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A general estimation ntotlel is defined in which two observations are available; one is a noisy version of the transmitted signal. while the other is a noisy 
filtered and delayed version of the same trimsniitted siglnl. The time-varying delay and the filter are unknown quantities that must be estimated. A joint 
estimator is proposed. It is composed of an adaptive dclay element in conjunction with a tnnsversal adaptive filter. The same error signal is used to adjust 
the delay element and thc filter such that the ~nininiutn mean squared error is attained. Two joint gradient-based adaptation algorithms are studied. The joint 
steepest-descent (SD) algorithm is first investigated. The possibility of a multitude of stable solutions is established and a condition of convergence is 
presented. A stochastic implcnicntotio~~ OF thc juint SD algorithm, under the fornl of a joint least-mean-square (LMS) algorithm. is then presented. It  is 
analysed in lertns al' convcrgcncc in tlic nlean and in the mean square of both the delay estimate and the adaptive filter weight vector estimate. The 
conditions of convcrpence or thc joint L.MS algo~ilhnl are established as n function of the power spectral densities of the observed signals and the minimum 
tnean squared crror. The joint LMS algorithm is simulated under various conditions and it is shown that the adaptive delay element is very effective in 
reducing the mean squ;lrod crror lit thc output of 11 long xlaptive filter coping with two asynchronous inputs. 

IJn modtle mathtm~riquc constiluC de dcux observations est tout d'abord dtfini. L'une des observations est une version corrompue du signal transmis, 
alors que I'autle est une version corrompue, filtrk el decalke de ce meme signal. Une estimation conjointe du dClai et du filue est propos6e. L'estirnateur 
conjoint est formi d'un dtlni ndaptntifcl d'un filtrc adaptatif B rkponse impulsionnelle finie. Le mime signal d'erreur est utilist pour corriger le dtlai et le 
fillre de telle sorte que le mininium de I'errenr quadratique moyenne soit atteint. Deux algorithmes d'adaptation bas& sur la mtlhode de gradient Font 
proposks. L'algorithme conjoint b d e ~ e n t e  ~ttanimele rst Cludit en premier lieu. La possibilitt de solutions multiples est etablie et une condition de 
convergence est pr6sentCe. Une forlne utilisant I';tlgoritltme des moindres c a d s  moyens est ensuite considCrCe. Cettr forme est analy.s& en termes de 
.convergence de I'espirance et cn tcnlics dtr convcrgnrc: dc la valeur quadratique moycnnc. tan! pour I'estimC de dClni que pour I'estimt du filuc adaptatif. 
Ces conditions de convergence sont Btablies en fonction de la densite de puissance spectrale des signaux 0 b s e ~ C s  et du minimum de I'erreur quadntique 
moyenne. L':tlgorithntc des ~noindres camis moyens est simult sous diverses conditions. L'efficacit6 d'un delai adaptatif est dfntonuk. pour r0duire 
I'erreur qundratique moyenne h In sortic d'un filtrc adaptatif affichant une longue dponse iinpulsiomlelle. 

I. lntroduetion 

The problem of estimi~ting the time delay between two continuous 
version~of the sume signal, each one cornipted by uncondated noise 
components, has been the subject of many research efforts in recent 
years. The maximum likelihood estimator for the unknown delay has 
been derived for a static [I]-[2] and a time-varying delay [3]. Closed- 
loop adaptive techniques using the minimum ~nean-squared-error 
(MMSE) or the least squares (LS) criteria have also been proposed. In 
these cases, the estimator structure is such that one signal is processed 
by an adaptive system for which the output is compared to the other 
signal, with the error being used to adapt a conventional adaptive trans- 
versal filter or an adaptive delay element. 

In this paper, we considcr il signal model that generalizes some- 
what the conventional nlodel by allowing frequency-dependent attenu- 
ation in the delayed path. We also specifically consider discrete-time 
signals and systems. This work finds some applications in system 
modelling problems, where the unknown system often has an impulse 
response that can be modelled as a pure time delay in series with a 
linear filter. This can occur in noise or echo cancellation, digital com- 
munication or geophysical exploration. 

We study a joint adaptive estimator which is composed of an adap- 
tive delay element working in conjunction with an adaptive filter. The 
adaptive delay element attempts to model the reference delay and can 
take any real value. The addition of this adaptive delay to the usual 

adaptive I'iltering operations can improve the conventional adaptive 
parameter estimation techniques that would otherwise be of limited 
usefulness. especially in the case where the main adaptivc filter input 
and its reference signal decorrelate with time. A simple adaptive filter 
has the potential to model both the reference delay and the reference 
filter, since the overall fi~nction can be approximated hy an FIR filter 
with the proper number of taps. This approach is inefficient in the 
sense that rhc rcfercnce delay is modelled by a shift in the adaptive 
filter impulse response. For a fixed filter order, this shift may result in 
an error that is larger than the error corresponding to perfect model- 
ling. An additional adaptive delay estimation algorithm. specifically 
designed to track the reference delay variations. allows a better im- 
pulse response ccntring and the use of an adaptive filter with a smaller 
order. 

