, then the bound is achieved. This 
case corresponds to complete focusing. I t  is seen that such Ao 
is an optimum focusing matrix. I n  other words, i n  a complete 
focusing the left-hand-side of (19) attains its mawimum value. 
However, in practice complete focusing is not fulfilled. The 
criterion that we defined in (5) gives the closest case to the 
complete focusing. Thus the optimum value that is obtained 
from (5) is very close to the bound. 
The closeness of the left-hand-side of (19) to the bound is a 
function of the number of frequency samples. Fig. 1 represents 
the left-hand-side of (19) normalized with respect to the norm 
of the vector p = ( f i t , .  . . , p j ) ,  as a function of the number of 
frequency samples for a configuration of two sources arriving 
at eight sensors. As it is seen, increasing the number of 
frequency samples gives a tighter bound. 
Based on these observations, we claim that the proposed 

method operates very close to the optimal case. This performance 
is. however, achieved w i t h  a considerable reduction i n  the compu- 
tational complexity. 

Fig. 1 The left-hand-side of (19) normalized with 
respect to the norm of the vector 
p = (p1, ..., p j ) ,  as a function of the number of 
frequency samples. 

6. Focusing and the ESPRIT Algorithm 
Suppose that q far-field wideband sources are received by 

2 p  > q wide-band matched sensor doublets. The sensors of the 
doublets are pairwise identical and the arrays are displaced with a 
known directional vector d. The statistics of the signals and noises 
are as before. 

The outputs of the subarrays are shown by p-vectors x ( t )  and 
y(t) with the i-th components 

where s, is the I-th source signal, 01 is the angle of arrival for the 
I-th source, r,(BI) is the propagation delay for the I-th source at 
sensor i of the fint subarray with respect to the reference point 
and ~ ~ ( 6 ' 1 )  = $sin 01 is the delay in the propagation between the 
two subarrays, where c is the propagation velocity and d is the 
distance between two subarrays. For linear array with uniform 
spacing. r,(81) = (i  - I)$ sin 01, where A is the spacing between 
two consecutive sensors and the reference point is at the first sensor 
of the first subarray. The noise components of the subarrays are 
represented by n,,(t) and n , , ( t ) .  



In the frequency domiin (?Oj and ( ? l )  can Le shown a s  Thus, it  is seen t h & l  in (31) the only argument of the mini- . - 
mization is the focusing frequency, fo. In this case the sutspacc 

(22 ) fitling error is given by 
(23) 

where A(w.6) = [a(w.Bii ... d i , B q ) ]  is the p * q matrix of the ~ 5 [ 1 1 * o  - TJ*jl12+ li*a*o - Q1AJ*j11'] 
steering vectors and assumed to be of full rank for every set of 

is the rotation matrix of the phase delays between the two snt-  I I A O @ O I I ~  + I I A ~ ~ ~ I I '  - 2Re ~ ~ ( A O ~ O @ : A ~ Q ~ ) ]  
arrays. From (22) and (23), the spatial auto-covariance matrix of 1 4 
the first subarray and the spatial cross-covariance matrix of  he = 4 J p q  - 2 x  x u!, [a,(AoAY) + a I ( A o 4 o + ~ A Y ) ] .  (34) 
two subarrays are represenled as J = I  

R,,(w) = A ( Y ,  B ) S ( ~ ) A ' ( ~ , @ )  + 0'1, (25) Using Lemma 1 ,  it is possible to show that 

R.,(w) = A ( Z . ~ ) S ( ; ) ~ ~ ( J . B ) A ~ ( ~ . . ~ ) .  (?G) J o J q 1 C w , u , ( A ~ + ~ ~ P A ~ )  C x U ~ Q , ( A O ) ~ , ( A ~ ) .  (35) 
where superscript H is the Hermitian transpose. J = I  I ) = I  , 

