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Shaping Multidimensional Signal 
Spaces-Part I: Optimum 

Shaping, Shell Mapping 
Arnir K. Kbandani and Peter Kabal 

Abstract-In selecting the boundary of a signal constellation 
used for data transmission, one tries to minimize the average 
energy of the constellation for a given number of points from a 
given packing. The reduction in the average energy per two 
dimensions due to the use of a region ‘Z as the boundary instead 
of a hypercube is called the shaping gain y, of L?‘. The price to 
be paid for shaping involves: 1) an increase in the factor 
constellation-expansion ratio (CER,), 2) an increase in the 
factor peak-to-average-power ratio (PAR), and 3) an increase in 
the addressing complexity. In general, there exists a tradeoff 
between ys and CER,, PAR. In this work, the structure of the 
region which simultaneously optimizes both of these tradeoffs is 
introduced. In an N-D (N-dimensional) optimum shaping re- 
gion (N even), a 2-D sphere is the boundary of the 2-D sub- 
spaces and an N-D sphere is the boundary of the whole space. 
Analytical expressions are derived for the optimum tradeoff 
curves. By applying a change of variable denoted as shell map- 
ping, the optimum shaping region is mapped to a hypercube 
truncated within a simplex. This mapping facilitates the perfor- 
mance computation, and also the addressing of the optimum 
shaping region. Using shell mapping, we introduce an address- 
ing scheme with low complexity to achieve a point on the 
optimum tradeoff curves. To obtain more flexibility in selecting 
the tradeoff point, a second shaping method with more degrees 
of freedom is used. In this method, a 2-D sphere is the boundary 
of the 2-D subspaces, an N’-D sphere, N’ 2 2, is the boundary 
of the N’-D subspaces, and an N-D sphere is the boundary of 
the whole space. 

Index Temts-Optimum shaping, shell mapping, truncated 
cube, uniform density, optimum tradeoff. 

I. INTRODUCTION 

A 2-D (two-dimensional) signal constellation C, is a 
finite set of 2-D points bounded within a shaping 

region ~9~. In using such a constellation for signaling over 
a channel, the energy associated with different signal 
points is not the same. By transmitting the points of 
higher energy less frequently, one can obtain a lower 
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average energy for a given entropy [l]. For a fixed number 
of signal points, such a nonuniform probability distribu- 
tion reduces the entropy of the set and, consequently, one 
needs more points to transmit at the same rate. Increasing 
the number of signal points is a price to be paid for the 
reduction in the average energy, and is denoted by the 
factor constellation-expansion ratio (CER,). To expand 
the constellation, some points of higher energy are added 
around the existing points. This increases the peak-to- 
average-power ratio (PAR) of the constellation. The PAR 
affects the sensitivity of the constellation to nonlinearities 
and other signal-dependent perturbations. 

In using a nonequiprobable signaling scheme with a 
signal constellation C,, as the rate transmitted per chan- 
nel use is not constant, we can have a variable delay in 
transmission. A method to avoid this problem based on 
using a shaping code (which has a fixed rate per signaling 
interval) is given in [l]. Another approach is to use an 
N-D signal constellation C, (N > 2) which is selected as 
an appropriate subset of the N/Zfold Cartesian product 
of C, with itself. This subset is selected by a region SN. 
The final shaping region is denoted as pN, i.e., 5& =SN 
n {%‘$v/’ where G?2 is the shaping region associated with 
C, and {‘SJN/2 is its N/Zfold Cartesian product. In this 
case, using the points of C, with equal probability in- 
duces a nonuniform probability distribution on the points 
of C,. This is the basic idea of constellation shaping. 

Addressing is the assignment of the data bits to the 
constellation points. If C, = {Cz]N/2, the addressing in 
C, can be achieved independently along each C,. For a 
shaped constellation, which is a subset of {C2]N/2, inde- 
pendent addressing is not applicable, and we need a 
means to specify that certain elements of {Cz]N/2 are not 
allowed. This means that the use of shaping increases the 
addressing complexity. For a fixed number of bits per 
dimension, a multidimensional constellation can have a 
huge number of points. This can make the addressing of 
such a constellation a complicated problem. 

In the work of Wei [2], shaping is a side effect of the 
method employed to transmit a nonintegral number of 
bits per two dimensions. This method provides moderate 
shaping gain for low values of CER,. Addressing of this 
shaping method is achieved by a lookup table. Forney and 
Wei generalize this method under the topic of the gener- 
alized cross constellations in [3]. They also find the opti- 
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mum induced probability distribution on the 2-D sub- 
spaces (for an infinite dimensional space) and calculate 
the corresponding tradeoff curves. 

