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Shaping Multidimensional S ignal Spaces- 
Part II: Shell-Addressed Constellations 

Amir K. Kbandani and Peter Kabal 

Abstract-By appropriately selecting the boundary of a multi- 
dimensional signal constellation used for data transmission, the 
average energy of the constellation can be reduced. Reduction in 
the average energy (shaping gain) is obtained at the price of 
increasing the constellation-expansion ratio (CER,) and the 
peak-to-average-power ratio (PAR). In this paper, we describe 
some practical means to select the boundary so as to achieve a 
point with low addressing complexity near the knee of the 
corresponding tradeoff curves (shaping gain versus CER, or 
PAR). One class of addressing schemes is based on using a 
lookup table. We introduce a method to facilitate the realization 
of the addressing lookup table. This method is based on the 
decomposit ion of the addressing into a hierarchy of addressing 
steps, each of a low complexity. This avoids the exponential 
growth of the complexity. Based on this addressing decomposi- 
tion, by using a memory of a practical size, we can move along a 
tradeoff curve which has negligible suboptimality. Another class 
of addressing schemes is based on using a Voronoi constellation 
in a space of half the original dimensionality. We also introduce 
hybrid multilevel addressing schemes which combine the two 
classes. These schemes provide single points with moderate 
addressing complexity near the knee of the optimum tradeoff 
curves. 

Index Terms--Shell addressing, shell index, half integer grid, 
truncated cube, addressing lookup table, addressing decomposi- 
tion, shell-addressed Voronoi constellation. 

I. INTRODUCTION 

B Y appropriately selecting the boundary of a multidi- 
mensional signal constellation used for data trans- 

m ission, the average energy of the constellation can be 
reduced. Reduction in the average energy is measured by 
the shaping gain ‘ys. The constellation-expansion ratio 
(CER,) is defined as the ratio of the employed number of 
points per two dimensions to the m inimum necessary 
number of points per two dimensions [l]. The peak-to- 
average-power ratio (PAR) is defined as the ratio of the 
peak of energy per two dimensions to the average energy 
per two dimensions 111. For a fixed transmission rate, the 
shaping gain must be traded off against CER, and PAR. 
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The structure of boundary optimizing these tradeoffs is 
introduced in [2]. In general, the initial portion of the 
optimum tradeoff curves has a steep slope. This means 
that an appreciable part of the maximum shaping gain, 
corresponding to a spherical boundary, can be achieved 
with a relatively small CER,, PAR. In this paper, we 
describe some practical means to select the boundary so 
as to achieve a point with low addressing complexity near 
the knee of the optimum tradeoff curves. 

In general terms, our shaping methods work as follows. 
The 2-D subconstellations are partitioned into a set of 
concentric shells, each with an equal number of signal 
points. We treat all the points within a shell as having 
equal energy. These shells are indexed in the radial direc- 
tion by 0, 1, ... . Assuming continuous approximation in 
2-D, the average energy of a shell is proportional to its 
index plus a fixed offset. The shell indexes can be thought 
as a set of integer points in a 1-D space. Then, a block of 
y1 shell indexes corresponds to a point in an n-D space 
formed by taking the Cartesian product of the 1-D spaces. 
Shaping is achieved by selecting a subset of these n-D 
points. The optimum subset (corresponding to the shell 
sequences of the least average energy) is composed of the 
points with the least sum of the coordinates. 

Concerning the addressing (assignment of data bits to 
constellation points), we discuss using a lookup table to 
move along the optimum tradeoff curves, and introduce a 
method to facilitate the realization of this lookup table. 
This method is based on the decomposition of addressing 
into a hierarchy of the addressing steps, each of a low 
complexity. This decomposition avoids the exponential 
growth of the complexity. Based on this .decomposition, by 
using a memory of a practical size, we can move along a 
tradeoff curve which has negligible suboptimality. 

