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ABSTRACT 

This work considers a generalized differential 
coherent detection technique combined with equaliza- 
tion for data transmission over intersymbol interfer- 
ence (ISI) channels when carrier phase tracking is dif- 
ficult. In the absence of ISI, the SNR performance of 
this generalized differential coherent structure is very 
close to the coherent detection bound. This paper 
presents the integration of this generalized differential 
detection method with channel equalization, and 
therefore it extends the applications of this detection 
technique to channels with ISI. It is shown that for 
high SNR. the performance degradation of this struc- 
ture with respect to wherent detection and equaliza- 
tion is negligible. Analysis and computer simulations 
show that this combined detection/equalization tech- 
nique is an effective solution to the IS1 problem when 
camer phase tracking is difficult. One possible appli- 
cation of this work is in indoor wireless communjca- 
tions. 

1. INTRODUCTION 

Due to the increased interest in communication 
over channels where carrier-phase-tracking is difficult 
(such as fading multipath channels, TDMA systems, 
Frequency Hopping), new differentially coherent 
demodulation techniques have been introduced in the 
last few years [I]-[4]. A feature of these detection 
methods is their low SNR degradation with respect to 
corresponding coherent detectors. However, many of 
the systems that these differentially wherent tech- 
niques aim at, are also impaired by intersymbol 
interference (ISI). Therefore, the extent to which 
these new differentially wherent detection techniques 
can be applied in practice depends on the possibility 
of combining them with equalization. 

We consider the generalized differential detec- 
tion method introduced in [I]. This structure can bc 
naturally combined with known equalization tech- 
niques, while the other proposed differentially 
coherent detectors. [2]-[4] seem to require special 
equalization methods. In this work we consider linear 
equalization to demonstrate the technique of integra- 
tion with differential detection. This concept is exten- 

sible to decision-feedback equalization as well. The 
present work considers bandwidth efficient two 
dimensional modulation, where the data is encoded 
into the phase and amplitude of the carrier. In order 
to avoid camer phase tracking, we use differential 
phase encoding and therefore differential coherent 
detection techniques can be employed. 

The paper is organized along the following 
lines. Section 2 introduces the system model. It 
presents the generalized differential coherent detection 
technique and its integration with equalization. Sec- 
tion 3 analyzes the minimum mean square error 
which can be obtained with this structure. Section 4 
considers adaptive equalization with generalized dif- 
ferential detection. and presents simulation results fix 
some multipath channels. Finally, section 5 presents 
the summary and conclusions of this work. 

2. INTEGRATION OF EQUALIZATION 
WITH GENERALIZED DIFFERENTIAL 

COHERENT DETECTION 

Two dimensional modulation where the data is 
encoded into the phase and amplitude of the carrier 
has been extensively employed for bandwidth effi- 
cient digital transmission [ 5 ] .  A close relative to this 
modulation format is amplitude and differential phase 
modulation. Differential phase modulation structures 
the carrier such that phase differences and not abso- 
lute carrier phases convey information. Therefore with 
differential phase modulation, absolute carrier phase 
tracking is not necessary since the receiver can 
employ differentially coherent detection. 

A differentially coherent detector estimates the 
transmitted data by making use of phase differences 
between successive symbols. The SNR degradation 
of differential detecuon with respect to corresponding 
coherent detection depends on the specific signaling 
format. For Binary Phase Shift Keying (BPSK) thns 
degradation is less than one dB; however for larger 
signal constellations. this degradation approaches 3 
dB. Many techniques have been proposed for decreas- 
ing this SNR degradation without the need of carrier 
phase tracking (see [lj-[4] and the corresponding 
references). We focus here on a part~cular technique 
introduced in [I], and this work considers I &  applica- 
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tion for IS1 channels. receiver filter output can be expressed as : 
An ideal coherent system uses a noise free 

phase reference and this is the reason for the 
improved SNR performance. With differential phase 
coding, the reference phase required for data detection 
is carried by the previous symbol. This reference is 
impaired by the channel noise in the same m m e r  as 
the information conveying symbol. The receiver intro- 
duced in [I] creates a phase reference by employing 
L past symbols. Therefore it smoothes the effects of 
the channel noise, and by doing so it increases the 
SNR of the phase reference. It has been shown in [l] 
that without ISI. as L+= the performance of the 
generalized differential detector tends to the coherent 
detection bound. On the other hand when L=l the 
structure degenerates to usual differential coherent 
detection. 

