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A general estimation model is defined in which two observations are available; one is a noisy version of the transmitted signal, while the other is a noisy
filtered and delayed version of the same wransmitted signal. The time-varying delay and the filter are unknown quantities that must be estimated. A joint
estimator is proposed. It is composed of an adaptive delay etement in conjunction with a transversal adaptive filter. The same error signal is used to adjust
the delay element and the filter such that the minimum mean squared error is attained. Two joint gradient-based adaptation algorithms are studied. The joint
steepest-descent (SD) algorithm is first investigated. The possibility of a multitude of stable solutions is established and a condition of convergence is
presented. A stochastic implementation of the joint SD algorithin, under the form of a joint least-mean-square (LMS) algorithm, is then presented. It is
analysed in terms of convergence in the mean and in the mean square of both the delay estimate and the adaptive filter weight vector estimate. The
conditions of convergence of the joint LMS algorithm are established as a function of the power spectral densities of the observed signals and the minimum
mean squared crror. The joint LMS algorithm is simulated under vatious conditions and it is shown that the adaptive delay element is very effective in
reducing the mean squared error at the output of o long adaptive filter caping with two asynchronous inputs.

Un modele mathématique constitué de deux observations est tout d’abord défini. L’une des observations est une version corrompue du signal transmis,
alors que I"autre est une version corrompue, filtrée et décalée de ce méme signal. Une estimation conjointe du délai et du filtre est proposée. L’estimateur
conjoint est formé d'un délai adaptatif ct d'un filire adaptatif 3 réponse impulsionnelle finie. Le méme signal d’erreur est utilisé pour corriger le délai et le
filtre de telle sorte que le minimum de erreur quadratique moyenne soit atteint. Deux algorithmes d’adaptation basés sur la méthode de gradient sont
proposés. L'algorithme conjoint & descente maximale est étudié en premier lieu. La possibilité de solutions multiples est établie et une condition de
convergence est présentée. Une forme utilisant P'algorithime des moindres carrés moyens est ensuite considérée. Cette forme est analysée en termes de
convergence de I"espérance et cn termes de convergence de la valeur quadratique moyenne, tant pour 1'estimé de délai que pour 1'estimé du filtre adaptatif,
Ces condilions de convergence sont établies en fonction de la densité de puissance spectrale des signaux observés et du minimum de I"erreur quadratique
moyenne. L’algorithme des moindres carrés moyens est simulé sous diverses conditions. L'efficacité d'un délai adaptatif est démontrée, pour réduire

I'erreur quadratique moyenne i la sortic d’un filtre adaptatif affichant une longue réponse impulsionnelle.

I. Introduction

The problem of estimating the time delay between two continuous
versions}of the same signal, each one corrupted by uncorrelated noise
components, has been the subject of many research efforts in recent
years. The maximum likelihood estimator for the unknown delay has
been derived for a static [1]-[2] and a time-varying detay [3]. Closed-
loop adaptive techniques using the minimum mean-squared-error
(MMSE) or the least squares (LS) criteria have also been proposed. In
these cases, the estimator structure is such that one signal is processed
by an adaptive system for which the output is compared to the other
signal, with the error being used to adapt a conventional adaptive trans-
versal filter or an adaptive delay element.

In this paper, we consider a signal model that generalizes some-
what the conventional model by allowing frequency-dependent attenu-
ation in the delayed path. We also specifically consider discrete-time
signals and systems. This work finds some applications in system
modelling problems, where the unknown system often has an impulse
response that can be modelled as a pure time delay in series with a
linear filter. This can occur in noise or echo cancellation, digital com-
munication or geophysical exploration.

We study a joint adaptive estimator which is composed of an adap-
tive delay element working in conjunction with an adaptive filter. The
adaptive delay element attempts to model the reference delay and can
take any real value. The addition of this adaptive delay to the usual
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adaptive filtering operations can improve the conventional adaptive
parameter estimation techniques that would otherwise be of limited
usefulness, especially in the case where the main adaptive filter input
and its reference signal decorrelate with time. A simple adaptive filter
has the potential to model both the reference delay and the reference
filter, since the overall function can be approximated by an FIR filter
with the proper number of taps. This approach is inefficient in the
sense that the reference delay is modelled by a shift in the adaptive
filter impulse response. For a fixed filter order, this shift may result in
an error that is larger than the error corresponding to perfect model-
ling. An additional adaptive delay estimation algorithm. specifically
designed to track the reference delay variations. allows a better im-
pulse response centring and the use of an adaptive filter with a smaller
order. :

In this paper, we present the results of an analysis for the joint
adaptive delay and filter structure based on the MMSE performance
index. A joint steepest-descent (SD) algorithm and a joint least-mean-
square (LMS) algorithm are investigated. The principal contributions
of this paper are the generalization of existing gradient-based time-
delay estimation without reference filtering. as proposed in [4]. and
the analysis of a new joint algorithm for the synchronization of the
input and the reference signals used by an adaptive filter. Our joint
algorithms are not based on the assumption that the input signal and
the reference signal fed to an adaptive filter arc sampled in the same
clock period. They also allow the tracking of time-varying delays in
the reference path by a process separated from the adaptive fiilter,
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which is itself free to perform the task of modelling the linear refer-
ence filter or its inverse.