In this papcr, wc  present the results o f  an analysis for the joint 
adaptivc dclay and filtcr structure based on the MMSE performance 
index. A joint steepest-descent (SD) algorithm and a joint least-mean- 
square (LMS) algorithm are investigated. The principal contributions 
of this paper are the generalization of existing gradient-based time- 
delay estimation wiehout reference filtering. as proposed in [4]. and 
the analysis of a new joint algorithm for the synchronization of the 
input and the reference signals used by an adaptive filter. Our joint 
algorithms are not based on the assumption that the input signal and 
the reference signal fed to an adaptive filter arc sampled in the same 
clock period. They also allow the tracking of time-varying delays in 
the reference path by a process separated from the adaptive filter, 
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which is itself free to perform the task of modelling the linear refer- 
ence filter or its inverse. 

The paper is organized as follows. In the next section, the mini- 
mum mean-squared-error function is considered in general terms, as a 
joint function of the two estimates. The form of this function allows 
one to draw some conclusions about the general convergence behav- 
iour of the joint algorithms. The presence of a multitude of minima in  
the objective function is discussed. Then the joint steepest-descent 
algorithm is studied in section 111, where the conditions for conver- 
gence to a local minimum of the mean-squared-error function are 
given. The joint least-mean-square algorithm is investigated i n  section 
1V. Analytical results for the convergence in the m a n  and in the mean 
square. for both the adaptive delay estimator and the adaptive filter 
weight vector, are presented. Finally some experimental results are 
given, in order to complete the presentation. 

11. General minimum mean-squared-error function 

We consider a situation that generalizes the conventior~al model 
used in delay estimation by allowing frequency-dependent attenuation 
in the delayed path. We also specifically consider discrete-time signals 
and systems. The corresponding model, where :l(tr) and z2(ri) are the 
two observed signals, is of thc form 

zl(n) = .s(tr) + v1 (ti), 

where 11 is the discrete-time index. s(n) is the transmitted signal, D,, is 
a time delay (possibly time-varying), and h(n) is the impulse response 
of a linear filter which is applied on a delayed-by-D,, version of the 
signal s(n). The discrete-time noise processes, vl(n) and ~ ~ ( 1 1 ) .  are zero- 
mean and stationary and are assumed to he uncorrelated with each 
other as well as with s(n). The operator (3 is the convolution operator. 
Note that the time-varying reference delay, I),,, is not limited to an 
integer number of sampling periods and can take any real value. All 
the discrete-time signals are assumed to be sampled versions, with 
sampling period T, of continuous-time signals that are strictly band- 
limited to the frequency range -112T < f < 1/27: A block diagram 
corresponding to the mathematical model of (1 .I)-([ .2) is illustrated in 
Fig. 1.  Note that the case in which the delay, D,,, follows the linear 
filter is also of interest, but is not considered in this paper. See [ S ]  for 
more details. 

In the joint estimation problem considered in this paper, it is 
required that both the time-varying delay, D,, and the reference filter, 
h(n), or its inverse, h-'(n), be estimatedt. The adaptive filter used to 
estimate h(n) or 11-'(n) is a transversal filter, with it weight vector w,, of 
length M. 

Linear LfFjHpb- Filter h ( n )  :?(n) 

In joint MMSE delay estimation and adaptive filtering, thc mean- 
squared-error surface is starched by both the adaptive filter estimation 
algorithm and the delay estimation algorithm. A system identification 
configuration takes the form given in Fig. 2. 

In general, the output of the adaptive branch can be defined as 
y(n,d,,), where the dependence on the adaptive delay is explicitly 
shown. The reference signal, r(rr), is defined to be one of the two 
observed signals :l(rt) or ~ ~ ( 1 1 ) .  Then the error signal, e(n,d,,), is de- 
fined as 

and the MSE function, at time 11, is 

The joint estimation can be thought of as taking place in a vector 
space made of a weight vector subspace and a delay subspace. The 
two subspaces are not orthogonal, which implies that the two estima- 
tion processes are not independent (because the adaptive filter can 
model a reference delay). In order to obtain an expression f the MSE 
function, dclinc as u(tr) the input to the adaptive bmnch.?he signal 
~ ( n )  is thercl'ore the generic representation of the observation that must 
be adaptivcly proccssed. I t  can bc ~~(11). as in Fig. 2, or &) if onc 
wants to estimutc the inverse of the reference branch (inverse filter- 
ing). The outpi~t of'the adaptive bmnch, y(n,d,,), is assumed to be givcn 
by 

where the superscript H denotes complex conjugate transpose. Thc 
' ton n, vector u, is the vector of delayed input samples, stored at iterqt' 

in the adaptive filter delay line; i.e., . 

The input-signal autocorrclation matrix and the cross-correlation vec- 
tor between this inpu~ ;ind the rcltrencc signal are then expresscrl ns 

R,, := E[,,",',, "I 
and 

p,, = ~ [ r r , , r  *(ti)]. 

The MSE function is represented by either one of the following cquivn- 
lent equations, 

Figure 1: Marl~emarical sig~rrd rriodel. 

+ Note that the inverse of any linear filtering operation Ii(tr) is denoted as kl(n) .  Therefore h(n) 6 h-'(11) = &(n), where S(n) is the unit-sample 
sequence [6] .  