The baseband model (complex envelope (CE)) 
for the system considered in this work is illustrated in 
Fig.1. The transmitter is modeled by a differential 
phase encoder followed by a shaping filter gT( t ) .  The 
CE of -the transmitted signal is given by 

f ( t )  = b [ k ] e ~ ~ [ ' ] & ( t - k T ) ,  where b [ k ~ e ~ @ [ ~ ]  
k- 

are the amplitude and differentially phase-encoded 
symbols transmitted at a rate of YT [ symboldsec] .  
The transmitted amplitude and differen&ally encoded 
phase in each symbol interval are related to the two 
dimensional constellation points in an obvious way. 
The transmined amplitude b [ k ]  is identical to the 
amplitude of the constellation point while the 
transmitted phase $ [ k ]  is a differentially encoded 
version of the constellation point phase ~ [ k ] ;  thus 
@[k]+[k-1] + ~ [ k ] .  In this work we consider the 
two dimensional constellations illustrated in Fig.2 : 
QPSK, 8PSK, 16QAM. 8V29 and 1671'29. The 8V29 
constellation consists of 8 inner points of the standard 
16V29 constellation. Average power of each constel- 
lation has been normalized to unity. 

We assume a linear, additive Gaussian channel. 
With multipath, th% CE of the channel impulse 

response is &(t)  = ~ p [ i ] e i e [ i 1 6 ( t - ~ [ i ] ) .  where N, 
i=l 

is the number of specular paths and p [ i ] , B [ i ] , ~ [ i ]  are 
the gain, phase and delay in the i-th path. The CE 
of the channel noise, n'(t), is a white zero mean com- 
plex Gaussian process with power spectral density of 
No wattsfHz1 in each of the real and imaginary 
components which are independent. Therefore, the CE 
of the received signal can be expressed as 
J ( t )  = f(t)*&(t)+n'(t), where * denotes the convo- 
lution operator. 

The front end filter of the receiver has an 
impulse response gR( t ) .  The receiver and transmitter 
filters, &(t) and gR(t) ,  are designed such that the 
overall response gT(t)*gR (t  ) satisfies Nyquist's first 
criterion. In this work we assume zero excess 
bandwidth and identical filters at receiver and 
transmitter. Therefore the frequency responses of 
these , filters are 

T , l f1<1/(2T) 
. The CE of 

where g ( t )  = gT(t)*gc(t)*gR ( t )  is the overall con- 
tinuous time response of the_ transmitter channel and 

receiver, and tiR (1) = J A(t-'5)gR ( 7 ) d ~ .  The 
4 

receiver filter output is sampled at the symbol rate, 
and these samples y ( n T )  = y [ n ]  are processed by 
the equalizer and used in the detection process. 

The sampled signal at the input of the equal- 
izer is 

y [ n ]  = ;I] b [n-k]  + nR [ n ]  (2) 
k- 

where g [ n - k ]  = g ( [ n - k ] T )  and n R [ n ]  = fiR(nT). 
In this work we consider a complex linear equalizer. 
The analysis can be generalized to a decision- 
feedback equalizer as well. The linear equalizer con- 
sists of 2N+1 complex taps; the coefficients at the 
n -th symbol interval are 
c k [ n ]  , k,= - N ,  . . . ,0, . . . f l ,  and the output is 

~ [ n ]  = c k [ n ] ) ' [ f l - k ] .  
k-N 

Following the technique of [I], the differential 
coherent detector utilizes 
z [ n - l ] , z [ n - 2 1 , .  . . , z [n-L]  to create a phase 
reference. First, all these samples must be rotated so 
they will be aligned with z [ n - l ]  and then the phase 
reference is obtained by summing the aligned sarn- 
ples. This phase references,B[n] is given by : 