The paper is organized as follows. In the next section, the mini-
mum mean-squared-error function is considered in general terms, as a
joint function of the two estimates. The form of this function allows
one to draw some conclusions about the general convergence behav-
iour of the joint algorithms. The presence of a multitude of minima in
the objective function is discussed. Then the joint steepest-descent
algorithm is studied in section I11I, where the conditions tor conver-
gence to a local minimum of the mean-squared-crror function are
given. The joint least-mean-square algorithm is investigated in section
1V. Analytical results for the convergence in the mean and in the mean
square, for both the adaptive delay estimator and the adaptive filter
weight vector, are presented. Finally some experimental results are
given, in order to complete the presentation.

Il. General minimum mean-squared-error function

We consider a situation that generalizes the conventional model
used in delay estimation by allowing frequency-dependent attenuation
in the delayed path. We also specifically consider discrete-time signals
and systems. The corresponding model, where (1) and z2(n) are the
two observed signals, is of the form

zi(n) = s(n) + v (n), (1.1

:,z(n)=Iz(n)@s(nT—Dn)+\72(;1), (1.2)
where n is the discrete-time index, s{n) is the transmitted signal, D, is
a time delay (possibly time-varying), and i{(n) is the impulse response
of a lineur filter which is applied on a delayed-by-D,, version of the
signal s(n). The discrete-time noise processes, vi(n) and v,(n), are zero-
mean and stationary and are assumed to be uncorrelated with each
other as well as with s(x7). The operator ® is the convolution operator.
Note that the time-varying reference delay, D, is not lunited to an
integer number of sampling periods and can take any real value. All
the discrete-time signals are assumed to be sampled versions, with
sampling period T, of continuous-time signals that are strictly band-
limited to the frequency range -1/2T < f < 1/2T. A block diagram
carresponding to the mathematical model of (1.1)-(1.2) is illustrated in
Fig. 1. Note that the case in which the delay, D,, follows the linear

filter is also of interest, but is not considered in this paper. See [5] for
more details.

In the joint estimation problem considered in this paper, it is
required that both the time-varying delay, D,, and the reference filter,
h(n), or its inverse, h™'(n), be estimated’. The adaptive filter used to

estimate A(n) or A-X(n) is a transversal filter, with a weight vector w), of
length M.

vi{n)
ﬁé\j z(n)
s(n)
D Linear N
i r— Filter h(n) & “2(n)
2(n)

In joint MMSE delay estimation and adaptive filtering, the mean-
squared-error surface is searched by both the adaptive filter estimation
algorithm and the delay estimation algorithm. A system identification
configuration takes the form given in Fig. 2.

In general, the output of the adaptive branch can be defined as
y(n,d,), where the dependence on the adaptive delay is explicitly
shown. The reference signal, r(n), is defined to be one of the two
aobserved signals zy(n) or za(n). Then the error signal, e(n,d,), is de-
fined as

e(n, d, ) = r(n) - y(n,d,, ), (2)

and the MSE function, at time n, is

g, = E[Ie(n, a4, ] 3)

The joint estimation can be thought of as taking place in a vector
space made of a weight vector subspace and a delay subspace. The
two subspaces are not orthogonal, which implies that the two estima-
tion processes are not independent (because the adaptive filter can
model a reference delay). In order to obtain an expression fi (3; the MSE
function, define as u(n) the input to the adaptive branch. The signal
u(n) is therefore the generic representation of the observation that must
be adaptively processed. It can be zi(n), as in Fig. 2, or z3(n) if onc
wants to estimate the inverse of the reference branch (inverse filter-
ing). The output of the adaptive branch, y(n,d,.), is assumed to be given
by

y("'dn):w:l u,, )

where the superscript H denotes complex conjugate transpose. The
vector u, is the vector of delayed input samples, stored at iteration n,
in the adaptive filter delay line: i.e., .

u, = [u(nT —d u(nT=T=d, ). u(nT = MT +T=d,_p,, )]T. (5)

The input-signal autocorrelation matrix and the cross-correlation vec-
tor between this input and the reference signal are then expressed as

R, = E[unu,’:’] (6)
and
P, = E[ i",r ’“(n)] (7)

The MSE function is represented by either one of the following equiva-
lent equations,

() l l

s(n) éil(”) = u(n) i

y(n,d.)

Adaptive
Filter

w(n)

e(n.d,)

Reference
Filter  h(n)

z9(n) = r(n)

n, —ﬂ

ta(n)

Figure : Mathematical signal model.

sequence [6].

Figure 2: Systems identification configuration with the delays before the filters.

Note that the inverse of any linear filtering operation h(n) is denoted as h~'(n). Therefore A(n) ® h~'(n) = 8(n), where 3(n) is the vnit-sample
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¢rr (n' ”) + wle,Rnwu - ZRC[ wfpu ]

&, =
O, (mn)+ 6, (nn)- 2Ru[ 0, (. n)]

(8)

where Reje] is the real value operator, d,, (o m) and dy (e m) are the
autocorrelation functions of the reference signal rin) and the adaptive
branch output respectively, and by, (n, ) is the cross-correlation func-
tion between this output and the delayed reference signal.

