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Joint Time-Delav Estimation and AdaDtive Recursive 
J A 

Least Squares Filtering 
Daniel  Boudreau  and  Peter  Kabal, Member, IEEE 

Abstract-A general  estimation  model is defined  in  which  two 
observations are  available;  one  being  a noisy version of the 
transmitted  signal,  while  the  other is a  noisy-filtered and  de- 
layed  version of the  same  transmitted  signal.  The  delay  and  the 
filter are  unknown  quantities  that  must be estimated. An adap- 
tive  system,  based on the  least  squares (LS) estimation  crite- 
rion, is proposed  in  order  to  perform  a  joint  estimation of the 
two  unknowns. The  joint  estimator is conceptually  composed 
of an  adaptive  delay  element  operating  in  conjunction  with  an 
adaptive  transversal  filter.  The  weighted  sum of squared  errors 
is minimized  with  respect  to  both  the  delay  and  the  adaptive 
filter  weight  vector. The  filter is adapted  using  a  fast  version of 
the  recursive  least  squares (RLS) algorithm,  while  the  delay is 
updated  using  a  form of derivative,  with  respect  to  the  delay, 
of the  sum of squared  errors.  In  order  to  perform  this  task 
efficiently, the  adaptive  delay is limited to integer  values  and is 
corrected  one  sample  at  a  time.  The  integer  delay  value is de- 
fined  as the  lag. A series of relations is presented,  in  order  to 
compute  and  update  the lag  value  such  that  the  optimum  least 
squares  solution is attained.  The  joint  delay  estimation  and RLS 
filtering  algorithm  is  obtained by combining  the  lag  update  re- 
lations  with  a  version of the  fast  transversal  filter RLS algo- 
rithm.  The  simulations of the  resulting  algorithm  show  that 
both  stationary  and  time-varying  delays  are effectively tracked 
and  that  the  adaptive filter  properly  estimates  the  reference fi l-  
ter  impulse  response. 

I. INTRODUCTION 

T HE PROBLEM of estimating the time delay  between 
two continuous-time  versions of the same signal,  each 

one corrupted by uncorrelated  noise components, has been 
the  subject of  many  research  efforts in recent years.  The 
conventional continuous-time signal  model is of the  form 

Z I ( t )  = s(t) + Z J ,  ( t )  

z2(t) = As[t - D(t)] + u,(tj, ( 1 )  

where s( t )  is the  transmitted signal; D(t)  is a  time  delay, 
possibly time-varying; A is a constant  gain factor; ~ ~ ( 1 )  
and u2(t) are  zero-mean stationary  noise processes,  as- 
sumed  uncorrelated with each other  as well as with s ( t ) ;  
while z l ( t )  and z2(r) are the two observed signals.  The 
maximum  likelihood estimator  for  the unknown delay D(t)  
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was derived,  for  a static [ l ] ,  [2] and a time-varying  delay 
[3].  Closed-loop  adaptive techniques  using the minimum 
mean squared error (MMSE) or  the least  squares  (LS) cri- 
teria have also been proposed. In these cases, the esti- 
mator structure is such that  one signal  is  processed by an 
adaptive system,  for which the output  is compared  to  the 
other signal  and the  error  used  to  adapt  a conventional 
adaptive  transversal  filter or an adaptive delay element. 

In this paper. we consider  a signal  model  that general- 
izes somewhat  the  model of ( 1 )  by allowing frequency- 
dependent  attenuation in the delayed path.  We  also  spe- 
cifically consider  discrete-time  signals  and  systems.  The 
corresponding  model  is of the form 

Z , ( I l )  = s(n) + Z i , ( ? I )  

z2(n) = gD,,h(n)[dn)l + u2(n) (2) 
where n is now the discrete-time index: and SD,,,h(,l,[ . ]  is 
an  unknown linear  operator  taking the form  of a filtering 
operation, with the filter impulse response h(n) ,  of a  de- 
layed by D,, version  of the  signal s(n) .  A block  diagram 
corresponding to  the  mathematical model of ( 2 )  is illus- 
trated in Fig. 1. 