It is seen that the information bearing phases 
~ [ n - 1 1 ,  . . . , ~ [ n - L ]  are used in (3). A training 
sequence is used for initial acquisition. In normal 
operation the receiver must use the previous decisions 
q[n-11,  . . . .*[n-L] ( decision-directed mode). 
The reference sample v [ n ]  is a result of a coherent 
summagon which tends to increase the SNR; thus, its 
phase P[n]  is a better estimate of the exact phase 
reference $ [ n - l ]  than just the phase of the prev'ous 
sample z [n-11. The decision variable is z ( n ] e - ~ ~ [ " l .  
me decision is in the favor of the constellation point 
beJq which minimizes the magnitude of the error 

In an adaptive mode of operation, this error is also 
used to adapt the equalizer coefficients. The analysis 
of this structure is presented in the next section. 
Simulation results for adaptive operation are presented 
in section 4. 

3. MINIMUM MEAN-SQUARE ERROR 
ANALYSIS 

The mean-square error (MSE) is given by 
E {I E[n]I 2}, where ~ [ n  ] is the error defined in (4). 



It is assumed that the data symbols b[n]e~V'["] are 
statistically independent and normalized such that 
E {b2[n]}=1.  

The coefficients of the equalizer which minirn- 
izes the MSE are given by 

where A is the input autocorrelation matrix defmed 
by 

A  = E(41*[nlyT[nll 
B is the crosscorrelation vector defined by 

$ = E { b  [ n ] e ~ ~ [ " l ~ *  [n]ejB["l} (5 

and y[nl  = [ y [ n - N ] ,  . . . , y [ n ] ,  . . . , y [n+N] l T .  
The minimum MSE (MMSE) associated with this 
optimal equalizer is given by : 

tmin = I - & ~ A - ' @  (6) 

From (5) we see that the crosscorrelation pec- 
tor B depends on the reference phase estimate P[n] 
w h i z  is related to the exact phase reference $(n-1) 
via 

where q [ n ]  is the estimation error. From (3) we see 
that the estimate fS[n] is formed from L samples of 
the equalizer output z [n-11, . . . ,z En-L 1 ,  and each 
such sample z [n - i ]  is a linear combination of the 
components of ~ [ n - i ] .  Employing the well known 
independence assumption used in the theory of adap- 
tive equalization, [6], we have that 
{ y [ n - i ]  , i=O,l, . . . } can be considered statisti- 
cally independent random vectors. This gives that 
{ z  [n - i ]  , i=1,2, . . . } can be considered ipdepen- 
dent of y [ n ]  and therefore the estimate P[n] is 
independent of [ n ] .  This is equivalent to the estima- 
tion error '1 [n f being independent of l [ n ] .  Under 
these circumstances we have : 

where B_ is the crosscorrelation vector with perfect 
reference phase estimate, i.e. 

= E [  b [n ]e i$  "Iy* [n ]  ] . The term E[ejn["l] is 
the characteristic function of the estimation error 
q [ n ] .  Therefore ~ [ e ~ ' l [ " ] ]  < 1 which with ( 6 )  shows 
that the reference phase estimation error increases the 
MMSE. For an unbiased reference phase estimator 
with a small error we can use the approximation 
E [ ~ J " ~ ] ]  - 1-(V2)E[ q 2 [ n ]  1 ,  and in [7] it has 
been shown that the variance of the reference phase 
error can be approximated by : 

From (9) we see that the number of symbols 
used in the generalized differential coherent receiver 
affects the reference phase error variance via the term 

J 
For MPSK b [n-i]=l and thus H = V L  showing 
that the variance of the reference error is inverse pro- 
portional to L ,  and thus it can be reduced by increas- 
ing L .  This holds also for amplitude and phase signal 
constellations since b [ n - i ] S ,  and thus also in this 
case H decreases with L .  Therefore if the reference 
symbol ~ [ n ]  is smoothed over a sufficiently large 
number of symbols, the reference phase perturbation 
becomes insignificant, and the overall performance 
tends to the coherent detection bound for an equalized 
signal. It has been found that increasing L from 1 to 
2 results in a significant reduction in MMSE; how- 
ever for L>5, the reduction in MMSE is small since 
the performance is already close to the coherent 
detection bound for an equalized signal. It appears 
that L=3 offers a good trade-off between reduction of 
the MMSE and memory in the generalized differential 
coherent receiver. Furthermore, the gain in going 
from L=l to L=2 for arnplitude/phase constellations 
is larger than for comparable MPSK constellations. 
Next we investigate this structure with an adaptive 
mode of operation. 