“The MSE espressions reflect the nature ot the joint estimator op-
cration. In the weight vector subspace. associated with the first equa-
tion of (8), the MSE function is a quadratic surfuce 7). The
one-dimensional delay subspace is naturally linked o the correlation
fuctions of the second equation of (8). The MSE function is not, in
general, unimodal with respect to d,,. In order 10 see this, note that &,
depends on correlation functions that vary according to the adaptive
filter and the reference filter, as well as to the autocorrelation function
of the signals u(n) and H(n). All of these functions are multimodal with
respect to their time argument. a characteristic which in wirn causes
the MSE function to behave similarly with respect 1o d, and produces
a nltitude of local extrema.

This behaviour causes a problem in the search for the minimum of
£, with respect to d,,. In closed-loop estimation. this phenomenon leads
to false lock problems, as in phase-locked foops. These problems are
generally solved by designing an acquisition procedure in which the
delay estimate is varied until the algorithin falls in its tracking region,
near the MSE global minimum. Once in tracking mode, the estimation
algorithm can compute the derivative of the MSE function with re-
spect to the delay value and generate a correcting signal that brings the
loop into lock. For the joint delay and adaptive filtering algorithm, it is
possible to use an acquisition procedure based on the least squares
critcrion and known as the optimum lag algorithm |8). In this algo-
rithm, the least sum of squared errors is computed for a representative
sct of delay values, and the delay and filter impulsc response corre-
sponding to the global minimum are selected. This algorithm is
computationally involved, but it is well suited for an acquisition phase.

In the following, when we study the joint algorithm in tracking or
steady-state conditions, we assume that such an acquisition procedure
has caused the joint algorithm to lock near the minimum of the MSE
function.

II1. The joint steepest-descent algorithm

The joint delay estimation and adaptive filtering steepest-descent
algorithm is composed of the usual SD adaptive filter algorithim. of the
form [9}

W =W, - “Vw” E)u | (9)

and of the SD adaptive delay algorithm |4

9,

dn+l = dn -,

ad,

(10

where pand a are small positive constants and V,, £, represents the
gradient of &, with respect o w,,.

The delay-estimation part of the joint algorithm can be studied by

using & truncated Taylor expansion of the MSE function around a
certain delay value d,, = 9,. where the MSE function is minimum.
Keeping only the first three terms of the series, we get

&{‘l’l v wll } = i" {1\}H M ”‘H }

. ). (i
+d, -9, )&,, {19,,.w,, } +172(d, ~9,)°E, {1‘),,,w,, }

N

where the dot denotes a derivative with respect to the delay value d,,.
This approximation is used in order to linearize the delay estimation
algorithm. The linearized SD algorithm is obtained by combining (10)

and (1D, and assuming that B, is a minimunm of C;,,('Q,, {l‘)".w” } = l)).

It is given by

dn+l = (I '—aéu {ﬂn'wu })dn + ai}nén {ﬁn'wn }' (12)

which models the behaviour of a first-order delay-lock loop [10].

A. Convergence of the joint SD algorithm

A necessary condition for a specific d, and w, to be a stationary
solution of the joint SD algorithms is that both of the following equa-
tions be satisfied [11]:

Vw" E:n =0

g,
aod

=0

Hn

Note that the first equation of (13) is in fact a necessary and sufficient
condition for convergence. This is so because &, is quadratic with
respect to w,, implying that there is a unique minimum in w, for a
given value d,. When the first equation of (13) is satistied. this unique
solution is attained. and any further modifications of d, will increase
&, This is the case because the adaptive filter models both the relative
delay and the reference filter in the minimum MSE scuse. Then. this
solution corresponds also to a minimum with respect to d,. The suffi-
ciency of the condition is due to the uniqueness of the minimum with
respect to w,.

If the adaptation factors w and « are chosen sufficiently small. the
process always reaches a limit point [12]. The next proposition gives a
condition on p and « that ensures convergence of the joint algorithms
under specific conditions. This condition is derived in [11] for joint
carrier phase acquisition and adaptive equalization as encountered in
digital communications. It is reformulated here for the problem at hand.
This condition is general in that it establishes the stability range for the
two adaptation factors such that the MSE is reduced at each iteration.
when the two adaptive processes are alternated. It is also important
because it conlirms that, with the right parameters, the joint SD algo-
rithin converges eventually to a stationary point (i.e.. (13) is satisfied).

Proposition 1. Ler the set of positive integers be divided arbitrarily
into two disjoint subsets ¥ and Ky, each containing an infinite number
of positive integers. Let o, = 0O when ne ;. and i, = 0 when nex,.
Let Npax() be the maximum eigenvaliee of the signal autororrelation
matrix R, and let Y, be the delay value closest to d,, for which E(d,w,)
is minimum. The MSE will converge to a stationary point if

O<y, <

(14)
)\'lllll_l‘ (”)

Jor nex,, and

)

)
Eio,.w,
9} S{ }

H

O<a, <2

for nex,.

The tormal proof of this proposition is given in [5]. It is easily seen
that when a, = 0. the usual SD adaptive filtering conditions apply and
(14) is the conventional condition for convergence. When p, = 0. the
MSE function evaluated at d,, = 3, 1s constant and condition (13)
guarantees the convergence of the linearized SD algorithm given

in(12).
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This proposition states that d, and w, may be adjusted in any alter-
nating fashion, and the MSE will converge to a stationary point if L,
satisfies (14) during the adjustment of w,,, and o, satisfies (15) during
the adjustment of «,. The above condition is important because it con-
firms that. with the right parameters used in alternation. the MSE is
reduced at each iteration and the joint SD algorithm converges eventu-
ally to a stationary point.