'l'lic MSE espressions rcflcct the n:~lurc ot the jo1111 ostiniator op- 
eration. In thc weight vcctor s ~ l x l ~ c c .  ;~ssoci.~rc~l w i h  thc first cqua- 
lion ol' ( 8 ) .  the MSEi function is :I quatlr:~tic surl';~cc (71. Thc  
one-dinlcnsional tlelay suhspacc is 11:1t~ri1lly linked to thc correli~tion 
I'i~ctions of the sccontf cquut io~~ ol' (8). Tllc MSE functio~i is not, in 
pcncral, unimodal with respect to (I,,. 111 order to see Illis. note that t,, 
depends on correlation functions that vary according to the adaptive 
filter and the reference filter. as well as to the ;~utocorreli~tion function 
of the signals I+) and r(rr). All of these functions are mi~ltiniodal with 
respect to their time argument, a chi~~xctcrislic which in turn causes 
the MSE function to hehuvc si111il;irly with respect lo (I,, and produces 
a n ~ u l ~ i t i ~ d e  01' local extrc~n;~. 

'l'liis bchaviour causes a problem in tllc search for rhc 111inilnum of 
5,) with respect to d,,. In closed-loop csti~iiotion. this phcnolncnon leads 
to false lock problems, as in phase-locked loops. These problems are 
gcnelally solved by designing an acquisition procedure i n  which the 
dcli~y estimate is varied until the algorithm falls in its t~xc l ing  region. 
war  the MSE global mini~nunl. Once i n  tracking ~nodc., thc estimation 
algorithni can compute the derivative ol' thc MSE I ' l~nctio~~ with re- 
spcct to the tlelay value and generate a cor~.ccting sign;ll that brings the, 
loop into lock. For the joint delay and ntlaptivc filtering ;dgorilhn~, i t  is 
possible to use an acquisition prt~ccdure bi~sid on  the Iotr.vt stlricrrt~s 
criterion and known as the opri~~rro~r ltrg irlgorithnl IS]. In this algo- 
rithm. the least sum of squared errors is computed for a rcprcsentative 
sct of delay values, and the delay and filter i~npulsc rcspcuise corrc- 
s l~ )~ lc l i t~g  to the globill ~ n i n i n ~ u ~ n  arc sclcclctl. This algoritlini is 
colnputationally involved, but i t  is well suited lor an acquisition ph;~se. 

In the following, when we study the joint algorith~n in tracking or 
steady-state conditions, we assume that such an acquisition procedure 
has caused the joint algorithm to lock near the mininium of the MSE 
function. 

111. The  joint steepest-descent :ilg)rithm 

The joint delay esti~notion and adaptive filtcl-ing stecpcst-descent 
algorithm is composed of the usual S D  adaptive filter algorithm. of the 
fol-111 [Y 1 1 

;ind of the SD adaptive delay algorith~n 141 

whcrc p and a are sm;~ll positive const;mts ;ind V,.,,c,, re~)rese~its the 
gridic~it of k,, with rcspecl lo  w,,. 

The delay-estimation part of the joint ;~lgorithni can be studied by 
us~ng a truncated Taylor expansion of' the MSE function around a 
certi~in delay value dl, = a,,. where the MSE function is ~ninimum. 
Keeping only the first three tcrnrs of' the series, we get 

where the dot denotes a derivative with respect to the delay value (I,,. 
This approxiniation is used in order to linenrize the delay estimation 
algorithm. The lincari-/cd SD algorithm is obtained by combining ( 10) 

which ~ ~ ~ ~ l c l s  ~ h c  txh;~viour of il first-order dcli~y-lock loop I I01 

A. Convergence of the joint SI) algorithm 
A necessary condition for a specific ( I , ,  and w,, to be a stationary 

solution of the joint SD algorithms is that both of the following equa- 
tions be satisfied ( 1 I l :  

Note thar the firs1 equi~tion of ( 13) is in Sac1 a rtc~c.i~.s,vt~ry mil .rr!@c.~ent 
condition li)r convergence. This is so because &, is quudr;~tic with 
rcspect to w,,, implying that there is a unique rninimuni in w,, for a 
given value ti,,. When the first equation of (13)  is satist'id. I ~ I S  unique 
solulion is ;~ttclined. ;~nd any l'urtl~et nlodifici~tions o f  tl,, will increase 
5,). This is the c ;~sc  hccausc the iidaptive tilrer ~no~ le l s  h o ~ h  rhc r c l x i ~ e  
delay and the rcl'cscncc lilter in the ~ninirni~nl MSE sense. Then. this 
solution co~.rcspontls i~lso to i~ ~ii ini~nuni with respect to rl,,. The suffi- 
ciency ol'lhc condition is due to the i~niqueness of the ~nininium with 
respect to m,,. 

I F  the acl:~pti~tion li~ctors and cu are chosen sufficiently sm.111. the 
process illwi~ys ~-c:~chcs ;I limit point [ I ? / .  Tlrc next propositic~ii givcs a 
condition o n  ;111d ( Y  t11;it ensures convergence of the joint algorirhrns 
under specific conditions. This condition is derived in [ I I )  for joint 
carrier phi~sc ;~cquisition and adaptive equalization as encountercd in 
digital conimunications. It is reformulated here for the problem at hand. 
Thiscondition is gcrierid in that i t  establishes the stability range for the 
two ;iduptiltion hctors such that the MSE is reduced ;it each iteration. 
when the two i~diiptivc processch are alternated. I t  is also important 
because i t  confirms that, with the right piIrameters. the joint SD algo- 
rithm converges eventually to a stationary point (i.c.. ( 13) is s;~tistied). 