Another class of addressing schemes is based on using a 
Voronoi constellation in a space of half the original 
dimensionality. Based on this approach, we introduce a 
method to achieve a single point on the optimum tradeoff 
curves. The point achieved has significant shaping gain 
with low addressing complexity and low CER,, PAR. 
Finally, in a multilevel addressing scheme, we combine 
the Voronoi constellations of the previous method with a 
lookup table to move along a tradeoff curve which is 
nearly optimum. To further reduce the complexity of this 
method, we replace the lookup table by a Voronoi con- 
stellation, and thereby achieve a single point near the 
knee of the optimum tradeoff curves. 
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We use both continuous approximation and discrete 
analysis to calculate the performance of our schemes. In 
calculating the shaping performance, we usually give ex- 
pressions just for ‘y, and CER,. The corresponding PAR 
can be calculated using [2, eq. (6)l. 

Discrete cube / symmetrical discrete cube C,,(K) / SC,(K): 
C,(K) is equal to the Cartesian produce {C,(KV where 
C,(K) = (J + 0.5, J = O;.., K - 1). The cardinal@ of 
GE,(K) is equal to IC,(K>I = IC&K>I” = K”. The point 

, J + (0.51n E C,(K) is indexed by J = (J,;*-, Jnel). 
Similarly, SC,(K) = {SC,(K)}” where SC,(K) = {+(J 

+ 0.51, J = O;.., K - 1). 
First moment shell of C,(K): F,,(K, L) is the first mo- 

ment shell of C,(K), i.e., 

i 

n-l 
F,(K, L) = f+ (0.5)” E C,(K): c Jr = L . (1) 

p=o 1 
Truncated discrete cube TC,(K L, T): TC,(K, L, T) is the 

set of the first moment shells F,(K, I>,0 I 2 I L - 1, and 
a selected subset of F,(K, L) such that ITC,(K, L, T)I = 
T. We use the notation TC,(K, L) when all the points of 
F,(K, L) are included in TC,. It is easy to show that 

K-l 

IF,(K, L)I = c IF,-,(K, L - 0 
l=O 

ITC,K L)I = i IF,(K, 01. (2) 
I=0 

Note that the (F,(K, 0(‘s are the coefficients of the 
generating function [g,(z, K)ln where g,(z, K) = 1 + z 
+ 0.. +zK-‘. Using this fact, most of the subsequent 
results can be expressed in terms of generating functions. 
However, we prefer the F,, TC, notation because it 
provides a stronger geometrical interpretation. 

II. SHELL-ADDRESSEDCONSTELLATIONS A, 

A. Basic Structure 
The A, constellations are based on a shaping region as 

close as possible to the optimum shaping region J;~N(I/) 
introduced in [2]. We use the notation pN’,(R) to denote 
an N-D (N-dimensional) sphere of radius R. In the 
&N(G) region, an Pz(R) is the boundary of the 2-D 
subspaces and an Yn(fiR), n = N/2 is the boundary 
of the whole space. In 121, by a change of variable denoted 
as the shell mapping, the energy shells of yZ’s are mapped 
to points along a dimension. As a result, the N-D space 
(N-domain) is mapped to n = N/2-D space (n-domain). 
The L& region is mapped to an n-D hypercube of edge 
length one truncated by a simplex of edge length n$. This 
is denoted as ~7”~(1, n+>. This mapping has a useful 
property that a uniform density of points within &N re- 
sults in a uniform density of points within 7gn. Using this 
property, shaping is achieved by partitioning the n-domain 
into equal volume partitions, and then selecting a subset 
of these partitions. For + = l/2, we have another useful 
property that L7%?~(1, n/2) is equal to the Voronoi region 
of the lattice D,* in the positive coordinates. In this paper, 

this property is used to facilitate the addressing as well as 
the partitioning of the n-domain. 

In the following, the idea of shell mapping is extended 
to the discrete case. This is achieved in two steps. In the 
first step, the region 9%?n is replaced by the discrete set 
TC,. In the second step, the circular region Yz(R) is 
replaced by the circular constellation S,(M) where M 
denotes the cardinal@. 