Conway and Sloane in [4] introduced the idea of the 
Voronoi constellation based on using the Voronoi region 
of a lattice A, as the shaping region. The Voronoi constel- 
lations are further considered and elaborated on by For- 
ney in [5]. 

In [l], Calderbank and Ozarow introduced a shaping 
method which is directly achieved on the 2-D subspaces. 
In this method, the 2-D subspaces are partitioned into 
equal volume circular subregions of increasing average 
energy. A shaping code is then used to specify the se- 
quence of subregions. The shaping code is designed so 
that the lower energy subregions are used more fre- 
quently. As all the codewords of the shaping code are 
equiprobable, the total rate per signaling interval remains 
constant. They also find the optimum induced probability 
distribution on the 2-D subregions (for an infinite dimen- 
sional space) and calculate the corresponding tradeoff 
curves. 

Lang and Longstaff in [6] use an addressing scheme to 
address the points of a spherical constellation based on 
the Leech lattice. In their scheme, first, the final constel- 
lation is divided into energy shells. Then, a point in a shell 
is found by successively decomposing the space into lower 
dimensional subspaces via generating function techniques. 
The key point to this scheme is that the energy along 
different dimensions has an additive property. Prior to [6], 
a similar addressing scheme was used by Fischer in [7] to 
label the points of a vector quantizer with a pyramidal 
quantization region. 

The idea of trellis shaping is introduced in [S]. This is 
based on using an infinite-dimensional Voronoi region 
determined by a convolutional code to shape the constel- 
lation. 

In [9], Kschischang and Pasupathy discuss a shaping 
method which is based on using the 2-D points with 
nonequal probability. In [lo], Livingston discusses a shap- 
ing method in which the 2-D subspaces are partitioned 
into circular shells of increasing size. In this method, the 
2-D shells are used with equal probability inducing a 
nonuniform distribution on the 2-D points. 

In a continuation to [l] and [lo], Calderbank and 
Klimesh in [ll] use a balanced binary code to select the 
sequence of the 2-D circular shells. In their scheme, as all 
the shaping codewords have an equal number of zeros 
and ones, independent of the size of the circular shells, 
the data rate per signaling interval remains constant. 

In this work, we study two methods for shaping. In the 
first method, a 2-D sphere is the boundary of the 2-D 
subspaces and an N-D sphere is the boundary of the 
whole space. The final region, which is denoted as dN, 
results in the optimum tradeoff between y$ and CER,, 
and also between ys and PAR. In this case, the ratio of 
the radii of the two spheres determines the corresponding 
tradeoff point. Analytical expressions are derived for the 
tradeoff as a function of dimensionality. We describe a 

method to achieve a point with low addressing complexity 
on the optimum tradeoff curves. To obtain more flexibility 
in selecting the tradeoff point, a second shaping method 
with two degrees of freedom is used. In this method, an 
dN, region is employed along the N’-D subspaces, and 
then the Cartesian product {J&,}~‘, ~1’ = N/N’ is further 
shaped by the use of an N-D sphere. 

In all our discussions, we assume that the dimensional- 
ity is even and the constellation points are used with 
equal probability. 

II. DEFINITIONS 

By selecting the region eN as the boundary of a constel- 
lation (instead of a hypercube), the average energy per 
two dimensions P2 reduces by the factor [31 

where V(%$,> is the volume of gN. This is called the 
shaping gain of % “. 

For a given integer I, assume that the space dimensions, 
are indexed by i = lp + m, where p = O;..,(N/l) - 1 
and m = O;.*, I - 1. The subspaces spanned by the set of 
vectors with the same index p are called the constituent 
I-D subspaces [3]. The region gN is called I-dimensional 
symmetric if ‘its projection on all the constituent Z-D 
subspaces is the same [3]. In the present work, all the 
discussions are based, as is conventional, on two-dimen- 
sional symmetric regions. The more general case of the 
Z-dimensional symmetric regions is discussed in [12]. A 
two-dimensional symmetric region can be written as gN = 
JJ?~ n {%‘JN/’ where %YZ is the projection of %YN on the 
constituent 2-D subspaces. 