The signal s(n)  can be  delayed before or  after it is fil- 
tered. In this paper. we consider  the  later  case, where the 
operator &[.I corresponds  to  a filtering operation of s ( n ) ,  
followed by a  discrete-time delay Dl,. The mathematical 
expression for that kind of operation is better  expressed 
using the continuous-time versions of the filter and the 
input signal.  The ‘.filter and  delay”  operation is then 
given  as a resampling  of  the  filtered  version of the contin- 
uous-time  signal s ( t ) ,  i.e. 

~ D , , , / I ( , I ’ I [ ~ ( ~ ) ]  = h ( r )  @ s(t)  1 f = n T - Dli (3) 
where the operator @ is the convolution  operator.  The 
corresponding  discrete-time  block  diagram is illustrated 
in Fig.  2. 

Another form of C,,, , , , , , , [* ]  corresponds  to the filtering 
of a delayed  version of s (n ) ,  i.e.. 

c,,,,,,[,l,[s(n)l = W )  23 s(nT - 4 ) .  (4) 
Note that the time-varying reference  delay D,, is not lim- 
ited to an  integer  number of sampling periods and can take 
any real value. All the  discrete-time  signals  are assumed 
to be the sampled  versions, with sampling period T. of 
continuous-time  signals  that are strictly  bandlimited to the 
frequency  range - 1 /2T < f < 1 /2T.  Examples of such 
systems are  encountered in system  modeling  problems. 
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Fig. I .  Mathematical slgnal model. 

Fig, 2 .  System  model  of  interest 

where the unknown  system often has an  impulse response 
that can be modeled  as  a pure  time delay  in series with a 
linear  filter. This can occur in noise or echo  cancellation, 
digital communication,  or  geophysical  exploration. 

In order to estimate CCD,l l io l ) [ . ]  or its inverse, we pro- 
pose to use  a joint  estimator that  is composed, at  least 
conceptually, of an adaptive delay element d, and a  con- 
ventional Mth-order  adaptive  FIR filter  with  weight  vec- 
tor wM(n) .  The  joint adaptation is based on the use of the 
same  error signal for the adaptation of both systems, us- 
ing the  least  squares criterion. It can  be used  in  system 
identification (cancellation)  mode, in which an error  sig- 
nal is formed by filtering z , (n)  with an estimate of 
C,,, , , , , , ,[.] and subtracting  it  from zz(n) .  It may also  be 
configured in inverse filtering (equalization)  mode, in 
which the error signal  results from  passing z z (n )  through 
an estimate of L D , , , , - ~ ( , l J * ]  and  comparing with z , (n ) .  A 
system  identification  configuration may take,  for  exam- 
ple, the  form  shown  in Fig. 3. This configuration  is  the 
one that is explicitly assumed  throughout  the  article. 

This implies  that  the  reference  system  that  is  being es- 
timated corresponds  to (3), or that it can be closely ap- 
proximated  as  such [e.g., if the  reference  delay  varies 
slowly in a  configuration  represented by (4)]. This form 
of joint  estimator may be used in applications  where both 
the  reference  delay  and  filter  must be  estimated. A simple 
adaptive filter has the  potential to model  the  functional 
CD,,,,l~lll[s(n)] since this  function  can be approximated by 
an FIR filter with the proper  number of taps.  This ap- 
proach is inefficient in the  sense  that the  reference  delay 
D,, is  modeled by a time shift  in the  adaptive filter impulse 
response. For a fixed filter order M ,  this shift may result 
in an error that  is larger than  the error  corresponding  to 
perfect modeling. An additional  adaptive delay estimation 
algorithm, specifically designed to track the  reference  de- 
lay variations, allows  a better impulse  response centering 
and the use  of an adaptive filter with  a smaller  order. 

Fig. 3.  System  identification by a  joint  adaptive  estimator. 