The formal proof' ofthis proposition is g iwn in I S ] .  I t  is easily scen 
thut when tr,, = 0. tI1c IISLI;II SD i~d;~ptivc filtering conditions ;~pply 2nd 
(14) is thc conventional condition for conwrgcnce. When p,, = 0 .  the 
MSE function cvilluatcd at t l , ,  = a,, is constunt ;\nd condition (15) 
guarantees the convergcnce of the linearized S D  algorithm given 
in ( 1  2). 
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This proposition states that d,, and w, may be adjusted in any alter- 
na t in~  fashion, and the MSE will converge to a stationary point if p,, 
satisfies (14) during the adjustment of w,,, and a,, satisfies (15) during 
rhe ati~justnwnt of (I,,. The ahow condition is important because it con- 
firms that. with the right parameters used in r~lr~r~tmiorr.  the MSE is 
reduced at each iteration and the joint SD algorithm converges eventu- 
ally to a stationary point. 

B. Steadysta te  delay estimation properties of the algorithm 
In this subsection, we briefly study the system and signal compo- 

nents that directly influence the stability and the delay tracking behav- 
iour of rhe joint SD algorithm. In order to proceed, we assume that the 
reference filter h(n) is time-invariant. that the signill-to-noise ratios 
(SNKs) are high and that the iidnptivc filter has fully x lop~cd to II(II) 
and is at least as long as this impulse response. These assumptions 
imply that in sready state. the i"' adaptive filter coefficient, ,I.,,;, at 
iteration 11. is approximately 

/I(;) System identification (cancellation) 

~ t ' ~ ,  = (16) 

I ' (i) Inverse I'ilterinp (equnli7ation). 

where h i )  is the if" weight of the reference path filter. 111 the 
analysis. we use the linearized delay adaptation algorithm of (12) 
with ({d , , .~ , , )  = 5,, and 6,, = D,, for the cancellation configuration. and 
a,, = -D, for the equalization srructure. Furthermore, in steady state, 
we assume that d,, = kD,, in which case the error is minimum and the 

autocorrelation +,,(T). while the cqualization configuration is a func- 
tion of only +,<,(T). Since +,,(T) exhibits a maximum at T = 0, v,,"' has 
a global minimum i ~ t  I / , ,  = --D,,. 111 the ci~nccllntion scenario. the charac- 
teristics of the delay trackins loop arc functions of the reference filter. 
h(rr), but because p,,(rr) has a niiisin~um at 11 = 0, there is a single gloh;d 
minimum corresponding to (I,, = U,,. 

Based on (lo),  (20) and (17). the following sufficient range of 
convergence can be computed for the delay gain factor: 

and 

3 ~ '  
( )<a<--  Equalization, 

' r n c r . 1  n2 

where (I),,,,,, is the maximum value of the input signal power spectral 
density, cD,,,(e""), and the prime denotes the derivative with respect to 
the continuous-time correlation ;u.giunent. It is easy to show hat pl,"(O) 
is pn,portional to the y u ; s c  of the reference filter bandwidlh, as well 
as to pl,(0). This implies that the convergence properties of the delay 
SD algoritlim are related to thc power distribution, across the total 
bandwidth, of the input signal and the reference filter in the cancella- 
tion case, and of the signal only in the equalization case. This is n 
behaviour essentially similar to the adaptive-filter convergence, which 
is related to the distribution of the eigenvalues of the input-signal 

corresponding MSE equals the MMSE. Then 5,,111,, = f D,, = i,,,,,, and autocorrelation 171, 
is constant with rims. From ( I?). the stability range I'or a is 

IV. The  joint least-mean-square algorithm 

0 < cr < 2 4  ,,,,,, . ( I7)  111 order to implement the joint steepest-descent algorithm presented in 
the previous section, the MSE gradient with respect to the adaptive 

The time consrant of delay udaptiition can be dcl'ined by fitting the weight vectol. MSE derivative with respect to the adaptive 
ratio I ,,,,,, to an  with t ime ,,<, delay both must be estimated. This can be accomplished in various 

ways; in particular, by approximating the derivatives with difference 
equations 1131. or by approximating the MSE function, [,, = 

La6 ,,,,, , =tJ-"TJt,l  = I - I / T  ,{,, I E[ I e(n. d,,) I?], with the instantaneous squared error, y,, = I e(n, d,,) 1'. 
and by applying the SD algorithm. This last option corresponds to the 

The time constan[ of delay adaptation is therefore least-mean-square algorithm 1141 and is the subject of this section. 

Consider a cancellation configuration where it is assumed that the 

8 )  delay, d,,. propagates instantaneously into the adaptive filter delay line. 
The adaptive branch output can be expressed as 

We awlme  a configuration in which the reference dehy,  I), , .  varies 
slo\i I )  enough 50 that all  he samples in thc rel'e~.cncc I'ilrcr tlcl;~v line 
are approxin~ately affccted by the same dclay. Thcn i t  can he shown and u ( l r ~ -  (I,,) is delayed of i n p u t  samples (iefincd as 
151 that I.,,. the r l (~ l~~- t i e /~c~r rc l t~n~  tenn of the MSE I'unction. tAes  the 
fomi 

7' 
I~(I IT-  (I,,) = [I,(IIT-(I,,).,,(,IT- 7'-(1,,) ,..., 1,(117'- ~ ' r +  T- d,,)] . (23) 

r 

,."" = -?.Re 
,I (19) In the adaptive weight vector subspace. the LMS algorithm that we 

consider is then given by 171 

,\.hCrC ,he supcrscl.ipls ((-, al,d (!:I stal,cl rcspccti\.cly ,ol. carlccll~llio,l The crror. c.(tr.cl,,) is I-cl~rescnlctl by ( 7 ) .  111 the ;ltl;~ptivc tlclay s d y ; ~ c c .  