The constellation-expansion ratio (CER,) is the ratio of 
the volume per two dimensions to the minimum necessary 
volume per two dimensions [3], i.e., 

CER,(%,,) = 
vc&> 

[V(~~>Y * 
(2) 

As an alternative to CER,, we define the shaping redun- 
dancy in bits per N dimensions as 

r,(ZfJ = (N/2) log, (CERJ. (3) 

Let Ep(%?J denote the peak energy of %Y2. The peak- 
to-average-power ratio (PAR) is defined as [3] 

(4) 

In general, there exists a tradeoff between y, and CER, 
(or r,), and also between yX and PAR. In the following, 
the structure of the region which optimizes both of these 
tradeoffs is introduced. This region has the minimum 
second moment (energy) for a given volume and given 
CER, or for a given volume and given PAR. 
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III. OPTIMUM SHAPING REGION 

In an optimally shaped region, a 2-D sphere of radius 
R,, Pz(R,) is the boundary of the 2-D subspaces and an 
N-D sphere of radius R,, T$JR,) is the boundary of the 
whole space. The final region is denoted as &‘N, i.e., 

a& = {Xi, i = Cl;.., N - 1) 

:OIX;~+X&+~~R;, 

p = cl;.., n - 1, n = N/2, 
N-l 

0s xXi”rR;, QsRZ,I~R;. (5) 
i=o 

We say that the shaping of J&, is achieved in two steps. 
The first step is by the use of yZ’s and the second step is 
by the use of -UN. In general, the projection of the region 
l;s, on any of its constituent I-D. subspaces, 1 being an 
even integer greater than two, is the region L$ with the 
same values for the radii of the shaping spheres as the 
original L& region. This results in a recursive structure. 
In the following, we first prove that the J+ region results 
in the optimum tradeoff between CER, and y,. Then, we 
prove the optimality of the tradeoff between PAR and ys. 

Consider a two-dimensional symmetric region gN = LZ’~ 
f’ {%JN/2. For a given V(gN) and CER,, we would like 
to maximize y,. From (l), this is equivalent to minimizing 
P2(gN). From (2) V(gN) and CER, being fixed implies 
that V(%‘*) is fixed. With these quantities fixed, CER,? 
does not depend on the shape of the regions zZ~ and g2. 
For a given g2, the region 9,v should select a subset of 
{%Z}N’2 which has the minimum second moment for a 
given volume. This implies that L%‘~ is an N-D sphere. 
Similarly, for a given LZ~, the region {‘Z!72}N/2 should 
select a subset of 9,,, which has the minimum second 
moment for a given volume. This implies that g2 is a 
circle. 

Furthermore, it can be shown [3] that 

PAR(g‘) = 
PAR (F1,> 

Ys@2) 

x Y&Z’~) x CER,(gN). (6) 

But, a sphere is the 2-D figure which maximizes y,(g2) 
and minimizes the PAR(%*). Using these facts, and also 
the optimality of the tradeoff between y, and CER, in 
(6), proves the optimal@ of the tradeoff between y$ and 
PAR. 

In the following, the technique of shell mapping is 
introduced. This is a change of variable which maps the 
optimum shaping region to a hypercube truncated within 
a simplex. This mapping has some nice properties which 
facilitate the performance computation, and also the ad- 
dressing of the optimum shaping region. 

IV. SHAPING USING ONE LEVEL OF SHELL MAPPING 

By applying the change of variable 

5 = (X2p +X,:,.,)/R:, p = O;.*,n - 1, IZ = N/2 
(7) 

N-domain 

Kt n-domain 

Fig. 1. Example of the .JY” region, one-level shell mapping. Each 2-D 
subspace in the 4-D space is mapped to one of the axes of the 759*. 

to (5), the L$ region is mapped to the following n-D 
solid: 

7%9~(1, p> = {Y,, p = o;.*, y1 - 1) 

:o I Yp 2 1, 

n-l 

01 CE;,s% 
p=o 

Osp=R;/R;rn. (8) 

This is a hypercube of edge length one truncated within a 
simplex of edge length p. We refer to the N-D space as 
the N-domain and to the n-D space as the n-domain. This 
mapping, which is denoted as the shell mapping, is the key 
point to most of our discussions. Fig. 1 shows an example 
for N = 4. 