The  choice of an.adaptive  least  squares filter, under the 
form of the recursive least squares  (RLS)  algorithm, is 
motivated by the fast  convergence  properties of  this al- 
gorithm.  The  simplest  form of  this algorithm is generated 
by using the matrix inversion  lemma, which gives a com- 
putationally  involved algorithm [4]. A drastic  cut in the 
number of computations  is  obtained  with the  so-calledfust 
implementation  of the  RLS  algorithm.  Carayannis et ai .  
[5] derived the fast aposteriori  error  sequential technique 
(FAEST): while Cioffi and Kailath [6]  worked on a  very 
similar  implementation,  the  fast  transversal j l ter   (FTF).  
We  develop  our  joint  time delay estimation  and  adaptive 
LS filtering algorithm by making use of the  FTF'  form of 
the RLS algorithm.  The reason for  this  choice  is  not  only 
the reduced computational  complexity, but also the fact 
that the  delay  estimation part  of the  joint  algorithm  can 
be naturally linked  with  the  variables  used in the  FTF  al- 
gorithm. A major  drawback of the FTF algorithm  is  its 
possible  numerical  instability in  tracking  conditions [ 6 ] .  
Several  methods have  been  proposed  to  solve this prob- 
lem, and we rely on a fairly  simple restart procedure  to 
circumvent  it. 

Note  that the algorithms  discussed in this  article  are 
suited for  tracking  the  reference  system,  once a form of 
acquisition  has been  performed.  The  modeling  capabili- 
ties  of the  adaptive filter is such that,  in  general,  the mean 
squared error (and the  sum of squared  errors) is  not uni- 
modal  with respect to the  delay.  Without  an acquisition 
algorithm,  it is  very  likely that  the delay estimation  al- 
gorithm tracks a local  minimum.  The  acquisition  problem 
is briefly addressed in Section 111. 

The  paper is organized as follows.  Some notation and 
background  material is  presented  in  Section 11. Then  the 
joint RLS algorithm  is given in Section 111, which is  fol- 
lowed by some  experimental results  in Section  IV. 

11. BACKGROUND THEORY 
The variables encountered in the  joint  algorithm  are  de- 

fined in the next subsection.  Some  recursive  relations'al- 
lowing us to update  the  adaptive delay are given in Sec- 
tion 11-B. 

'FTF is used  thereafter  as a generic  term that includes  both  the FAEST 
algorithm and  the original FTF algorithm of [ 6 ] .  
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A.  Some  Notation  and  Dejnitions 
In the prewindowed  weighted  recursive least squares 

adaptation algorithm  for  adaptive transversal  filters of or- 
der M, the index  of performance  to be minimized, at it- 
eration n, and  for an integer adaptive delay l 2  in the ref- 
erence  data, is 

n 

E(n) = ,X P"-iie,M(i, 1)12 ( 5 )  
1 ' 1  

where the a  posteriori estimation  error is defined by 

eM(i ,  I )  = r(i + I )  - w g ( n ) u M ( i )  (6) 

with 

uM( i )  = [u(i), u(i - l ) ,  * * * , u(i - M + I)]' 

w k n )  = [w:M(n), w h ( n ,  . . . , w L M ( ~ ) I '  (7 )  

and  the  superscript H denotes  complex  conjugate  trans- 
pose.  The  sample u(nj is the input to the  adaptive filter, 
and r(n + I )  represents  the delayed  reference  signal.  The 
vector wL(n)  is the adaptive  filter  weight  vector  used  when 
the  lag is 1. Note  that  the  prewindowed method assumes 
that  the data is zero  prior  to  iteration n = 1 [4]. 

The  constant /3 is a weighting  factor  close  to, but  less 
than one [ 4 ] .  Strictly speaking, an algorithm based  on (5) 
is not completely suitable  for  tracking nonstationary ref- 
erence  signals,  since it never  completely "forgets" the 
past data. But for /3 lower than one?  the  tracking  capabil- 
ities are generally acceptable  [6]. 