4. ADAPTIVE EQUALIZATION COMBINED 
WITH GENERALIZED DIFFERENTIAL 

COHERENT DETECTION 

In this section we consider the combined gen- 
eralized differential detector and equalizer of Fig.1, 
when the coefficients of the equalizer are adapted to 
minimize the MSE. The adaptation algorithm con- 
sidered in this paper is the LMS [a]. If necessary, 
algorithms with faster convergence, such as those 
based on Kalman filtering [9], can be used. With the 
LMS algorithm, the equalizer coefficient vector i : [n]  
is updated according LO 

c [ n + l ]  = c [ n ]  + k [ n l y *  [n]e iPrnl  

where ~ [ n ]  = b [ n ] e ~ @ [ ~ l  - z [np '~Y["~  is the error 
at the n-th iteration and b [ n ] e j  ["I IS a differential 
phase encoded symbol of the training data. 

The operation of the system over two multipath 
channels with additive Gaussian noise was simulated 
on a computer. The two multipath channels that were 
considered are characterized by the following CE 
impulse responses : 

Channel A :  & ( r )  = 6( t )  - 0.56(t-0.5T) 

Channel X :  & ( t )  = 6( t )  - 0.36(t-0.5T) + 

where T is the symbol time. An equalizer length (N) 
of 9 was used. The number of symbols used in the 
differential coherent receiver for forming the refer- 
ence phase (L) was fixed to 3. Each simulation used 
a randomly chosen training sequence (known to the 



receiver) of length 3220 symbols. All the equalizer 
coefficients were initialized to zero for each trial. The 
simulations were performed at an SNR of 25 dB. It 
was found that sixty trials are needed to obtain rea- 
sonable smooth average learning curves. Fig .3 
presents the results of sixty trials performed for 
I6QAM over the channel X. An LMS step size of 
0.005 was used. It is seen that the average learning 
curve is reasonable smooth. Similar results were 
obtained also for other constellations over the two 
channels A and X. 

Simulations were performed for the four con- 
stellations SPSK, 8V29, 16V29 and 16QAM. For the 
sake of brevity we present in this paper only the 
results for 16QAM and 16V29. Two step sizes were 
used , h =0.05 , 0.005. Figures 4 and 5 present the 
average learning curve for 16QAM and 16V29 
respectively. Notice that these two figures use a loga- 
rithmic scale for the MSE. From Fig.4 and Fig3 it is 
seen that the larger step size resulted in a much faster 
convergence, typically within 200 iterations for the 
two channels and the two signal constellations. How- 
ever the residual MSE is larger. A step size of 0.005 
resulted in a slower convergence, typically within 
1500 iterations for the two constellations over channel 
A and 900 iterations over channel X. However this 
smaller step size yields a reduced residual MSE. 
Table 1 compares the MMSE with the residual MSE 
for the four constellations over the two channels with 
the two step sizes. It is seen that the smaller step size 
allows the residual MSE to be close to the MMSE. 
Furthermore, the residual MSE for the different con- 
stellations over the two channels is very close to each 
other, however the MMSE for channel X is lower 
than that of channel A. 

5. SUMMARY AND CONCLUSIONS 

A combined equalization and generalized dif- 
ferentially coherent detection technique was 
presented. This structure is particularly suited for 
dispersive channels when traditional carrier phase 
tracking cannot be employed. In this work we aimed 
at bandwidth efficient indoor communications sys- 
tems. Such systems are impaired by multipath and 
fading. A receiver which can cope with these impair- 
ments and can afford not to use carrier phase tracking 
without reducing the SNR efficiency, seems to be of 
special interest. 

This work shows that the combination of stan- 
dard equalization with the generalized differential 
detection technique of [l] results in a structure which 
can cope with intersymbol interference without the 
need of carrier phase tracking. The LMS algorithm 
was employed to demonstrate the feasibility c~f using 
this technique in an adaptive mode. If necessary, fas- 
ter convergence algorithms, such as those bmed on 
Kalrnan filtering. could be employed. 
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Fig.2 Two dimensional signal constellations considered in this work. 
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