Shell mapping has the following properties. 
l A uniform density of points within LZ& results in a 

uniform density of points within 7gn. This fact can be 
developed considering that for a uniform density in a 
spherically symmetrical region in 2-D (a circle in our 
case), the transformation from the rectangular coordi- 
nates (X0, X1> to the spherical coordinates (U = Xl + 
XF, 0) gives a uniform U. This property allows us to 
achieve the shaping and the addressing on equal volume 
partitions of 7gn. 

l Unlike the &,, region, the boundaries of 7%” are 
hyperplanes. This makes the partitioning and the address- 
ing of 7%” an easier task than that of L&. 

l For p = n/2, the simplex in (8) divides the hypercube 
into two congruent partitions, each of volume l/2. The 
TZ’,, region is equal to one of them. This is equal to the 
Voronoi region of the lattice D,* [13] in the positive 
coordinates. This allows us to use a Voronoi constellation 
[5] for the addressing. 
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l The project of the region Y$Z$l, p) on any of its I-D 
subspaces is the region m&l, p). This provides a strong 
framework for a recursive addressing structure. This prop- 
erty is the basis for the addressing schemes of [14], [15]. 

These properties are extensively used in the companion 
paper [15] to facilitate the addressing. 

V. SHAPE GAINTRADEOFF 

In the Appendix, the integral of a function of the 
general form F;<Xt + 1.. +X,& i> over, the & region is 
calculated as 

LPI 

= (nR;)” c (- l)?,k :” 1;;: 
k=O n . 

* / ‘F{R$[( p - kh + k]}~“-’ d7. (9) 
0 

This integral is used to calculate the volume and the 
second moment of the Jo, region. The results, together 
with V(‘ZYZ> = rrRz and Ep(‘7?Y2) = Rz, are used in cl), (2), 
and (4) to compute y,, CER,, and PAR. Fig. 2 shows the 
corresponding tradeoff curves for different values of N. 
The curves corresponding to N = 00 are extracted from 
[3]. In [12], it is proved that as N + 00, the induced 
probability distribution along 2-D subspaces of the tiN 
region tends to a truncated Gaussian distribution. This 
justifies the use of the curves obtained in [3] for the L& 
region. Obviously, this is a consequence of the optimality 
of these regions. 

We use I) = P/n (n = N/2) as the normalized parame- 
ter for the J& region. The complete notation for the 
region is tiN($). For r,!t = l/n ( p = 1, R, = R2), we 
obtain the spherical region 3$(RN). This case corre- 
sponds to the final point on the tradeoff curves. For 
l/n < r) < 1 (1 < p < n, R, < R, < &R,), by increas- 
ing I), we move along the curves towards their initial 
parts. Finally, for I) = 1 (/3 = n, R, = hR,), we have 
J;4N = {9$R2)}n. This results in the starting point on the 
tradeoff curves. The two cases of 0 < I) < l/n and I) > 1 
result in the regions PN(fiR2) and {LZZ(R~)}~, respec- 
tively. 

Referring to Fig. 2, it is seen that, in general, the initial 
parts of the optimum tradeoff curves have a steep slope. 
This means that an appreciable portion of the maximum 
shaping gain, corresponding to a spherical region, can be 
achieved with a small value of CER,, PAR. Table I 
contains a set of points from the optimum tradeoff curves. 
These are the points marked on the curves in Fig. 2. The 
S-points correspond to a spherical region and achieve the 
maximum shaping gain in a given dimensionality. The 
K-points correspond to r, = N/4 (CER, = (2)‘12 = 1.41). 
They achieve almost all of the shaping gain of the S-points, 
but with a much lower value of CER,, PAR. The L-points 
correspond to rs = N/8 (CER, = (2>114 = 1.19). They 
achieve a significant ys with a very low CER,, PAR. The 

B-points correspond to rs = 3 (CER,-= (8>2/N). We will 
return to the B-points later. The A-points correspond to 
the addressing scheme based on the lattice D,*. They 
result in rs = 1 (CER, = (2>2/N). For N = 4, this point 
corresponds to a spherical region. 

From Fig. 2, it is seen that for N around 12, the 
A-points with r, = 1 are located near the knee of the 
optimum tradeoff curves. For larger dimensionalities, 
specifically for, N > 16, they are closer to the initial parts 
of the curves. This means that for N > 16, one bit of 
redundancy per N dimensions is too small. A solution in a 
space of dimensional@ N = n’ X N’ (N’ even> is to use 
the lattice D,*, n = N’/2 to shape the N’-D subspaces 
and then achieve another level of shaping on the n’ = 
N/N’-fold Cartesian product of these subspaces. This is 
one example of the application of a multilevel shaping/ 
addressing scheme. 