B. Steady-state delay estimation properties of the algorithm

In this subsection, we briefly study the system and signal compo-
nents that directly intluence the stability and the delay tracking behav-
iour of the joint SD algorithm. In order to proceed, we assume that the
reference filter ifn) is time-invartant, that the signal-to-noise ratios
(SNRs) are high and that the adaptive filter has fully adapted to i(n)
and is at least as long as this impulse response. These assumptions
imply that in sieady state. the i adaptive filter cocfficient, wy,;, at
iteration n. is approximately

h(i) System identitfication (cancellation)
W= (16)
h'(i)  Inverse filtering (equalization),

where #11i) is the i weight of the reference path filter. In the
analysis. we use the linearized delay adaptation algorithm of ({2)
with &{d,.w,} = &, and 9, = D, for the cancellation configuration, and
3, = =D, for the equalization structure. Furthermore, in steady state,
we assume that d,, = £D,, in which case the error is minimum and the

corresponding MSE equals the MMSE. Then é_;,, ‘d,, =*D, = é,,,,,, and
is constant with time. From (12), the stability range tor « is
0<0<2/E,,. (17)

The time constant of delay adaptation can be defined by fitting the
geometric ratio 1 ~ag,,, to an exponential with time constant Tg:
=1/,
! _agmin =e M) l/Il’(‘I
The time constant of delay adaptation is therefore

1
Tget =~

0‘& min

(18)

We assume a configuration in which the reference delay, D,. varies
slowly enough so that all the samples in the reference filier detay line
are approximately affected by the same delay. Then it can be shown

{5] that v, the delav-dependent \erm of the MSE function. takes the
form

= 2Re| T (0, (—IT+ D, —d,) |, (19)
!

\‘.'I-ZJ

= -2Ref0,,(P, 4 d,,)], (20

where the superseripts (C) and (£) stand respectively for cancellation
and cqualization. and p,(k) is the deterministic autocorrelation of the
reference filter impulse response and is defined as

pu (k) =Y h{k+iYh *(i). (2n

Note that d, is negative in the equalization case. Comparing (19) and
(20). we note that the cancellation configuration is influenced by the
form of both the deterministic auwtocorrelation p,(11) and the input signal

autocorrelation ¢, (7). while the cqualization configuration is a func-
tion of only ¢.(1). Since ¢,(7) exhibits a maximum at 7 = 0, v, has
a global minimum at o, = --D,,. In the cancellation scenario, the charac-
teristics of the delay tracking loop are functions of the reference filter,
h(n), but because py(11) has a maximum at » =0, there is a single global
minimum corresponding o d, = D,

Based on (19), (20) and (17), the following sufficient range of
convergence can be computed for the delay gain factor:

-1
0<a<——————=  Cancellation
(Dnm.\' Re [p I (0)]

and

3T?

O<ac<- Equalization,

Hlll.\'n‘
where d,,, is the maximum value of the input signal power spectral
density, P, (e/), and the prime denotes the derivative with respect to
the continuous-time correlation argument. It is easy to show ghat p,(0)
is proportional to the square of the reference filter bandwidth, as well
as to py(0). This implies that the convergence properties of the delay
SD algorithm are related to the power distribution, across the total
bandwidth, of the input signal and the reference filter in the cancella-
tion case, and of the signal only in the equalization case. This is a
behaviour essentially similar to the adaptive-filter convergence, which
is related to the distribution of the eigenvalues of the input-signal
autocorrclation matrix 7).

IV. The joint least-mean-square algorithm

In order to implement the joint steepest-descent algorithm presented in
the previous section, the MSE gradient with respect to the adaptive
weight vector and the MSE derivative with respect to the adaptive
delay both must be estimated. This can be accomplished in various
ways; in particular, by approximating the derivatives with difference
equations [[3], or by approximating the MSE function, §, =
El le(n, d,) \*], with the instantaneous squared error, v, = | e(n, d,,) I%.
and by applying the SD algorithm. This last option corresponds to the
least-mean-square algorithm [14] and is the subject of this section.

Consider a cancellation configuration where it is assumed that the

delay, d,. propagates instantaneously into the adaptive filter delay line.
The adaptive branch output can be expressed as

y(nd,)=wlu(nT-d,) (22)

and u(nT - d,) is the delayed vector of input samples defined as

u(nT— d, ) = [u(n’/‘ -d, ) ulnT-T-d, ) u(nT— MT+T-d, )]l 23

In the adaptive weight vector subspace, the LMS algorithim that we
consider is then given by [7]

W, =w, +21e ='=(n, d, )u(n'l'—(/"). ' (24)

The crror e(n.d,) is represented by (2). In the adaptive delay subspace.
the derivative estinute is given by

al('(n.d,,) ) _2Re| e (nd )a_y(n,(l,, .
ad, Y

6«l”E.m = 25

n

The LMS adaptive delay algorithm is obtained by using the derivative
estimate of (25) in the SD aduptive delay algorithm, defined in (10).
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The joint LMS algorithm is defined by
W =w, + 24t *(nd, e(nT-d,) (26)
and
dyg=d, +2(1RL“[(’ *(H. d, )M’:}l{lff— (I,,)]. QN

In order to ease the derivations, all signals and systems are considered
real in the analyses. Al this point, we are interested in the convergence
of the joint LMS algorithm ((26) and (27)) from an arbitrary initial
condition.

