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Abstract: A new method for broadband array processing is pro-
posed. The method I. based on unitary transformation of the sig-
nal subpaces. We apply a two-sided transformation on the cross
correlation matrices of the array. It is shown that the Two-sided
Correlation Transformation (TCT) generates unbiased estimates
of the directions of arrival regardless of the bandwidth of the
signals. The capability of the method for resolving two closely
spaced sources is compared with that of the Coherent Signal-
subspace Method (CSM). The resolution threshold for the new
technique is smaller than the threshold for CSM.

1. Introduction
In this paper we address the processing of wideb and signals.

Wideband processing arises in many applications such as audio
conferencing, spread spectrum transmission and passive sonar.
A wideband signal has a large bandwidth relative to its center
frequency. A common approach to wideband signal processing is
to sample the spectrum of the signal at each sensor to form an
array of narrowband signals. In the so-called incoherent signal-
subspace processing method, the narrowband signals at each
frequency are processed as a vector to get the estimates of the
DOA's. Then the estimates at the frequency bins are combined to
obtain the final result [1]. Correlated sources cannot be handled
by this approach. Furthermore, the efficiency of such methods
degrades for dosely spaced sources and low signal-to-noise ratios
(SNR).

The Coherent Signal-subspace Method (CSM) [2] is an alter-
native algorithm that improves the efficiency of the estimation
by condensing the energy of narrowband signals in a pre-defined
subspa.ce. This process is called focusing. It has been shown,
[2], that CSM also resolves correlated sources. A high resolution
method such as MUSIC is then used to find the DOA's. Despite
the fact that CSM is very effective in wideband signal detection
and estimation, it suffers from the asymptotic bias of the peaks
in the spatial spectrum. The bias increases with the bandwidth
of the sources and the deviation of the focusing points from the
true directions of arrival.

In this paper we introduce a new technique for broadband
array processing. Our method is similar to CSM in the sense
that a transformation of the signal subspaces is done through
focusing matrices and then a high resolution spectral estimation
algorithm, such as MUSIC, is applied to determine DOA. In the
new method we use unitary matrices for transformation. In [1 it
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was shown that unitary transformations have good performance
in terms of focusing loss and relative information index. In the
new method, we also use unitary matrices for transformation.
However, our method uses a two-sided transformation of the
correlation matrix. The motivation for using the correlation
matrices instead of the location vectors is based on the fact that
most of the high resolution spectral estimation algorithms use
an eigenstructure decomposition of the correlation matrix. We
show that the new method has a lower resolution threshold SNR
and a smaller peak bias, In the past, alternative methods have
been introduced that reduce the peak bias L, 5]. However, these
methods are accompanied by a large increase on computational
cost.

2. Problem Formulation
Consider an array of p sensors exposed to g < p far-field

wideband sources. The signals of the sources can be partially or
fully correlated. The output of the sensors is shown by p-vector
x(t) with the i-th component

q

r(t) = s1(t — i(9l))+ n(t),
I=1

(I)

where sj is the l-th source signal, i is the angle of arrival for the
l-th source and ;(6) is the propagation delay for the 1-tb source
at the sensor i with respect to the reference point of the array.
For a linear array with uniform spacing, ;(6) = (i — I)sin9g,
where d is the spacing between two consecutive sensors, c Is the
propagation velocity and the reference point is at the first sensor.
It is also assumed that the observation is corrupted by an additive
noise which is represented in the model by n(,f).

In the frequency domain, after arrangement in vector form,
(1) is represented by

x(w) = A(w, 9)(w) + n(w), (2)

where x(i), C(t) and n(w) are the Fourier transforms of the ob-
servation, signal and noise vectors, respectively. The p x g matrix
of steering vectors is given by A(w, 6) = (a(w, Oi) . . .a(w, &q)]. It
is assumed that A(ti, 9) is of full rank. In other words the steering
vectors a(w, 6) are independent for every ti'.