More generally, consider an J$J$) region. This region 
has an L$,(N+/N’) region along each of its constituent 
N’-D (N’ even),subspaces. The basic idea is that we can 
modify the &&(N+/N’) subregions such that the com- 
plexity of the addressing in the N-D space is decreased 
while the overall suboptimality is small. Specifically, in 
some of our schemes, 1) the &&(N$/N’) region is re- 
placed by the region d&/2), and/or 2) this region is 
partitioned into a finite number of energy shells, and then 
the Cartesian product of the N’-D subspaces is shaped by 
a lookup table. .These are the bases for the multilevel 
shell addressed constellations and the addressing decom- 
position schemes proposed in [15]. 

In the following, this idea is explained by the use of a 
more general approach. 

VI. SHAPINGUSING Two LEVELS OFSHELLMA~PING 

In the two-level shell mapping method, shaping is 
achieved in three steps. In the first two steps, by using the 
one-level shell mapping method, an J&$,,, region is em- 
ployed along the N’-D (N’ even) subspaces. In the third 
step, from the n’ = N/N’-fold Cartesian product of the 
&Nf with itself, a subset with a given volume and least 
second moment is selected. As before, such a subset is 
selected by a sphere. This results in two degrees of free- 
dom in selecting the final region. This region is denoted as 
tit’, and we have 

MN’={141 }“‘n9 (R ) N 

= (9~~I?211”.Yn tLN,(RN,)In’ npN(RN), 

n’ = N/N’, n = N’/2. (10) 
In the case that dN, is selected as {92(R2)}n, this method 
reduces to one level of shell mapping. 

Assume that the space dimensions are indexed by i = 
N’q + 2p + m where 4 = O;**,n - 1, p = O;.*,n - 1, 
and m = 0,l. Using the change of variable 

n-l 

z, = c [ X&q+p) + X&q+p)+ l] /RZ 9 
p=o 

q = 0,.-e, n’ - 1, p = O ;.., n - 1 (11) 
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TABLE 1 
A SET OF IMPORTANT POINTS FROM THE OPTIMUM TRADEOFF CURVES 

N CER, 
A 

PAR ys dB CER, 

4 1.41 3.00 0.46 - 
8 1.19 2.60 0.60 1.68 

12 1.12 2.41 0.61 1.41 
16 1.09 2.39 0.60 1.30 
24 1.06 2.31 0.57 1.19 
32 1.04 2.26 0.55 1.14 
48 1.03 2.22 0.52 1.09 
64 1.02 2.18 0.48 1.07 

128 1.01 2.12 0.41 1.03 
m 1.00 2.00 0.20 1.00 

B 
PAR x dB 

3.76 0.72 
3.26 0.82 
3.04 0.85 
2.16 0.84 
2.62 0.81 
2.48 0.76 
2.41 0.72 
2.27 0.61 
2.00 0.20 

L K 
CER, PAR 3: dB CER, PAR +y$ dB CER, 

s 
PAR y< dB 

1.41 3.00 0.46 1.41 3.0 0.46 
1.19 2.60 0.60 1.41 3.19 0.70 2.21 5.0 0.73 
1.19 2.68 0.70 1.41 3.26 0.82 2.99 7.0 0.88 
1.19 2.71 0.76 1.41 3.33 0.90 3.76 9.0 0.98 
1.19 2.76 0.84 1.41 3.42 1.00 5.29 13.0 1.10 
1.19 2.80 0.89 1.41 3.45 1.06 6.80 17.0 1.17 
1.19 2.83 0.96 1.41 3.51 1.14 9.80 25.0 1.26 
1.19 2.86 1.00 1.41 3.53 1.18 12.04 33.0 1.31 
1.19 2.93 1.08 1.41 3.65 1.27 24.67 65.0 1.40 
1.19 3.00 1.20 1.41 3.75 1.40 m m 1.53 

and defining p and p ’ by 

R$ = PR;, R; = PP’R;, (12) 

the region &‘s’ reduces to 

Ygnf( /3, /SD’) = {Z,, q = O;**, n’ - 1) 

: 0 5 2, I p 
n’- 1 

0 I c 2,s pp’. 
q=o 

(13) 

This is an n’-D simplex of edge length BP’ truncated 
within a hypercube of edge length p. The n’-D space is 
denoted as the n’-domain. 