With the help of the ordinary differential equations (ODE) method
5], it is shown in [5] that the joint LMS algorithm, when the gain
factors are of the form p = a = 1/n, converges to a local minimum of
the MSE function, like the exact version of the joint SD algorithm.
This result, even if it does not apply directly to algorithm (26)-(27), is
important by itself since it shows that if the adaptation factors are
chosen sufficiently small, the estimates produced by the algorithm will
be, on average, close to a stable stationary point of the MSE function.
Furthermore, the above result shows that it the gain factors are small
but constant, convergence cannot be attained in the sense that there
exists an integer N such that 8(n + 1) = 8(»1) for N < n, but the difference
between the parameter estimate and a stable stationary point will be
small as n becomes large and can be made smaller by decreasing the
gain factors.

A. The joint LMS algorithm in steady state

The quality of the joint LMS algorithm can be studied by consider-
ing the quality of the two estimates that it generates. Since the delay
and weight vector estimates are random variables, the joint algorithm
can be analysed in terms of convergence in the mean and in the mean
square of either estimate. Because of the coupling between the two
adaptive processes, the gradient error will atfect the delay tracking and
the derivative uncertainty will itself influence the adaptive filter. Thesc
mutual effects can be included in the delay variance and weight-noise
vector correlation matrix, in steady-state conditions. The bounds for w
and «a are determined for both types of convergence. The results for
the delay estimator are given first. Then the weight vector estimator is
considered and finally the two scts of results are combined, to obtain
some misadjustment expressions for the joint LMS algorithm,

In the course of the analyses, in addition to the general real signals
and systems assumption alrcady mentioned, the following assump-

tions are used:

1) The inbut and noise signals are zero-mean Gaussian random proc-

esses. The noise signals are also assumed to be white noise proc-

CSSES.

2

The adaptive system is in steady state and the reference system is
stationary; i.c., the reference delay is constant at D, = D and the
reference filter is also fixed in time.

"}
=

Independence theory holds: i.c.. the zero-mean input data vectors
are uncorrelated with each other and with (k). Then

Eluul]=0 for k=01..n-1, (28.1)

Elu,(k)]=0  for k=0.l..n-1 (28.2)

The terminology independence theory is common in the analysis of
adaptive algorithms (see [7], for example)'.

ciuASEE LN DELAY LS TINIATTION 3

4) In steady state, the adaptive weight vector, w,. can be expressed as

L =wupl +nn' (29)
where W 18 the optimum Wiener sotution given by
L ! 2
Wope =R Py {30

and m, is the weight-noise vector.

(¥
~

In the analysis of the delay estimator, the vector n, is o zero-mean
stationary Gaussian vector, uncorrelated with the data vectors
(because of (28.1)-(28.2)) and such that

Elnn,|=0 for ixj. 3D
The noise vector correlation matrix, defined as
K, =E[n,n}] (32)

is therefore diagonal with the values E[n(n)] on the main diago-
nal. In the analysis of the weight vector estimate, the delay estimate
is assumed stationary.

6) The system is in cancellation configuration (see Fig. 2). The results
can be extended in a straightforward manner to the equalization
case.

When the signal-to-noise ratios are assumed high. the adaptive-
filter Wiener solution for d,, = D is approximately equal to the
reference filter (in practice, this amounts to SNRs greater than
10 dB).

7

~—

Note that Assumption 3 can hardly be justified in practice, but has
been used with success in the analysis of stochastic algorithms [7].
The Gaussian assumption about v, is also commonly used in the analy-
sis of the LMS algorithm [16]-{17]. The noise vector properties put
forth in Assumption 5 follow largely from these assumptions and wil)
prove to be useful in the analyses. Note in particular. that Ky was
found to be approximately equal to p&,,.I in [9], for the LMS algo-
rithm. The validity of this approximation is directly related to the va-
lidity of Assumption 3. In inost cases, it is only asymptotically valid as
the adaptation conslant p vanishes.

1. Results for the LMS delay estimator in steady state

The LMS delay tracking algorithm in (27) is analyzed in terms of
convergence of the delay estimate in the mean and in the mean square.
The analysis parallels and extends that of Messer (4] and can be found
in [S].

For d, = D, the output of the adaptive branch can be expressed as

)'(n, D)=w],,,,u(nT—D)+T‘|,{u(nT—— D). (33)
The first term on the right is defined as the optimum output, r{(n).
since it represents the adaptive branch output for perfect modelling in
the MSE sense. The second term on the right is defined as the output
steady-state noise. x(n. D). Define ep,(n, D) as the error between the
optimum adaptive branch and the reference branch; i.e.,

¢ in{n, D)= r(n)—r(n), (34)

1 Note that (28.1)-(28.2) is different {rom the usual independence theory assumplion since #, and uy are influenced by different delays. But
since we are in steady state, d,, = D and (28.1)-(28.2) is close to the usual form.
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and the corresponding MSE as

N

Eon = l:‘[v,,,,-" (n I))]. (35)

Then. relying largely on Assumptions 3 and 5, we have the following
two propositions:

Proposition 2. In steady-state conditions, the delay estimator, given
by the LMY delay tracking algorithm operating jointly with an adap-
tive filier, is an unbiased estimator if

2

O<a< (36)

min

Proposition 3. In steady-state conditions, the delay estimator, given
by the LMS delay tracking algorithm operaring jointly with an adap-
tive filter. is convergent in the mean square if

gmin

0((1(—7, (37)
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where the quantity o is given in (38).