For the signal and noise we consider the following statistical
structure. The signal samples are generated independently by a
complex Gaussian distribution with an unknown covailance ma-
trix S(w). The noise samples are an i.i.d. sequence of Gaussian
random vectors with unknown covariance matrix sI and are in-
dependent of the signal samples. From (2) and the assumptions
on the signal and noise samples, the covariance matrix of the
observation vector at the frequency w is represented by

R(w) = A(w, 9)S()AH (ti, 9) + u21, (3)
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i=—-- f

J
RCSM = E T,,R5Tf.

i—i

J
RCSM = E r,P,rf

J
= :xor,x'j1

The solution of (10) 1. obtained as

u=xox5' (11)
where Xo and X1 are the matrices containing the eigenvectors of
P0 and P5, respectively.

In computing U, the matrices A,, and S, are assumed to
be known. In practice a low resolution beamfornier is applied to
estimate the number and the directions of arrival of the sources.
Closely separated and correlated sources may not be resolved ii
this step. Using the results of this pre-processing, an estimate of
the location matrices is obtained. To find the source correlation
matrix, first the noise power at the j-th frequency bin i. estimated
using

(12)

where is the number of sources in the pre-estimation. The
source correlation matrix at the frequency bin j is found from

= (AfA1)"Af(., — jIJA1(AfAY'. (13)
Using the estimate, of A5 and S1, the correlation matrices
P5 , j= 1,.. .,J, are formed.
3.2 Bins of the estimation

It has been shown that the CSM algorithm generates an
estimate of the directions of arrival that i. asymptotically biased

(6) (3). The bias increases with the bandwidth of the processing and
the deviation of the estimated angles from the true DOA. To see
this recall

where the superscript H represents the Hermitian transpose. An
estimate of the covariance matrix It(w) t a given frequency, say

is done by time averaging,

*
.jyE((),

where x(i1) is the Fourier transform of the observation vector
at the frequency j and N 1. the number of observations.

The Fourier transforms operate on the observed data. In
practice, a sufficiently long duration of sensor outputs is observed.
Then the sampled data are divided into N batches. Each batch
contains J samples. In each batch, an FFT algorithm is used
to transform the data onto the frequency domain. Thus, N
sets of transformed data are available where each set contains
J frequency samples of the spectrum of the observation vector.
We represent these samples by x3,j = 1,...,J. In the sequel we
suppress the frequency variable. Then B.• represents R('), 8,
represent. S(w,), A,, represents A(w,, 9' and so on.

In CSM, the observation vectors at different frequency bins
are transformed into a given subspace (focusing). In particular,
a new observation vector is formed from by

Y, =T,x1, j = 1,...,
where T3 satisfies

T5A5=A0, 5=1,...,J,
where A0 is the focusing location matrix.

In a modified version of CSM (3), the transformation matrices
are the solutions of the minimization problem

inflAo—T1AjI j=1,...,J (7)

s.t. T7T,=I,
where (. is the Frobenius matrix norm. Minimization of (7)
gives

T,, = VJWf, (8)
where V, and W, are the left and right singular vectors of
A0Aj'. The transformed observation vectors are used to con-
struct the sample correlation matrices. An average of these
aligned correlation matrices gives a universal sample correlation
matrix which can be used for detection and estimation.

3. Two-sided Correlation Transformation method
In this section we introduce a new method for the processing

of wideband signals using an array of sensors, The method is
based on transformation of the signal-subspaces into a subepace
called the focusing subspacs. Like the CSM algorithm, the trans.
formation of the subspaces is done using focusing matrices, The
focusing matrice, are unitary and are chosen to minimize the dis-
tance between the focusing subepace and the signai-subspaces at
the frequency bins. However, unlike CSM, in the new method,
the transformation of the subapaces is done through two-sided
transfcrmation, applied to the correlation matrices.
3.1 The TCT criterion

Our method is based on transformation of the source-only
correlation matrix of the array defined by

= A,SAf, j = 0,1,...,J, (9)
where Po corresponds to the focusing frequency and the rest of

are constructed from the data at the frequency bins. In
particular we minimize

nifl lIP0 — UP'tJ'iI (10)

s.t. UfIJ,=I, ,=l ,...,J.