The  least squares  solution is  obtained  as a function of 
the  deterministic autocorrelation  matrix, defined  as  (using 
the notation  in [4]) 

n 

mM(n) = ,C / 3 n - ~ u M ~ i ) u E ( i )  (8) 

and of the  deterministic  cross-correlation  vector with lag 
1 given by 

i = 1  

11 

&(n) = ,E p n - j  uM(i)r*(i  + 1 ) .  (9) 

The least  squares  weight vector at  iteration n ,  for lag 1, is 

&(n) = m , . ~ I ( n ) ~ h ( n )  (10) 

I =  I 

and the  corresponding  minimum of squared  errors is 

$,w(n, 1 )  = min E(n) 
W 

n 

= C /Ti1r(i + 1 )  - cE(n)uM(i)12. ( 1 1 )  

Note  that the  data  is  assumed  to yield  a deterministic 
autocorrelation  matrix  that is nonsingular. 

i = l  

'This  integer  delay is defined  as  the  lag  and is negative.  Note  that i does 
not  carry a time index because,  in the RLS algorithm, i t  is assumed  that 
the  signals  are  stationary  within  the  memory of the  algorithm  (defined by 
0). which implies that i applies to all  the  previous  data. 

The  FTF  form of the RLS  algorithm  is expressed in 
terms of four transversal  filters  [6]  that are applied on the 
input signal.  With infinite  precision arithmetic, it imple- 
ments  exactly  the RLS  recursions, with large computa- 
tional savings.  The particularity of the  RLS adaptive filter 
algorithm  is that it computes  the  true solution of the LS 
problem  at  each iteration, which  typically ensures a rate 
of convergence  one  order of magnitude  faster than the 
simple steepest-descent  or  LMS  algorithms [4]. A one- 
step-forward linear  predictor  and a  one-step-backward 
linear  predictor  are first used.  They essentially  whiten  the 
input signal,  and  their  outputs  and  impulse responses  are 
used to update  a  third  filter,  the  Kalman  gain  filter.  The 
output  and weight vector of this  third  filter are used to 
update the actual  adaptive  filter  weight vector cL(n ) .  In 
order  to obtain  the FTF algorithm, a few more  quantities 
must be defined  as follows. 

First, the a priori estimation  error q r ( i ,  I) is defined  as 

cyM(i, I )  = r(i + 1 )  - w c ( n  - I )uM( i j .  (12) 

The optimum  weight vector  for the one-step  forward  lin- 
ear  predictor of order rn is  denoted  as a,(n) (1 I m 5 
M ) .  This  vector  minimizes the sum of weighted  forward 
a posteriori prediction-error  squares, defined as 

n 

F,ll(n) = Pn-'lfnI(i)l2 (13) 

.Mi)  = u(i) - a%)u,,,(i - 1 ) .  (14) 

1 -  I 

where 

Then  the  forward a priori prediction-error q,(i) is 

q,n(i) = u(i) - a,H(n - ~)u , ( i  - 1). (15) 

Similarly, the optimum weight  vector for the one-step 
backward linear  predictor of order m is the vector b,,(n) 
that minimizes  the sum of weighted  backward a  posteriori 
prediction-error squares,  expressed  as 

n 

B,,,(n) = P-'lbn1(i)l2 (16) 
i =  I 

with 
b,,,(i) = u(i - m) - b,H(n)u,(i). (17) 

Then  the  backward a  priori prediction-error $,,,(i) is 

#,ll(i) = u(i - m) - b,(n - l )um(i) .  (18) 

We define four more  quantities that  are used  specifically 
in the lag-recursive relations and  the  FTF  algorithm. The 
inner-product of the forward a  posteriori prediction  error 
with the delayed reference  signal  is  given by 

H 

n 

u i ( n )  = C /Y- ' frn(i)r*(i  + I ) .  (19) 

Similarly, the inner-product of the  backward a  posteriori 
prediction error  with  the delayed  reference  signal  is 

1 =  I 

n 

zgti(n) = C v-' b,(i)r*(i + I ) .  (20) 
i =  I 
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The Kalman  gain  vector g,w(n),  as used also in the RLS 
algorithm, is defined  as 

gu(4 = @MI (n - l)u,(n) (21) 

yw(n)  = 1 + P- '  g;(n)u'w(n). (22) 

and  the  "Kalman  filter error" y,(n) as 

B. The Lag-Recursive  Relations 
The key point  in the  joint  adaptive  algorithm  consid- 

ered in this  paper  is  the availability of  a  set of lag-recur- 
sive  relations,  that allows us to  compute  the  optimum 
weight vector and  the  sum of squared  errors  for a  certain 
lag, given  the same quantities for  another lag value.  These 
relations, first derived  for  block LS estimation by Kal- 
ouptsidis et al. [7] and  obtained  using a geometrical 
framework  in [SI, are the f ~ l l o w i n g : ~  