The normalized parameters are selected as I,L = /3/n 
and I)’ = P’/n’. The complete notation for the region is 

J#‘(+, I)‘). For I)’ = 1, we have &/‘(I), 1) = {s?J$>>“‘. 
In this case, ‘y,, CER,, and PAR are equal to their 
corresponding values in J$,,( $). 

Consider the region &$“(1/2, +‘>. This region has an 
A,,(1/2) region along the N’-D subspaces.’ In [12], the 
integral of a function of the general form F(Xl 
+ ... +x&1> over the region &/’ is calculated. This 
integral is used to calculate the tradeoff in the 

&$“(1/2, $7 region. The result of these calculations for 
N = 16,32 is shown in Fig. 3. The starting point of the 
curves ($’ = 1) corresponds to the region ~5,,(1/2). It is 
seen that for relatively high CER, and for n’ = 2 (N’ = 
N/2), the curves are very near the optimum tradeoff 
curves. 

In practice, we partition each &&(1/2) region into K 
energy shells of equal volume, and select a subset in their 
n’-fold Cartesian product. These partitions correspond to 
equal volume partitions in the n-domain produced by the 
radial hyperplanes, and are denoted by a set of the points 
(Il;, i = O;.., K} along each dimension of the n’-domain. 
Then, a subset of the elements in the Cartesian product of 
the partitions is selected. An example for N = 8, N’ = 4, 
and K = 4 is shown in Fig. 4. 

A point U, on a dimension of the n’-domain corre- 
sponds to the region MN, with p = q. Using (91, the 

’ The corresponding shaping region in the n-domain is the Voronoi 
region of the lattice D, * in the positive coordinates. This is a useful 
property, and is used in [15] to partition the N’-D subspaces by the use 
of a lattice partition chain. 

1.2 

1.1 

1 

;;i 0.9 
a 
- 0.8 
-2 2 0.7 

g 0.6 
m 
i$ 0.5 

0.4 

N=32 

optimum - N’=l‘j ____ - 
g: :p . . . . . -- . 

1 

0.9 

m 0.8 
-0 
- 0.7 
c .rl 
d 0.6 

it? 
';1 0.5 

2 
cfl 0.4 

0.3 

0.2 

L 1 
1 2 3 4 5 6 7 

CER 

N=16 

Optimum - 
N'=8 _-__. 
N'=4 . 

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 

1 
1.5 2 2.5 3 3.5 4 

CER 

Fig. 3. Tradeoff between CER, and ‘/ in x#‘(1/2, 4’) region, N = 
16,32. 

volume of this region is equal to 

V(d~,(n/q>> = (rRiln c (-ljkC,k 
(Q - k)” 

n! * 
(14) 

k=O 

To obtain partitions of equal volume, the points y should 

satisfy 
l&l 
c (-1)kp ;,kjn = ; y (-l)kC,k [(n/Y,- kl”. 

k=O k=O 

(15) 
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N-domain 

n-domain 

n’-domain 
21 

N=4 
N’=2 
n=2 
12’ = 2 

Fig. 4. Example of the two-level shell mapping. 

The summation on the right-hand side is the volume of 
the region Ygn(l, n/2) which is equal to l/2. Substituting 
this value in (15), we obtain 

k=O 
i = l;.., K. (16) 

Equations (16) can be used to calculate the points Q  (for 
example, by using a bisection algorithm). The partitioning 
of the N’-D subspaces results in Kn’ equal volume parti- 
tions in the N-domain. Each of these partitions corre- 
sponds to a parallelepiped in the n’-domain. A paral- 
lelepiped located at point (UlO;.*, U,n,_,>, Ij~co,. ,n,Pl) E 
{O;.., K} is shown by 

u I,.+, 5 z,,-1 5 UI,._,il. (17) 

Shaping is achieved by selecting T of the N-D partitions 
with the least second moment. In the example of Fig. 4, 
we have T = 10. Considering that the second moment of 
the N-domain is proportional to the first moment of the 
n-domain, the selected subset should correspond to the 
parallelepipeds with the least average first moment. This 
procedure, in fact, uses a quantized version of P%‘~,, 
denoted as LB??,,,, as the shaping region in the n’-do- 
main. The final region is denoted as &%#‘(K, T). 