(14)

To study the mechanism that generates the asymptotic bias, a
noiseless environment is considered, In such a case the correlation
matrix is

J
= E V,WJA,SJAJW,Vf (15)

f—I

where we have used equation (8). As can be seen, the focused
correlation matrix is a function of the pre-e.timate of the DOA's
&nd the bandwidth of sources. In general has nonzero
eigenvalues in the noise subapace. In other words the received
power is distributed in a p-dimensional space. In TCT, the
transformed subspaces for different frequencies are aligned and
hence the eigenvalues at the noise subspace are zero. Hecall

J
B.TCI = E uP,u

i—i
.1

= E X0X5'P5X,x (16)
i—i

where we have used (11). Suppose the diagonal matrix of the
elgenvalues of P1,j = 1,...,J, are shown by .l",,j =
respectively. Then for any pre-estimate of the DOA's the inner
product in (16) can be simplified to give

J
=Xo(E1',)Xë

j=1

= x0r0x
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Since the dimension of r is equal to q, the focussed correlation
matrix R'7CT will have etgenvalues in a q-dimensional subspace.

Computer simulation indicates that the CSM algorithm ex-
tends the signal power into the noise subapace. As an example,
we considered a configuration with 16 sensors exposed to 4 sig-
nals in a noiseless environment. We applied both the CSM and
TOT algorithms to obtain the focusing matrices. The eigenval-
us. of the corresponding lnb.tricee are tabulated in Table I. It is
seen that 'nsa nonzero eigenvalues in the noise subspace.
This nonuniform extension of the signal into the noise subspace
acts as a non-white noise which creates biased estimates. It Is
important to note that the trace of RC9M ii equal to the trace
of R.'1CT. In other words, the sum of the eigenvalues in Table 1
is identical for each matrix. This suggests that in TCT the en-
erg)' of the signals i. not lost. The TOT method condenses the
total received power in a q-dimensiona.l subspace to improve the
performance.

To further discuss the asymptotic bias we consider the spe-
cial case of perfect focusing. In perfect focusing the transformed
correlation matrices, U1A,, are superimposed on A. In such a
case the focusing correlation matrix is an average of the correla-
tion matrices at the frequency bins. In other words the following
equality is satisfied,

A0S04 = yEUAJSJAfUf. (18)

In practice perfect focusing is not possible, The transformed
matrices are clustered around A0. However, as far as the equality
(18) is satisfied for the true DOA, unbiased estimation is possible.
It is important to notice that (18) is a general condition for
unbiased estimation regardless of the transformation matrices.
This is also in agreement with the work of Swingler and Krolik,
(6]. Consider a single source scenario. Swingler and Krolik used
the diagonal unitary transformation matrices,

= diag(1,e1("O"ifro,.. (19)
where io is the pre-estimated propagation delay. Using this
matrix, the equation (18) can be shown as

soaoaV=yE8jbjbf, (20)

where the transformed column vector b is given by

(1 5—I4Q?u+Iwj(To_1'i)

(21)
where i is the true DOA and the superscript T stands for
transpoee. The direction of arrival is estimated by equating

J
o =

J
= 4—00

j=1
where f1 is the estimate of "i. Applying the technique of Swingler
and Krolik to our case, the equation (22) can be simplified to get

.7

0 e_l0#1 = E s,ll + jj(ro — rl)]

= so [1 + j(ro — ri)-- E ''i]
O,,,

= so [1 + j(i —
= o ej"" 4j(roj'

elgenvilues CSM R,.0-.
A1 900.2749 918.7666

A 808.7057 808.0986

A3 241.6814 244.1410

A4 155.3949 140.9939

A5 4.3967 0.0000

A, 1.3504 0.0000

A? 0.4041 0.0000
A 0,3457 0.0000

A5 0.3113 0.0000

0.2721 0.0000

A11 0.2201 0.0000

A12 0.1929 0.0000

A13 0.1539 0.0000

A14 0.1243 0.0000

A15 0.0949 0.0000

A,, 0.0767 0.0000

Table 1 The elgenvalues of the correlation matrices
R<SM ad B.'r for a configuration of 4
sources arriving at 16 sensors in a noiseless
environment.