1) Forward recursions for  the  error: 

(25) 
2) Backward  recursions for  the  error: 

(28) 
3) Forward recursions for  the LS weight  vector: 

*F-l1(n - 1) = L&(nj] M- I + uM- I(n)${w(n) (29) 

of the vector x and Lx] for the  vector made of them  bottom  components 
'The  notation [x1 ,n stands  for  the  vector  made of the m top  components 

of x. 

4) Backward recursions for  the LS weight vector: 

(33) 

The  forward recursions involve  the  following  pattern: 
the  quantity of interest is first expressed  at  time n - 1 and 
for a  lag of I + 1,  using a forward  prediction of order 
M - 1. Then  the required quantity  for a  lag 1 + 1  is 
computed by using a time  update recursion and a  back- 
ward  prediction  of order M - 1. 

111. THE JOINT RLS ALGORITHM 
Based on the error  and weight vector  recursions, differ- 

ent  variants of joint  time  delay  and  fast  transversal filter 
algorithms can be obtained.  These  algorithms  can  be  cast 
into the  following  general  form: 

1) Apply the RLS algorithm in order  to  obtain &(n) 
and g M ( n ,  I )  

2) Adapt 1 by using deriv?tive information  from 
$ , M ( a ,  I ) ,  and  update OL(n) and t M ( n ,  I )  in the  lag  direc- 
tion. 

The  joint tracking algorithm is composed of three dis- 
tinct computational  phases.  The first part  is  essentially the 
preliminary phase of the  FTF  algorithm,  Le.,  the  com- 
putations  making use of the  forward  and  backward  linear 
predictors as well as  the  Kalman  gain filter  (see [8] and 
[5] for more  details about  the  FTF  or  the  FAEST  algo- 
rithms).  We  use a slight modification  of the  conventional 
expression for  the  FTF  algorithm by describing  it  in  terms 
of (M - 1)th-order  predictors  instead of the more con- 
ventional Mth-order.  The second computational  phase in- 
volves  the computation of the  current  weight  vector 
$i.$(n) and  the computation of three  sums of errors;  one 
for  each  element pf  the  setpf  lags { I  - 1, 1, 1 + ' l } .  The 
computations of .$,,?(n, I ) ,  .$,(n, 1 + 1)  and gM(n, 1 - 1) 
are  performed  by  using  the  lag  update  recursions  for  the 
error  and  the  weight  vector.  In  the  joint  algorithms  con- 
sidered in .  this  paper,  the  computation of $fi; ' (n) and 
EM(n, I - 1) is first performed,  using  the usual FTF  equa- 
tions.  Then  the  forward  lag  recursions  for  both  the  error 
and  the weight vector  are used twice, in order  to  get  the 
errors  for I and 1 + 1 and the  weight vector  for 1. These 
successive  applications of  the forward  recursions produce 
the  least  number of computations,  compared  for  example 
to the application of the  forward  and  backward  recursions 
on the  error  and  weight  vector at  lag 1. This  choice  also 
simplifies the third computational  phase, which  involves 
a decision  on the  lag update  and the computations of the 
new ,corresponding variables.  The  lag is either  kept at the 
same  value  or  updated  by  plus  or minus one  sample, de- 
pending on, the  largest !f the ' three  sums of errors {EM@, l ) ,  t M ( n ,  I + l),  EM@, 1 - l)}.  Therefore,  the 



596 IEEE TRANSACTIONS ON SIGNAL  PROCESSING. VOL. 41. NO. 2 ,  FEBRUARY 1993 

adaptation is not only done in the direction  of the least 
squares solution, as in a gradient-type  algorithm, but is 
such that a  value that truly minimizes &(n) at  each  itera- 
tion, within  a  finite  set  of possible delay values, is se- 
lected.  This  type of joint  algorithm  computes  the  two  es- 
timates  such  that  they correspond  to  the  joint LS solution 
at each  iteration. 