The quantity o can be shown to be [5]

ol = 3(¢,l';(0))3 +60;(0)0,, (0] K, |+ 3{o,, (O)u] K, ])
H00 (0)-0:(0)+ 0, (O)u[ K, |02 (0)+ 012 () K, ])

+20.(0)(0.,(0)- 035 (0) -0, (O)u] K, ). 3)

which, for high signal-to-noise ratios (q> .= ) can be approximated

r I
by

of =30} (0))1 +40.(0)0,, (O] K, |+ 3(¢,j,, (O] K, ])2
+{0.,(0)-0:+(0)+9,, O)u[K, e (0)+ 012 (O] Ky IXER)

v uu

where trf*] is the trace operator, K, is the weight-noise correlation
matrix defined in (32), &(1) denotes a correlation between two random
processes, the prime denotes a derivative with respect to 1, and $(0)
denotes d*d(t)/aT at T = 0.

Note that, in interpreting the propositions, it is important to keep in
mind that the result is true if no false lock occurs; i.c., if no noise
samples force the delay estimate to lock on a local solution, or if the
adaptive filter does not compensate at all for the delay reference.

The steady-state delay estimate variance is given by

2
ooy

v =lim E[(d,, -D) ] = (40)

n—oo

..—_—T.
2£miu - 400 &)

where o=y is given by

ol = —1(¢,, (0)-0;;(0)+ 9, (Ou]K,, ])(cp 0+, (00K, ]) @10

2. Results for the LMS adaptive filter in steady stare

As in the case of the LMS delay tracking algorithm, the LMS
weight vector adaptive algorithm of (26) can be analysed in terms of

convergence in the mean and the mean square of the weight vector
estimate. That type of analysis has been performed by many authors
and the details concerning our problem can be found in [ 5], Due to they
assumptions made, in particular the instantaneous propagation of the
adaptive delay value through the adaptive-filter delay line, the bchavw
iour of the filter is not affected in many different ways by the delay‘
element. The following two propositions characterize the convergence;
of the weight vector.

Proposition 4. In steadv-state- conditions, the weight vector ('.\'limw‘
tor, given by the adapive filier LMS algorithm operating jointly swith
a mean-square convergent delay tracking algorithm, converges in the
mean if

O<u<

42)

may

where N,.. denotes the maximum eigenvalue of the input signal
autocorrelation matrix R. The weight vector estimate experiences
bias given by

\

b=1/2v R'p(D), ; (43)

where j(D) represents the second derivative of the ('r().s's-('()rrclaliouL
vector with respect to the delay d,,.

Proposition 5. In steady-state conditions, the weight vector cstima—\
tor, given by the adaptive filter LMS algorithm operating jointly with
a mean-square convergent delay tracking algorithm, is convergent in
the mean square if

{
Mg h

=1

O<pu<

where \;is the i™ eigenvalue of the M X M input signal autocorrelation
matrix R.

Note that the convergence condition of (42) and (44) are identical
to the usual conditions for convergence of an LMS adaptive filter | 7],
but that the effect of the delay estimator on the adaptive filter is to add
a bias to the weight vector estimate.

3. Excess mean squared error and misadjustment
with the joint LMS algorithm

From (8), the steady-state MSE function is

£, =0,,(0)+ E[w] Rw, | -2E[w p, ] (45)

where the values of the estimaltes take on their steady-state form.

Neglecting some terms involving the square of v, we can transform
(45) into . :

“‘(&miu + g,.,,',. Vi /2)[1'[R]
I-uifR]

g.v.\' = énu’n + v.\'.\'émin /2+ (46)

The excess MSE is given by the expression &, = &, — &,in. Which can
be transformed into

£ ’ g d
Eoe =Bl +EL B (47)
where the excess MSE specific to the adaptive delay element is de-
fined as

v ‘ré ]
sy
o = - (48)
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the excess MSE specific to the adaptive filter is defined as

. . R
{,, - p.&”””tl‘[ ]; (49)
T 1-uu|R]

and the cross-product excess MSE is defined as

E_,‘”. - }'lgmiu ‘..\'.\'lr[Rl (50)
“2(1-pu(R))

The expresuon for &4, is valid for pure LMS delay estimation [4], and
the expression for £/, is valid for an adaptive LMS filter operating
without an adaptive delay {7].

The misadjustment is defined as the ratio of the excess MSE to
&nin- Therefore, the misadjustment expression can be shown to be

M=M+M + MM/, (S1)
where M¢ and M are the misadjustments specific to the adaptive delay

element And to the adaptlve filter respectively. They are obtained by
dividing &7, and E/ by§,;,-

B. Discussion of the LMS algorithm analysis

The joint steepest-descent algorithm and its stochastic counterpart,
the joint LMS algorithm, represent the generalizations of either the
conventional SD (LMS) delay tracking algorithm {4] or the conven-
tional SD (LMS) adaptive transversal filter algorithm [14]. It is there-
fore not surprising to find that all the results concerning the delay
algorithm degenerate to those of [4] when the signals are properly
interpreted, and that the adaptive-filter derivations come down to the
LMS adaptive-filter results when the delay, D, and the variance are set
equal to zero.