and cqualization. and pl,(k) is the dc~ermillisric a~ltocorre1~tioll of  tllc lhc dcrivillive csr inlarc is giverl  I'Y 
rsl ; .~-cn~c I'ilrcr inipulsc response and is del'incd as 

Note that (I,, is negative in the equalization case. Comparing ( 19) and 
(20). we note that the cancellation configuration is influenced hy the The LMS ndi~plive dclay algal-ilhm is ohlaincd by using the dcriv;~tivc 

the delcrlninistic pl,ol) and the inl,Llt 
c s h a t c  ol' (25) in the SI) atl;~p~ivc delay i~lgorithrn, tlcfinctl in ( 10). 



The joint LMS algorithm is ilcfincrl by 

w,,+, = w,, + 2pr  *(r~.ti,,)tc(rr~ -tl,,) (26) 

In order to ease the derivi~tions. dl signals and systems arc considered 
IIW/ i n  the ;~nalyses. At this point, wc arc interested in the convergence 
of the joint LMS algorithm ((3-6) and (27)) from an ;~rhitr;uy initiirl 
condition. 

With the help of the ordinary dilTercntial cquatrons (ODE) method 
1 IS], it is shown in 151 that the joint LMS algorithm. when the gain 
I;~ctors are of the form p, = (Y = Iln. converges to a local minimum of 
the MSE function, like the exact version of the joint S D  algorithm. 
This result, even if it does not apply directly to algorith~n (26)-(27), is 
important hy itself since it shows that if the adaptation factors are 
chosen sul'f~ciently small, the estimates produced by the algorithm will 
be, on average, close to a st;lblc station;~ry poinl of the MSE function. 
Furthermore, the above result shows that if the gain factors are small 
but constant, convergence cannot be attained in the sense that there 
exists an integer N such that B(n + 1) = O(t1) for N 5 11. but the difference 
between the parameter estimate and a stable stationary point will be 
sn~;ill ;is 11 becomes large antl can be made smaller by decreasing the 
gain factors. 

A. The joint LMS algorithm in steady state 
The quality of the joint LMS algorithm can be studied by consider- 

ing the quality of the two estimates that it generates. Since the delay 
and weight vector estimates are random variables. the joint algorithm 
con be analysed in terms of convergence in the mean and in the mean 
square of eithcr estimate. Because of the coupling between the two 
~~dapt ive  processes, the gradient error will affect the delay tracking and 
the derivative uncertainty will itself inlluence the adaptive filter. These 
mutual e.ffects can be included in the delay variance and weight-noise 
vt3~.~orcorrelation ~natrix, in steady-stutc corditions. The bounds for p, 
and a are determined for both types of convergence. The results for 
the delay estimator are given I'irst. Then the weight vector estimator is 
co~lsitlered and finally the two sets of rcsults are combined, to obtain 
some misadjustnient expressions for the joint LMS algorithm. 

In the course of the analyses. in addition to the general real signals 
;~nd systems assumption already ~ncntioned. the following assump- 
tions itre used: 

I ) The inbut and noise signals arc zero-mean Gaussian random proc- 
esses. The noise signals are also assumed to be white noise proc- 
csses. 

2 )  The atlaptivc system is in .srtw!\' srr,(tJ :ind the rcl'crcnce system is 
sl;ltlonary; ix . ,  the refcrcnce del;~y is co~~s tan t  at L),, = D and the 
reference filter is also fixed in time. 

3 )  Independence theory holds; ix.. the zero-mean input data vectors 
are uncorrelated with each other and with r(k). Then 

I )  In steady state, the adaptive weight vector. w,. can he expressed as 

antl q,, is thc weigh-noise vector. 

5)  111 the analysis ol'tllc delay estimator, the vector q,, is a tero-mean 
slnrion;~~-y C;;~ussi;~n vector, uncorrclotctl with the data vectors 
(bccousc ul' (3-8.1 )-(28.2)) and such that 

The noise vector correlation matrix. defined as 

is therefore diagonal with the values E[~, ' ( I I ) ]  on the main diago- 
nal. In the analysis of the weight vector estimate, the delay estimate 
is assumed stationary. 

6) The system is in c;u~ccllation configuration (sce Fig. 2). The results 
can be extended in n straightforwurd manner to the equalization 
case. 

7) When the signal-to-noise ratios are assumed high. the adaptive- 
filter Wiener solution for dl, = D is approximately equal to the 
reference filter (in practice, this amounts to SNKs greater than 
I0 dB). 

Note that Assumption 3 can hardly be justified in practice. but has 
been uscd with success in the analysis of stochastic algorithms [7]. 
The Gaussian assumption about q, is alsocommonly used in the analy- 
sis of the LMS algorithm [16]-[17]. The noisc vector properties put 
forth in Assumption 5 follow largely from these assumptions and will 
prove to be useful in the analyses. Note in particular. that K, was 
fou'nd to be approximately equal to P<,,,~,$ in [9], for the LMS algo- 
rithm. The validity of this approximation is directly related to the va- 
lidity of Assu~nption 3. In most cases. i t  is only asymptotically valid as 
the adaptation constant ~ l .  vanishes. 