Schematically,  the preliminary and  error  computations 
phases of the algorithm  can  be represented as in Fig. 4: 
where  six  parallel digital filter are  represented.  The  top 
three filters are  essentially  the  same  as  the  ones used  in 
the  conventional  fast  transversal filter [6], [4], except  for 
the difference in  predictors  order.  The  fourth filter  is for 
the computation  of i M ( n ,  1 - 1) and $L- ‘ ( n  - 1). No- 
tice that iM- - 1, I )  is also  obtained  from  that filter, 
using  (23) and  the  fact  that 

(34) 

A fifth filter, with weight vector $k- (n - 1) obtained 
from  (29), is  used to obtain ui- ,(n), from which 
ZM(n, I ) ,  $h(n) and E M - , ( n ,  I + 1) are  computed. 
Finally  a  sixth  transversal filter,  with weight vector 
#&Il (n - l),  is  used in  the  computation of L J $ : ’ ~ ” ( ~ )  and 

The  joint  algorithm,  based on Fig. 4 ,  is given in the 
next subsection.  Parts  a)  and b) of this  algorithm  corre- 
spond to the figure, while part c) constitutes the lag up- 
date  section.  The  decision  about this update may  involve 
the time average of the sum of squared errors  or  another 

’ form of average. In our  algorithm,  we  choose  to  update 
the  lag  as 

EM(% 1 + 1). 

1 = 1 + e,$,&, I ) .  (35) 

1 -  i t j , l n  I +  1) 

Fig. 4.  Interpretation of the lag 1 - 1, 1 and 1 + I error  computations. in 
terms of transversal filters. 

A. The Joint  Algorithm 
A form of initial parameter  acquisition is first discussed 

in  this section,  and  the  joint  tracking  algorithm is pre- 
sented. 

1) The Acquisition  Procedure: The  lag-recursive rela- 
tions of Section 11-B can  be used  in the  acquisition algo- 
rithm, where it  is required  that the least squares  solution 
be attained, with respect to  both  the lag  value  and  the 
optimum  weight  vector. Since  such  an  acquisition is to  be 
performed  on  a  finite set of data, it  is  in  fact  identical to 
the optimum lag problem  considered in [ 7 ] .  It  is desired 
to  compute,  for a representative  number of lag  values,  the 
least  sum of squared  errors  and  determine the lag  and  the 

where 

and ( * ) denotes a form of time  average. 
Note that in the  case of positive  update, in (42),  only a 

simple transfer of information  from 1 + 1 to 1 quantities 
and  the reinitialization of certain  variables,  are  required. 
In the case of negative  update, in (43), some  intermediate 
computations,  involving 0; ’ (n )  and l3k (n) ,  are  neces- 
sary to obtain u z -  I(n) and u#Y;)(n). The vectors 

(n) and 13kz (n) are  updated in  (38) and  are referred 
to as “recursions  for  update  smoothness.”  These  quan- 
tities are used  with some of the  backward  lag-recursive 
relations, inA the computation of  the  new  values  of 
w;’ (n )  and {“(a, 1 - 1). 

81- I 

weight vector  corresponding  to  the  global  minimum.  This 
can be  done  in  various  ways, with the  help of the  lag re- 
cursions.  One method consists in first computing the  least 
squares solution  for  the  smallest lag value of interest. 
Then the computations of (40) can  be  used  as many times 
as desired  to  obtain  the  sums of squared errors  for all the 
lags  of interest.  The  lag  value  corresponding  to  the  least 
t M ( n ,  I )  is retained for  the  initial  value. 