Another point to note is that, as long as the delay estimation algo-
rithm is convergent in the mean square (the steady-state delay variance
v, 18 finite), the conditions for convergence of the LMS adaptive filter
are identical to the usual conditions for a similar adaptive filter operat-
ing alone or with a fixed delay element. The convergence depends on
the eigenvalues of the input-signal autocorrelation matrix. Note also
that, because of the adaptive delay clement, the weight vector estimate
is biased.

As (37) and (40) suggest, the convergence of the LMS adaptive
delay elament depends on &, o5 and 63, Using the high SNR
assumption |¢ . = ¢,.,;) and the fact that

émiu = ¢r-r (0) - q) r (())' (52)

(39) and (41) can take the form?

GC = 3/4émm —1/2§min§[1:|]n
[&mm‘buu O)— 1 /2éE::]u uu (0) - 2émiu¢1:u (0)]“[KT] ] (53)

{30 0) 0000 i,
and
Oy = zémiugmm

+[2émin¢uu (0) - 4E)min¢1:u (O)](l‘[l\’“ ] (54)

~49,,(0),,, (0)r?[K, ]

JOINT GRATIFNT. RASED TIMY DELAY

ESTIMATION A3
Equations (53) and (54) indicate that the convergence of the LMS
adaptive delay element depends on the input signal power ¢,,(0) and
the mlmmum MSE .5,,,,,, If w is small, tr[K;] is small and we have
0% =3/482, ando% = 2&,",,,&,,,,,, We therefore see. from (36) and
(37), that the upper bound for convergence in the mean square is about
one-third of the upper bound for convergence in the mean. The steady-
state delay variance is also approximately given by v, = &,

The delay estimate variance is encountered in the excess MSE and
misadjustent expressions, such as (47) and (51). Once the delay
variance is computed or fixed, these two quantities are seen to be
functions of two terms specific to the adaptive delay element and to
the adaptive filter respectively, and of a cross-product term (note that.
since the delay-specific term is a function of v, it is indirecily a
function of the adaptive filter). The expressions for 29 and E_‘fl, are
identical to those obtained for the respective adaptive algorithms
operating alone [4], [7]. The cross-product terms. £ and MY, are
essentially the result of gradient and derivative estimation errors in the
two adaptation processes. For stationary input and reference processes.
the estimation noise in one adaptive algorithm is increased by the
gradient estimation noise present in the other adaptive system. There-
fore, the total misadjustment, M, is not merely the sum of the adaptive
delay element and adaptive filter misadjustment expression M¢ and
M, but also includes a term due to the joint estimation noise. Note,
however, that the cross-product misadjustment. M¥, is equal to the
product of M“ and M/, making it a second-order term that, in practical
situations, can be one order of magnitude smaller than the individual
terms.

As a final remark. note that the key quantities in the analyses are
&qin and its second derivative. These quantities can be estimated from
a priori knowledge of the transmitted signal and from the estimation
of the received signal’s autocorrelation functions. Some possible esti-
mation procedures are given in [5].

C. Experimental results with the joint LMS algorithm

Using the analysis results, it is possible to compute the adaptive
delay gain factor, a, as a function of the adaptive filter gain factor, .
In order to perform this task, we combine the expression for v,,, given
in (40), with equations (53) and (54) and the expression for tr{Kq]
given by [5]:

E.)min +§min Vs /2

Ko = I -ute[R]

Adaptive delay gain factor o

1r 4
rss = 0.01
v = 0.001
10-9 e L] 108 i SL 10!

Adaptive filter gain factor u

Figure 3: Theoretical curve of « versus p;: SNR = 10 dB; small-dash curve: v, = 0.001;
large-dash curmve: v, = 0.01; continuous curve: v, = 0.1

1 Note that these expressions are exact for white input and noise
signals.
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Table 1
Excess mean squared errors and misadjustments
for different combinations of «’s and u’s,
The signal-to-noise ratio is 10 dB.

123 o« é:fu § dex gex M Mlh
0.1 0.5 0.00312 0.00193 0.00563 40.5% 39.4%
0.05 0.5 0.00141 0.00193 0.00308 22.1% 25.4%
0.1 0.1 0.00312 0.00010 000313 22.5% 23.3%
0.01 0.5 0.00026 0.00193 0.00195 14.0% 16.0%
0.05 025 0.00141 000051 0.00163 11.7% 14.2%

1.6 T T — v
4
1.2} 4
< 0.8} E
0 M L + A.nf-._M—-A\-——
~0.4 . . —— o
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Normalized time (samples)

delay (samples)
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/
\ \Y
-1}
(4 400 |00 1200 1600 2000

Heration number

Figure 6: LMS adaptive delay response to a sinusoidal reference deley variation and for
a 200-tap reference impudse response: dashed curve: reference delay: o= 0.01, « = 0.02.
White Gaussian input. l

Figure 4: Impulse response of the reverberant room.

delay (samples)

Q 400 800 1200 1600 2000

Iteration number

Mecan Squared Error
e
W

a 200 400 600 800 1000 1200

Iteration number

Figure §: LMS aduptive delay response 1o a reference delay ramp of 0.01 sumple/scm-
sponse; dushed curve: reference delay:

pling period and for a 200-1ap reference impudse re
po=0.01, « = 0.02. White Gaussian inpul.