In a parallelepiped, the average first moment is equal to 
the sum of the average first moments along different 
dimensions. Using this fact, it can be shown that 

n(P - kjn+’ + k(n + l)( ,f3 - k)” lu,l 
X 

(n + l)! 
- c (-Uk 

k=O 

-c,k 
n( /3 - kjn+’ + k(n + l)( p - k)” 

(n + l)! I 
(18) 

This is used to calculate the average first moment of the 
selected subset of the parallelepipeds, F,(&Ygj,). The 
average energy per two dimensions of the N-domain is 
equal to 

2R; (2K)“’ 
P,(&#‘(K,T)) = N-- T Fm(&7Fnt). (19) 

It is easy to show that the volume of &%#’ is equal to 

T 
V(@JZ$‘(K, T)) = (TR;)” (2K)nz . (20) 

Equations (19) and (20) can be used to calculate the 
tradeoff. 

From Fig. 3, it is seen that for N’ = N/2 (n’ = 21, the 
tradeoff curves for the LL$” regions lie very near to the 
optimum curves. This suggests selecting N’ = N/2 for 
the J$$” and also for the &W$” regions. Fig. 5 shows the 
tradeoff curves of the @ ‘&N/2 regions as a function of K 
[computed using (19) and?20)]. The cases of K = 02 are 
computed using the same approach as used in the case of 
Fig. 3. It is seen that, in general, the suboptimality caused 
by applying a coarse quantization to Y%Yn, is negligible. 
This is an example of the following phenomenon. 

Although the volume has, in general, an exponential 
growth with the dimensionality, the number of energy 
shells required by a later shaping stage to be effective 
remains quite low. This is the basis for the direct address- 
ing decomposition scheme proposed in the companion 
paper [15]. In the following section, we explain an address- 
ing scheme to achieve the points marked in Fig. 5. 

For I) ’ = l/2, the region Ygn, is equal to the Voronoi 
region of the lattice L%$ in the positive coordinates. 
Unlike the case of the L$,, regions, we cannot use this 
property to achieve a point on the corresponding tradeoff 
curves. This is due to the fact that in this case, the density 
of points within F&!Yn, is no longer constant. However, we 
can still use this property to achieve points very near to 
these curves. To do this, the equal volume partitions 
(energy shells) of &j,,, are mapped to equally spaced points 
along a dimension. The Voronoi region of 0; = ‘%Z2 is 
used to select half the points in the corresponding Carte- 
sian product. This results in rs = 3 (CER, = (S>2/N). The 
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Fig. 5. Tradeoff between CER, and yJ in @d/‘(K, T) regions, N = 8,16,24,32, N’ = N/2. 

point marked in Fig. 5 corresponds to such a region for sponding tradeoff curve. For larger dimensionalities, a 
K = 128. It is seen that the degradation is small. The shaping region with two degrees of freedom is used. This 
B-points in Fig. 2 and Table I are optimum tradeoff points region provides more flexibility in selecting the tradeoff 
with the same value of CER,. point. 

VII. SUMMARY AND CONCLUSIONS A. Recent Related Work 

The structure of the regions which provide the optimum 
tradeoff between yS and CER, and between y, and PAR 
in a finite dimensional space is introduced. Analytical 
expressions are derived for the corresponding tradeoff 
curves. In general, the initial parts of the curves have a 
steep slope. This means that an appreciable portion of the 
maximum shaping gain, corresponding to a spherical re- 
gion, can be achieved with a small value of CER,, PAR. 
The technique of shell mapping is introduced. This is a 
change of variable which maps the optimum shaping re- 
gion to a hypercube truncated within a simplex. This 
mapping is a useful tool in computing the performance, 
and also in facilitating the addressing of the optimum 
shaping region. Using the shell mapping, a practical ad- 
dressing scheme is presented that achieves a point on the 
optimum tradeoff curves. For dimensionalities around 12, 
the point achieved is located near the knee of the corre- 

After revising this paper, we became aware that Laroia 
in [17] and Kschischang and Pasupathy in [18] (also refer 
to Kschischang [19]> have arrived at a similar shaping 
region as the one presented here. References [Ml and [19] 
also give expressions for the optimum tradeoff curves 
(finite dimensional) using a different approach from ours. 
The same references nicely formulate and apply the ad- 
dressing scheme of Lang and Longstaff [6] to an optimally 
shaped constellation. 