I. Rcw1rsfi)r rlrr L M S  deloy twirt~czror i r~  srmdy srurc 

The LMS delay tracking algorithm in (27) is analyzed in terms of 
convergence of the delay estimate in the mean and in the mean square. 
The analysis parallels and extends that of Messer [4] and can be found 
in [S). 

For d,, = D, the output of the adaptive branch can be expressed as 

?.(PI, D) = wi,,,rc(n~ - D) + q i u ( n ~  - D). (33) 

The first term on the right is defined as the optimum output. i(r1). 
6 [ u , , u ~ ] = O  jiw k=O.I ,..., 1 1 - 1 ,  (28'1) since it represents the adaptive branch output for perfect modelling in 

the MSE sense. The second term on the right is defined as the output 

(28,2) steady-state noisc. ~ ( r l ,  D). Define e,,;,,(tr. D) as the error between the 
~ [ u , , r ( k ) ]  = O , f i , r .  k = 0. I.. . . ,  11- I. opti~num adaptive branch and the reference branch; i.e., 

. . 1 hc tcrminology irrdepotrrlc~r~w rlrtwp is common in the analysis of 
idi~ptivc algorithms (see 171. for c x ; ~ m ~ l c ) ~ .  

.I. Note that (28.1)-(28.2) is different I'rom the usual i ndepe~~t l e~~ce  theory assu~nption since u, and u~ are influenced by different delays. But 
since we are in steady state. cl,, = D and (28.1)-(38.2) is close to the usual fortn. 
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and the corresponding MSE ;IS 

Then. relying largely on Assumptions 3 and 5, we have the following 
two propositions: 

where rhe quantinl u2G is given in (38). 

The quantity u2(; can be shown to be [S] 

which. for high signal-to-noise ratios (i = mii). can be approximated 
by 

( 

where tr[-] is the trace operator, K ,  is the weight-noise correlation 
matrix defined in (37-), $(T) denotes a co~~elat ion bctween two rand0111 
processes, the prime denotes a derivative with respect to 7, and $(4)(0) 
denotes a'4(~)/&~ at T = 0. 

Note that, in interpreting the propositions, it is important to keep in 
mind that the result is true if no false lock occurs; i.e., if no noise 
samples force the dclay estimate to lock on a local solution, or if' the 
adaptive filter does not compensate at all for the dclay reference. 

The steady-state delay cstiniatc variance is given by 

As in the case of the LMS delay tracking algoritlim, thc L.MS 
wight  vector adaptive algorilhni 01- ( 2 6 )  c;m he i~~ialyscd in terms of 

convergence in the mean and the mean square of the weight vectod 
csti~ni~tc. That typcot' ioni~lysis hiis bccn perfornicd by n w y  ilutl~ord 1 i~nd t l~c  dcti~ils i~o11~erning our proble111 C ~ I I I  be li)~~ncI in 151. DLIC to IIIL" 
assumptions I I ~ I C ,  in particular the inslantancous propagirtion of tlic 
adaptive delay value through the adaptive-filter delay line, the bchav! 
iour of the filter is not al'fected in many different ways by the delay 1 
elenlent. The following two propositions characterize the convergence' 
of the weight vector. 

Proposition 4. 111 .srotrc/y-.srtrrr~ c~~ntlitiotrs, tlrc ~x'iglrt ~ w t o r  c*.r~i~trtr-' 
tor, g i ~ w r  I y  rlw ( ~ ( I ( r l ~ r i ~ , ( , , / ~ l r ~ ~ r  1,M.S' dgor i t l r~r~  o p ~ r ( ~ t i n , q  jo i11t1~  wirlr I 
rr ttrc~tr~~-.vc~rctrw ~~ot~~lcor;qcwt rlc~lrry t~.trckitrg ctl~qori/lrrtt, c .o t r~vt~c~s in /lrcJ 
Illeat1 ly 

Proposition 5. 111 .ste~r~i~~-.vtot(~ c~ondi/iorr.s, the w~ig11t vector c ~ t i t t ~ ( i - ~  
tor, given .!?\I the crhprrv~,filrc~r- LMS o l ~ o r i t h ~ i z  opernting joitrrb 11 i r1 t  1 
a mean-srlucir(~ con~w,;qent d(~lcty trtrcki~rg trlgoritlrrn, is corr~~.~;qc~trr in 
the meatr .sqrrtrrc, i/' 

where A; is rlrc i"' eiiyc~tr w l w  of rlre M X M input signcrl (~ritocorrel(~/iot~ 
matrix R. 

Note that the convcrgcncc condition of (42) and (44) are itlcnlicxt 
to the ilsu;~l contlilions I'or collvcrgencc of an LMS adaptive I'iltcr 17 1. 
but that the ct'f'ect of the dcl;~y estimator on the adaptive filter is to i~dd 
a bias to the weight vector cstin~atc. 

3. E.rcess mean sqrrctred error and misadjustmenl 
with the joint LMS crljiorirhtn 

From (8). the steady-state MSE function is 

where thc values of the estin~alcs take on their steady-statc li)rn~. 
Neglecting some tcr~ns involving the square of vY,<, we can transli)m 
(45) into 

The excess MSE is givcn by the expression 5 ,., = 5 , ,  - which can 
he tr;uisli)rmcd into 

where the excess MSE specific to the adaptive delay element is de- 
fined ;IS 



the cxccss MSE spccific to the ahptivc filtcr is dsfincd as 

and the cross-product excess MSE is defined as 

The expression for c/, is valid for pure LMS delay estimation [4], and 
the expression for t<tr is valid for an adaptive LMS I'iltcr operating 
without an adaptive delay 171. 