Figure 7: Learning curve jor the joint algorithm coping with a reference delay ramp of
0.01 sample/sampling period (corresponding to Fig. 5): p = 0.01, a = 0.02,

2 — v v v _—
1.6F
5 |
=3
=
= oq.ep
g
&
o
» 6.8}
<
k3
=
0.4}
0 R . . . R
0 200 400 600 800 1000 1200

Heration wutnber

Figure 8: Learning curve for the single adaptive filter coping with a reference deluy ramp
of 0.01 sample/sampling period (note the scale difference compared to Fig. 7); p = 0.01.
White Gaussian inpus.,
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Using 21-coefficient adaptive and reference filters with white input
and noise signals and for a signal-to-noise ratio of 10 dB, we obtain
the plots of Fig. 3.

The gain factor a increases with vy, and for a typical variance of
0.01 the value of « is approximately constant with . and is around
(.5. This indicates that, for low variance. the adaptive fitter does not
significantly influence the behaviour of the adaptive delay. The upper
bound on a for convergence in the mean square (36) is not signifi-
cantly influenced by the delay variance and is approximately constant
for w < 0.01 (see [5]). These critical values tor o and o are retained as
indications of the values that should be used in the simulations.

An important result from the previous sections is the expression for
the excess MSE at the output of the joint LMS algorithm given by
(47). We verifly these results by computing the theoretical value of &,
using (49), and by obtaining &4 as well as . through simulations.
The results, for five different conbinations of « and ., are presented in
Table 1 for low-order adaptive and reference fitters (21 coefficients).
The corresponding measured total misadjustment, M, is obtained from
&, through division by £,,. while the theoretical total misadjustment,
M, 1s obtained using (51). This table shows the good agreement be-
tween the measured and the theoretical quantities. Note that since the
cross-product term MY M/ is a second-order component, its effect is
small or negligible, as can be seen {rom the fact that £, is always
approximately equal to the sum of &-‘,f_\_ and &Y. '

D. Results with a long reference impulse response

In practice, the reference-filter impulse response can exhibit a fairly
large number of coefficients. For example, the typical impulse response
associated with a reverberant room. and encountered in audio surveil-
lance | 18], has more than 200 coefficients. We generated such an im-
pulse response using the method proposed by Allen and Berkley [19].
The response that we obtained simulates the audio channel between a
source of sound and a microphone located in a closed room, with
specific wall-reflection coefficients. We arbitrarily selected the pa-
rameters to simulate the behaviour of a room measuring 6 m by 6 m,
with a height of 3 m. The reflection coefficient for cach wall is 0.8, the
sound source is assumed to be located about 0.5 m away from one of
the corners, and the focation of the receiver is about 1 m irom the same
corner. The corresponding impulse response is given in Fig. 4. Note
that the response is not symmetrical with respect to any point, and that
it exhibits three large reflection peaks as well as five smaller ones.
This reference impulse response is used in a system identification
configuration (see Fig. 2), with a 200-coefficient adaptive filter and
with both spectrally white Gaussian and audio input signals.

With a white Gaussian input, the delay tracking of the joint algo-
rithm is shown in Figs. 5 and 6. for a reference delay ramp and a
sinusoidal¥eference delay in noiseless conditions. The rate of change
of the linear delay is higher than what is typically encountered in audio
surveillance [18].

The inaccuracies in the delay estimation are related to the excess
MSE. which is proportional to the number of coefficients in the adap-
tive filter (sec (49)). Note the different behaviour of positive and nega-
tive delay tracking, especially in Fig. 6. This difference is related to
the fact that the reference impulse response is not symmetrical with
respect to any of its points. In order to appreciate the effectiveness of
the joint algorithm, the learning curve corresponding to the joint algo-
rithm coping with a linearly changing delay (corresponding to Fig. 5)
is illustrated in Fig. 7. The learning curve, corresponding to a system
identification configuration in which there is no adaptive delay, i.c.. a
configuration in which the adaptive filter alone copes with the model-
ling of both the lincar reference delay and the reference filter, is itlus-
trated in Fig. 8. These curves were obtained by averaging 10 error
curves. Note the scale difference between Fig. 7 and Fig. 8. It is obvi-
ous from these figures that the joint algorithm generates an MSE lower
than that for the single adaptive filter. Similar results can be obtained
with a speech input, although the joint LMS algorithm must be nor-
malized in this case to take into account the power variations in the
input signal [5].
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Y. Conclusions

In this article, we have studied the joint SD and joint LMS algorithms:
for time-delay estimation and adaptive filtering. The presence of 2
multitude of stationary points in the objective function was established,
and the steady-state behaviour of the two algorithms was investigated.
The coupling between the two LMS adaptive algorithims was shown to{
give a misadjustment expression equal to the sum of the individual
misadjustments plus a cross-product term. The analyses were used lol
obtain a theoretical view of the application of such algorithms in spe—‘
cific environments. The simulation results that we provided give a

" flavour of the sort of behaviour that one can expect when using an|

adaptive delay element with a conventional adaptive filter. When a
long impulse response filter has to be estimated, the additional compu-‘
tations incurred by the LMS adaptive delay algorithm are not signiﬁ-\
cant, especially given the reduction in excess MSE that is attainable.
This conclusion supports the use of the joint algorithm when the main
input and the reference signal are believed to exhibit some form of:
non-synchronous behaviour.
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