where is the centroid frequency. Equating the exponents gives

= wolo — (ro —

which is the same result as Swingler and Krolik, (6].
The criterion (18) is a general condition for unbiased estima-

tion. We have shown in [7] that the TCT algorithm forms a very
good approximation of (18). Thus the bias 1. minimIzed in the
TOT method.
4. Simulation results and performance

comparison
In this section we investigate a configuration with two

equipower uncorrelated sources impinging from the angles 11 and
13 degrees off broadside. The signal-to-noise ratio 1. 10 dO. A
linear array of 8 sensors is used. The spacing between adjacent
sensors is equal to half the wavelength at the center frequency.
Sources are sampled with 33 frequency bins in the frequency do-
main. We imported the actual correlation matrix to the CSM and
TOT algorithms and used the high resolution MUSIC algorithm
for DOA estimation. A preliminary beamformer output gives a
peak at 12 degrees. Two extra estimated angles are added at 9
and 15 degrees (same method as (3]). The results of the estima-
tion for 40 and 100 percent bandwidth and for different focusing
frequencies are given in Table 2. The bias columns in this table
are the Eudlidean norm of the bias vectors. The TOT algorithm

(22)
does not have bias regardless of the bandwidth.

For this example, we examine the resolution capability of
the two algorithms. We increase the number of sensors to 16
and consider a 40 percent relative bandwidth. It is assumed
that only 20 batches of data are available. Again at each batch
a 64-point DTF is applied to obtain 33 frequency samples in
the frequency domain. The resolution criterion is defined as the
difference between the average of the spatial spectrum at the
peak points in the MUSIC algorithm and the spatial spectrum
at the valley. It is measured in a dB scale for different SNR's.
The results are given in Fig. 1. As it is seen the performance of
TOT is about 6 dB better than CSM. The spatial spectrum of
the two methods are overlapped in Fig. 2 for further comparison.

1992/TI?
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SW = 0.4

Jo 11

CSM
13 bias 11

TCT
13 bias

0.8 11,89 12,13 1.24 • 11.00 13.00 0.00

0.9 11.25 12.75 0.35 11.00 13.00 0.00
1.0 11.01 12.99 0.01 11.00 13.00 0.00

ii 10.88 13.12 0.17 11.00 13.00 0.00

1.2 10.78 13.22 0.31 11.00 13.00 0.00

BW = 1.0

Jo 11

CSM

13 bias 11

TCT
13 bias

0.8 - 12.01 - 11.01 12.99 0.01

0.9 11.42 12.58 0.59 11.00 13.00 0.00

1.0 11.12 12.88 0.17 11.00 13.00 0.00
1.1 10.95 13.05 0.07 11.00 13.00 0.00
1.2 10.84 13.16 0.23 11.00 13.00 0.00

Pig. 1 The resolution comparison between the two
Table 2 The estimation results for the fit example. algorithms, TCT and CSM.

5. Conclusion
In this paper, we have introduced a new method for broad-

band array processing. Our method ii based on two-sided uni-
tary transformation of the correlation matrices. The algorithm
is called the Two-sided Correlation Transformation (TCT). The
motivation for this work was to reduce the error of the subspace
fitting and to remove the bias of estimation that occurs with the
Coherent Signal-subepace Method (CSM). The bias of estimation
in CSM depends on the focusing points and the bandwidth of pro-
cessing. We have also shown that uiing the TCT algorithm, an
unbiased estimation of the directions of arrival is possible. The
estimation is unbiased regardless of the processing bandwidth.
Comparison of the resolution threshold for the two methods show
that the TCT algorithm operates with smaller threshold signal
o noise ratio.
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Fig. 2 The MUSIC spatial spectrum for the two
methods, TCT and CSM.
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