2) The Joint  Tracking  Algorithm: Based on the ac- 
quired lag  and  weight  vector  values, the following  track- 
ing algorithm is applied on the  incoming  data. 
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6) Errors and weight vector  computations: Extra re- 
cursions for update smoothness 

8'- I 

e / - 2  

(a) = pekl(n - 1) + u ~ ( ~ ) ~ * ( ~  + I - 1) 

(n) = pe  ;- *(n  - I )  + + I - 2) (38) 
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(43) 

B. Discussion 
The originality of the  joint  tracking LS  algorithm  pre- 

sented in Section 111-A2) resides  in the  serial  computa- 
tions, from fiL-'(n - l ) ,  of all the necessary errors and 
weight vectors for lags 1 and 1 + 1.  One  consequence of 
this  serial  approach is a reduction in the  memory  needed 
to store the  different quantities of interest.  The  lag-update 
recursions append  themselves nicely to the  FTF  algo- 
rithm. Note however that two extra recursions (38) are 
necessary to ensure  smoothness when the lag is updated 
from 1 to 1 - 1 (43).  In this case,  the cross-correlation 
vectors 0;; ' ( n )  and eL-*(n) are necessary to update 
u:- I (n) and  to  compute v {fI;)(n) (necessary to  correct 

must be reinitialized  in  the case of lag update [(42) and 
(4311, These reinitializations constitute the  only approxi- 
mations of the  joint LS algorithm and  are justified by the 
limited  memory  of  the  algorithm  (defined by p).  Further- 
more, the  reinitialization of the  cross-correlation vectors 
does not involve  any of the  algorithm's internal  variables 
since  the  input  signal u(n)  and  the reference  signal r(n) 
are the  only  variables  used  in these  computations. 

In contrast, the application of three parallel  versions  of 
the RLS algorithm,  one  for  each  possible  lag, requires  the 
initialization  of  both the  sum of squared  errors and  the 
weight vector, when the  lag  is corrected.  The initializa- 
tion must be  done  assuming a priori knowledge  about the 
previous  input data (usually  zero datt  are  assumed).  This 
typically  introduces an error in  both .$$(n) and f iL(nj  be- 
cause their computation  involves  the internal  variables 
?,,,(a) and g,(n) [see (39)] that  were  obtained  from a to- 
tally different set of initial  conditions  (nonzero  input data). 
In order  to  allow  a smooth  transition  in the  case of lag 
update,  two  extra  parallel branches,  one  for 1 + 2 and  one 
for 1 - 2 ,  must be  computed, which  gives a' final parallel 
algorithm involving five branches.  This  algorithm re- 
quires approximately five times  the  amount of  memory 
needed by the algorithm based on  the  lag-recursive rela- 
tions  (in order  to store all  the  previous values of the 
variables  used  in  the errors and  weight  vectors computa- 
tion). 

At the  start of the joint  algorithm,  the internal  variables 
of the FTF  are initialized exacrly as  proposed by Cioffi 
[ 6 ] ,  and  the  extra  error  and  correlation variables are ini- 
tialized to  zero. 

ai- I (n ) ) .  Note also that 0; ' ( ? I ) >  e;;*(n), and vM- b d  + I I) (n) 

IV. EXPERIMENTAL  RESULTS 
The  fast  joint  time  delay  estimation and  adaptive  RLS 

filtering algorithm  corresponding  to  Fig.  4 was  imple- 
mented,  in order  to verify its practical behavior.  The ref- 
erence filter h(nj was implemented  as  a  21-tap low-pass 
FIR  filter, with a 3-dB bandwidth  approximately equal to 
0 . 7 ~ .  The  transmitted  signal s(n) was a zero-mean  pro- 
cess with a white power  spectral  density  from - K  to K .  

The adaptive  filter also had 21 taps.  The usual  problem 
of numerical instability,  often  associated with the RLS 
algorithm implementations [6],  was also present in our 
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Fig. 5. Tracking 

iteration n u n h e r  
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i t e r a t ion   number  

Fig. 6. Tracking of a  linearly  changing  delay; - - - - - -  reference  delay, - adaptive  delay. 0 = 0.92,  SNR = 20 dB. 

algorithm. A periodic  restart  of  the algorithm,  similar  to 
the  technique  proposed by Eleftheriou  and  Falconer [9], 
was implemented to reinitialize  the internal variables of 
the  algorithm (those produced by the first computational 
phase).  Since we were only interested  in the  joint  delay 
estimation and  adaptive filtering capabilities of the  algo- 
rithm,  our periodic  restart procedure  consisted in the sim- 
ple  periodic transfer of the  parameters of an FTF  algo- 
rithm, computed in parallel with the  joint  algorithm.  The 
restart period  was fixed to 600 iterations, a number  large 
enough to  ensure  convergence in our  particular  case.  The 
time when divergence  occurs  depends  on  the  processor 
word length, on the nature of  the  specific algorithm and 
on  the nature of the signal [lo]. A real-time implemen- 
tation should therefore  make  use of a rescue variable to 
monitor  the  truncation error  accumulation  in the algo- 
rithm and trigger the  reinitialization of the  critical vari- 
ables [4]. 