Hung and Kaveh [31 framed the CSh* lechnique  ior the  ES- Therefore the method that was  proposed before can be used for 
PRIT algorithm. The method is based on finding the transforma- ESPRIT algorithm as well. 
tion matrices, TJ and Q,. by 

minllAo-TJAJII j = 1 ,  . . . .  J (27) 
=, 

s.t. T;T, = I. 

and 

min jlA040 - Q,A,@,II j = I , .  . ., J (28i 
9, 

s.t. Q;Q, = I. 

where for the simplicity of notation we represent A!;,,@) and 
@(G,.@) by AJ and 0,. Then new observation vectors are fornied 
by OO 0:s i 5 i i 5  3 

W, = TJxJ. j = 1,. . ., J. (?9j f/fm 

zJ = QJyJ, j = 1.. . ., J. (30) Fig. 2 The subspace fitting error. 
These transformed observation vectors are used to construct the 
sample auto-correlation hnd cross-correlation matrices for fre- 
quency bin j .  An average of these aligned correlation matrices 
gives universal sample correlation ma~rices that can be used for 
detection and localization of the sources. 

In (27) and (28). the focusing frequency, jo, is chosen art~i- 
trarily. We introduce a criterion to obtah the optimum value 
of the focusing frequency. We show that the optimized focusing 
frequency that is found for the ESPRIT algorithm is the same 
as the one for the MUSIC method. This suggests that the op- 
timum focusing can be done regardless of the procedure used to 
estimate the directions of arrival. We define a criterion based on 
the error involved in the transformation of the signal subspaces. 
The optimization of this criterion yields the focusing frequency. Ub 
Specifically, we seek an Jo which minimizes 

J Fig. 3 The difference between the centroid matrix C 
min min min x w2 [IIAO - TlAJI12 + JJAO*O - Q , A ~ * ~ I I ~ ]  (31) and the focusing location matrix. 

l o  Ti Q, J=l 

s.t. T,HT,=I, ] = I ,  ..., .I 7. Simulation Results 
Using a very simple scenario, we show that the mid-band fre- QPQ] = I .  quency is not necessarily the best choice for focusing. In our ex- 

For a fixed Ao, it is already known, [2,6], that the optimal TI and ample, we investigate a configuration of six sensors exposed to  
QJ are given by two sources impinging from 10 and 15 degrees (correspondingly. 

0.1745 and 0.2618 radians). The signals of these sources are un- 
TI = V , U ~ ,  (32) correlated and compose of four frequencies, 0.5,1.35,1.45 and 1.5. 

Qj = E ~ Y ,  (33) These frequencies can also Lie considered as nonuniform samples of 
a wide-band signal. The signal-to-noise ratio at  each sub-band is 

where Vj and UJ are the left and right singular v e c k ~ s  of ?O dB. It is assumed that 20 batches of data are constructed. The 
A ~ A ~  and EJ and FJ are the left and right singular vectors of error of the focusing is shown in Fig. 2. The optimum focusing 

A~*~"A:. frequency is 1.2 which has been found by the proposed method. 



Fig. 3 represents the difference between the centroid matrix C and 
the focusing location matrix, Ao, as a functio~~ of 111r focusing fre- 
quency. The closest A. to the centroid is obtaine~l for optimized 
frequency. For the focusing frequencies 1 and I .? we applied the 
MUSIC algorithm to estimate the angles of arrivi~l. The results 
are shown in  Fig. 4 and Fig. 5. As it is seen. w11e11 the mid-band 
frequency is chosen for focusing. the source t i t  10 degrees can not 
be estimated. 

8. Summary 
In this paper we have proposed a method to determine the fo- 

cusing frequency for the Coherent Signal-subspace h,lethod. The 
transformation of the subspaces into the focusing s~~bspace is done 
by a unitary transformation. We defined a criterion based on the 
subspace fitting error and optimized a tight bound of it. The 
optimization is done in  two steps. First. the singular values of 
the optimum location matrix are obtained. Then a one-variable 
nonlinear minimization problem is solved to get the focusing fre- 
quency. The simulation results show that the method successfully 
finds the global optimum value and improves the performance of 
the estimation. 
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