Laroia, et al in [20] (also refer to [171) apply ideas 
developed by the first two authors in the context of a type 
of structured vector quantizer to constellation addressing. 
This results in an addressing scheme which is similar to 
the scheme of [6]. They also suggest methods based on 
aggregating the energy shells to reduce the computational 
complexity. A comparison between their method and ours 
is provided in [15]. 
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Kschischang in [21] discusses the structure of a prefix 
code which closely approximates the optimum nonuniform 
probabilities of the 2-D points. 

More recently, a variant of the shell mapping technique 
is suggested by the Motorola Information Systems Group 
for inclusion in the forthcoming V.fast modem standard 
La. 

&‘PENDIX 

INTEGRAL OF F(Xl + *a* +X,.- I> OVER THE dN REGION 

We calculate the integral of the function F(Xi + *a* 
+x;- 1) over the region &N (N even) defined by (5). The 
calculation is based on decomposing the region z?%~, 
defined by (81, into the union and intersection of the 
simplexes and applying Dirichlet’s integral [16] to each of 
them. An example of this decomposition for N = 4 (n = 2) 
is shown in Fig. 6. 

Applying the change of variable in (7), we obtain 

Z = j F(X,2 + .+a +X&J dX,, +.. dX,-, 
-@IN 

Define the n-D regions 

iFn = {y,, p = o;.., n - l] 

:o 4 Y* 5 1, 

q;1((Yo, q,“‘, q-1; P> 
= {J& p = o;**,n - l] 

‘cq’SYoIB + q’, 
a!1 5 Y, IB + ff1 - Y,, 

. . . 
a n-l s x-1 

dY,-,. 

Cm 

(22) 

<B + a,dl - Y. - a.. -Yne2; 

whereB=p- z&i, (23) 

and 

q&q), (Y1,“‘, a,-1) = {Y,, p = o;**,n - 11 

: Yp 2 ffp. (24) 

Using this notation, the mn region can be written as 

Yen =qJ(o)“; p) n q. (25) 

ke also define 

@nl(0)n-k , (lfl = C&&;.., inpI) (26) 

where io;.., i,- 1 is an n-tuple with k ones and n - k 
zeros and the summation is calculated over all the C: 
possible combinations of this type. Using these definitions, 
we can write 

Z$ = 5 (-l>k~~[(o)“-k,(l)kl. 
k=O 

(27) 

N=4 

T-L=2 

I 1 P 

Fig. 6. Example of decomposing into simplexes, mz (1, P) =6 
(0,O; p) -7, (O,l;P) -s, (LO;P). 

Using (27) in (25), we obtain 

9-q = 5 (-i)k{~((0)n; p) n q[W-k,Wkl). 
k=O 

(28) 

It is easy to verify that 

q(o)“; p) n qJ(OY, wkl = 0, fork> LPI + 1 

where 1 p J denotes the largest integer smaller than p. 
Combining (26) and (28) and using 

K((o)“; p) n @ ,(io;.., inml> = <Go;.., i,-,; P>, (29) 

we obtain 

LPI 
mn = IX (-l>kC~l(iO,...,in-l; p> 

k=O 
(30) 

where the second summation is calculated over all the 
combinations of (io;.*, i, _ 1 > with k ones and n - k zeros. 
An example of this summation is shown in Fig. 6. 

The integrand in (21) is symmetric with respect to the 
variables, and any permutation of the variables does not 
change its value. Consequently, the integral over the 
region ~,(i,;.*, i,-,; p) is independent of the permuta- 
tion applied to io;.., i,-,. We calculate this integral over 
one of these regions, say over PJk, p> = z((ljk, (OYPk; 
p), and multiply the result by Ci. This results in 

LPI 
Z = (TR;)” c (-ljkC,k 

k=O 

./ F[R;tY, + a*. +Y,_J] dYo ..e dY,_,. (31) 
9,Jk P) 
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The integral over the region P,(k, /3> in (31) can be 181 
written as 191 

/ F[R;(Y, + *a* +Yn-J] dY, ... dYnpl 
p”‘,(k, P) 

P-k P-k-Y, =J / ... P-k-Y,- ... -Y,- 

/ 

2 IllI 
0 0 0 

-F[R;(Y, + .a. +Ynml + k)] dY, -.a dY,-,. (32) [12’ 

The region of integration in (32) is a simplex of edge [I31 

length p - k. Applying Dirichlet’s integral [16] to this 1141 
simplex results in (9) of the main text. 

[II 

El 

[31 

141 

151 

161 

[71 

1151 
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