Some simulation  results concerning the tracking ability 

of the joint RLS algorithm  are  given in Figs. 5-8. In  order 
to perform the  lag-update  decision [Part c) of Section 
III-A2)] the  time  average of the  sum of squared  errors 
must be  computed.  This is done by accumulating  the sum 
of  squared  errors  over 50 iterations. 

The  adaptive  delay  responses to a  linearly changing ref- 
erence delay are  presented  in  Figs. 5 and 6. The  reference 
slope is 0.01 sampleisampling  period.  The noiseless case 
is  shown in  Fig. 5, and  the results for a signal-to-noise 
ratio of 20  dB  appear in Fig. 6. Except  for a granular-type 
of noise,  the  adaptive delay tracks well the  reference  de- 
lay.  Note  that  the  exponential  window  parameter P was 
set to 0.92, in order  to  allow  good  tracking.  The results 
for a  sinusoidal reference delay are  illustrated in Figs. 7 
and 8. Adequate  tracking is again  demonstrated in this 
case. 

These results demonstrate  the  fact  that  the  joint  algo- 
rithm follows  the  reference  delay  closely,  which  indicates 
that  the adaptive filter impulse response stays  centered, 



600 IEEE TRANSACTIONS O N  SIGN.4L PROCESSING. VOL 41. KO. 2 .  FEBRUARY 1993 

4 -  n 
2 -  

h 

v - e 
v \ 
$ 0  , . , . ,  

/ 

- 3 '  
v -= -2 - 

/ 
/ 

J 

-4 - 

0 400  800 1200 1 6 0 0  2000 

i t e r a t ion   number  

Fig. 7 .  Tracking of a sinusoidally  changing  delay; - - - - - -  reference  delay. ~ adaptive  delay. B = 0.92: noiseless con 
ditions. 
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Fig.  8.  Tracking of a  sinusoidally  changing  delay; - - - - -  - reference de- 

lay, __ adaptive  delay. fl = 0.92. SNR = 20 dB. 

even if the  reference  delay attains  a fairly large  value, as 
in the  case of the linearly changing  delay.  This  shows the 
potential of the  joint  algorithm in tempering significantly 
the  problem  of unwanted delay  tracking by the adaptive 
filter. 

V .  CONCLUSION 
This paper has  presented a new algorithm for  the  joint 

estimation of time  delays  and  correlation  function  be- 
tween two  observed  signals, when  the estimation  criterion 
is the minimization of the sum  of  squared errors.  The 
principal  contribution of the work  is the  derivation of an 
RLS algorithm  that  makes use of time  update, filter order 
and lag update  relations,  in order to compute efficiently 
the  least  squared error  and  the  corresponding weight  vec- 
tor.  The lag update constitutes an additional  degree of 
freedom for the  minimization  of  the sum of weighted 
squared errors. 

The simulations of the joint  RLS algorithm  indicate the 

potential of the  joint  algorithm. By averaging  the mini- 
mum sums of squared  errors  over 50 samples, and by 
comparing three of  these sums of errors, the delay track- 
ing is very good in all  cases  for SNR's as low as 20 dB. 
Below this value,  the  performances  degrade very quickly. 
But for each application,  there is an optimum strategy for 
delay estimation,  and the particular  one  chosen  here is 
fairly empirical.  This  simple method shows that the joint 
RLS  algorithm can  keep the adaptive filter  impulse  re- 
sponse  approximately centered in different kinds  of sce- 
narios. It indicates also  that if rapid  adaptation to the  ref- 
erence filter is required and that  computational  complex- 
ity is a  secondary  issue,  the  conventional  RLS adaptive 
filter can be favorably enhanced by the  delay  estimation 
based on  the lag-recursive  relations. 
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