The misadjustment is defined as the ratio of the excess MSE to 
t,,,;,,. Therefore, the misadjustment expression can be shown to be 

where M" and M a r e  the misadjustments specific to the adaptive delay 
element and to the adaptive filter respectively. They are obtained by 
dividing and I;{r by I;,,,i,, . 

B. Discussion of the LMS algorithm analysis 
The joint steepest-descent algorithm and its stochastic counterpart, 

the joint LMS algorithm, represent the generalizations of either the 
conventional SD (LMS) delay tracking algorithm 141 or the conven- 
tional SD (LMS) adaptive transversal filter algorithm [14]. It is there- 
fore not surprising to find that all the results concerning the delay 
algorithm degenerate to those of [41 when the signals are properly 
interpreted, and that the atlaptivc-filter derivations come down to the 
LMS adaptive-filter results when the delay, D, and the variance are set 
equal to zero. 

Another point to note is that, as long as the delay estimation algo- 
rithm is convergent in the mean square (the steady-state delay variance 
v, is finite), the conditions for convergence of the LMS adaptive filter 
arc identical to the usual conditions for a similar adaptive filter operat- 
ing alone or with a fixed delay element. The convergence depends on 
the eigenvalues of the input-signal autoconelation matrix. Note also 
that. because of the adaptive delay element, the weight vector estimate 
is biased. 

As (37) and (40) suggest,, the convergence of the LMS adaptive 
delay e l y e n t  depends on I;,,,,, o?, and 0;. Using the high SNR 
;~ssumption = 9;;) and the fact that ( 

I;,,,;,, = m,? (0) -Q;; (0). 
(39) and (41) can take the form' 

and 

Equations ( 5 3 )  and (54) irdicate that the convergence of  the, LMS 
adaptivc delay element depends on the input signal power b,,,(O) and 
the minimum MSE Smi,,. If p is small, tr[K,] is small and we have 
0; = 3/451;,,,, and 0; = 25,11,1;mi,. We therefore see. from (36) and 
(37), that the upper bound for convergence in the mean squarc is about 
one-third of the upper bound for convergence in the mean. The stead) - 
state delay variance is also approximately given by L',, = US,,,,,,. 

The dcluy estinlatc variance is encountered in the excess MSE and 
misildji~slrnc.nl c.xp~-cssions, such ;IS (47) anti ( 5  I ) .  Once thc d r l q  
variance is computed or fixed, these two qui~ntities are seen to be 
functions 01' two terms specific to the adaptive delay elcnlcnt and to 
the adaptive filter respectively, and of a cross-product term (note that. 
since thc delay-specific term is a function of v,,, it is indirectly a 
function of the adaptive filter). The expressions for k:!, and <{, -are 
identical to those obtained for the respective adaptive alporithms 
operating alone 141. 171. The cross-product temis. cili and M"( are 
essentially the result of gradient and derivative estimation errors in the 
two adaptation processes. For stationary input and reference processes. 
the estimation noise in one adaptive algorithm is increased by the 
gradient estimation noise present-in the other adaptive system. There- 
fore, the total misadjustment, M, is not merely the sum of the adaptive 
delay element and adaptive filter misadjustment expression M~ and 
A#, but also includes a term due to the joint estimation noise. Note, 
however, that the cross-product misadjustment. Mg. is equal to the 
product of M" and Mf, making it a second-order term that, in practical 
situations, can he one order of magnitude smaller than the individual 
terms. 

As a final remark. note that the key quantities in the analyses are 
c,,,;,, and its second derivative. These quantities can be estimated from 
a priori knowledge of the transmitted signal and from the estimation 
of the received signal's autocorrelation functions. Some possible esti- 
mation procedures are given in [S]. 

C. Experimental results with the joint LMS algorithm 
Using the analysis results, it is possible to compute the adaptive 

delay gain factor, a, as a function of the adaptive filter gain factor, k.  
In order to perform this task, we combine the expression for v,,, given 
in (40), with equations (53) and (54) and the expression for tr[K,] 
given by [5]: 

Adaptive filter gain factor 11 

Fie~rre 3: 77rrw~ric.ol cunJc ofu verslrs u: SNR = 10 dB; smtlll-dmh cun.r: v,, = 0.001; 

t Note that these expressions are exact for white input and noise 
signals. 
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Table 1 
Excess mean squared errors and misadjustments 

for different combinations of a's and p's. 
The signal-to-noise ratio is 10 dB. 

Figure 7:  Luarrlit~g cr111.r Jbr rhc joit~r irl,q~rirl~!n u p i t i ~  wirlr o rifirret~ce deli? rrr11rp 111. 

0101 . ~ c r ~ ? i / ~ l i ~ L s . / s t ~ n ~ / ~ I i ~ ~ , ~  pcvirtil (rr!rrc~.s/~r~~irli~~,q ro Fig. 5): p = 0.01, a = 0.02. 



Using 21-coefficient adaptive and referencc filters with white input 
irnd noise signals and k)r a sign;rl-to-noise ratio of I0 dB, we obtain 
111c plots of Fig. 3. 

The gain factor a increases with I,,,,. and for ;I typical variance of 
0.01 the value ol' cu is approximarcly constant with p,. and is around 
0 . 5 .  This indicates that. for low variance. thc aduptivc filtcr does not 
significantly influence the behavio~~r  of the adaptive delay. The upper 
hound on a for convergence in the m a n  square (36) is not signifi- 
cantly influenced hy the d c l q  v;~rinncc ml is ;~pproximotely constant 
I'or p. < 0.01 (see [Sj) .  These critical vducs li)r a and p, arc retained as 
intlici~tions of the values that should he used in tlic simulations. 

An important result from the p ~ w i o u s  scclions is the cxp~us ion  for 
thc excess MSE at the output of the joint LMS algorithm given by 
(47). We verify these results by computing the thcorcticnl value of Q,,, 
using (49). and by obtaining el,.., as well as c,., ~hrough simulations. 
The results, for five different conbinations o f  tr and k, are presented in 
Table I for low-order adaptive and reference filters (21 coefficients). 
The corresponding measul'ed total misadjustment.  is is obtained from 
c,,, through division by &,,,,,. while the theoretical total n~isadjustment, 
MI,,, is obtained using (51). This table shows the good agreement be- 
tween the measured iind the theorctical cluantitics. Note that since the 
cross-product term M" M/ is n secontl-order component. its effect is 
s~nal l  or negligible, as can be seen f rom the fact that t,., is always 
approximately equal to the sum of c(v and c:!,. 
D. Results with a long reference impulse response 

In  practice, the reference-filtcr impulse response con cxhihit a fairly 
I ~ g c  nu~nbcr ofcoefficients. Forcxi~nlple, the typical inipulsc response 
associated with a reverberant room. m d  encountered in ;rudio survcil- 
lance 1 181. has more than 200 coefficients. We generated such an im- 
pulse response using the mcthod proposed by Allen and Bcrkley [19]. 
The response that we obtained simulates the audio channel between a 
source of sound and a microphone located in a closed room, with 
specific wall-reflection coefficients. We ;~rhitr;lrily sclcc~cil the po- 
ramctcrs to si~nulate the behaviour of a room nleasuring h 111 by 6 In: 
with a height of 3 m. The retlcction coefficient for ci~cli wall is 0.8, the 
sound sourcc is assu~ned lo he located ohout 0.5 111 away fronl one of 
1111' corners. ;~ntl ~ h c  Ioc;rtion ofthe reccivc~~ is ;ihout 1 111 l'ron~ the same 
corner. The corresponding impulse response is given in Fig. 3. Note 
that the response is not synlmetrical with respect to any point. and that 
it exhibits three large reflection peaks as well as five smaller ones. 
This reference impulse response is used in a system identification 
configuration (see Fig. 2). with a 200-coefficient adaptive filter and 
with both spectrally white Gaussian and audio input signals. 

Wilh a white Gaussian input. the dclay tracking of the joint algo- 
rithm is s own in Figs. 5 and 6 .  for a reference delay ramp and a 
sinusoidal \ eference delay in noiseless conditions. The rille of change 
of the linear delay is higher than what is typically encountered in audio 
surveillance [I 81. 

The inaccuracies in the delay estimation are relilted to the excess 
MSE. which is proportional to the nunihcr of cocfficicnts in the odap- 
livc filter (see (40)). Note the difkrcnt bchaviour of positive and nega- 
tive dclay tracking, especially in Fig. 6. This difference is related to 
the fact that the reference impulse response is not synilnetrical with 
respect to any or its points. In order to appreciate the cffcctiveness of 
the joint algorithm, the learning curvc corresponding to the joint algo- 
rithm coping with a linearly changing delay (corresponding to Fig. 5) 
is illustrated in Fig. 7. The learning curvc, corresponding to a system 
identification configuration in which there is no adaptive delay, i.e.. a 
configuration in which the adaptive filter trlorri, copes with the model- 
ling of both the linear reference dclay i~nd the reference l'ilter. is illus- 
I I . ; I I ~ ~ I  in Fig. 8. These curves were obtained by averaging 10 error 
cu~.vcs. Note the scale difference hetween Fig. 7 and Fig. 8. It is obvi- 
ous from these figures that the joint algorithm generates an MSE lower 
than that for the single adaptive filter. Similar results can be obtained 
with a speech input, although the joint LMS algorithm must he nor- 
nlalized in this case to take inlo account the power variations in the 
input signal [5] .  

V. Conclusions I 
I In this article, we have studied the joint SD and joint LMS algorithms' 

for timc-delay estimation and adaptive filtering. The presence of a 
nlultitude of st&narY points in the ohjcctivr function was estahlished.1 
;und Ihe steady-state behaviour of the two algorithms was investigated.l 
The coupling between the two LMS adaptive algorithms u a s  shown ro,  
give a misadjustment expression equal to the sum of the individual 
n~isxijustnients plus a cross-product term. The analyses were used t o  
ohtain a theare~ical view of the applicaiion of such alsorithmr in ipe{ 

cit'ic environments. The si~nulation results that we provided give a 
Ilavour of the sort of behaviour that one can expect when using an I 

adaptive delay element with a conventional adaptive filter. When a 
long in~pulsc ~ C S ~ O I I S C  filter has to be estimated. the additional compu- 
tations incurred by the LMS adaptive delay algorithm are not signiti-I 
cant, especially given the reduction in excess MSE that is attainable. 
This conclusion supports the use of the joint algorithm when the main I 

input and the reference signal are believed to exhibit some form od 
non-synchronous behaviour. 
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