Step 1: Using K concentric circles, each Pz(R) is parti- 
tioned into K shells of equal volume. These are indexed 
by J = O;**, K - 1. The outer radius and the average 
energy of the Jth shell satisfy R(J) = \/J+1 AR where 
AR = R/ fi and E(J) = (AR)‘(J + 0.5). The shells are 
mapped to the points Y = J + 0.5. This results in the set 
C,(K) in the n-domain. Each point of C,(K) corresponds 
to a shaping cluster of volume T”(AR>~ in the N-do- 
main. The average energy of the cluster indexed by .?is 
E(JJ = (AR)‘(0.5n + C, J,). This means that the points 
located on F,(K, 0’s represent the clusters with equal 
average energy. Using this fact, shaping is optimally 
achieved by selecting a subset of C,(K) with the least 
C,J, (corresponding to clusters with the least average 
energy). This results in the shaping set TC,(K, L) in the 
n-domain. The overall shaping is optimum to the extent 
that the resolution of the partitioning of the 2-D sub- 
spaces (K) allows. 

It is easy to show that assuming R = 1, the average 
energy per two dimensions of the selected subset is equal 
to 

1 
” = nKITC,(K, L)I 

L)I + t lIF,(K, 1)1 . 
I=1 1 

(3) 

This is used to calculate the tradeoff curves given in Fig. 
1, CER, = K/ITC,(K, ,)I”“. The two discrete sets of 
points correspond to the discrete analysis with M = 128 
points per two dimensions. The computational method 
will be explained later. The optimum curves are extracted 
from [2]. 

The lookup table is a block of ITC,(K, L)I memory 
locations, each with nrlog, K] bits. Fig. 2 shows the 
tradeoff between the y, and the size of the memory. 
Referring to Fig. 1, for small values of CER, (which are of 
practical interest), K = 4 achieves almost all the shaping 
gain. This is the same effect for the first time in the 
pioneering work of [3]. However, referring to Fig. 2, 
K = 4 results in a substantial decrease in the memory size 
compared to K = 8. 

Step II: We assume that the projection of the constella- 
tion on the 2-D subspaces is a finite portion of Z2 + 
(l/2>2 where ZN + (l/2)“’ denotes the N-D half integer 
grid. This is the case for most of the known TCM (trellis- 
coded modulation) schemes, including the schemes of [4]. 
The points of .Z2 + (l/2j2 are grouped in the order of 
increasing energy into K energy shells, each with 2P = 
M/K points. Each shell has four-way symmetry, and con- 
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N=24, Opt imum - 
N=24, K=4 
N=24, K=4, M=120-:-' 
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Fig. 1. Tradeoff between CER, and yS in A, constellations, N = 8,24, 
K = 4,8. 
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Fig. 2. Tradeoff between the memory size and yS in A,,, constellations, 
N = 8,24, K  = 4,8. 

tains an equal number of points from each partition in an 
Ungerboeck partition chain. These are important issues 
for practical implementation of a multidimensional TCM 
scheme [4]. The Jth shell is mapped to the point Y = .7 + 
0.5 along a dimension. The shaping set in the n-domain is 
selected as 

TC,(K, L,2’) = (F: ?E F,(K, I>,1 < L or 

?E F,(K, L), E(P) I o} (4) 

where L selects the first fully filled (first moment) shells 
and 0 selects the points corresponding to the N-D clus- 
ters, with the least average energy on the last shell. This 
method is not necessarily opt imum because, unlike the 
case of Step I, the points located on the Fn’s do not 
represent the N-D clusters with the same average energy. 
But, since the energy differences are small, the subopti- 
mality is negligible. 

By changing M  for a fixed K, we can change the total 
rate of the constellation for fixed lookup table complexity, 
fixed CER,, and essentially fixed ‘y,. For continuous ap- 
proximation in the 2-D subspaces (Step I), y, remains 
fixed. 

The whole constellation is denoted as A,(M, K, 2’). 
We have IA,(M, K, 2’)1 = 2t+J’n and CER, = K X 2-‘in 
where 2p = M /K and n = N/2. The lookup table has t 
input and nrlog, K] output lines. 

Example: Fig. 3 shows the structure of the A, constel- 
lation, M  = 32, K = 4. The available signal space in the 
n-domain is the set C,(4). Each point of the n-domain 
corresponds to 8 X 8 = 64 points in the N-domain. The 
shaping set in the n-domain is selected as X,(4, L,), 
1 I L I 6. The two dotted lines correspond to shaping 
sets X,(4,1> and TC,(4,4), respectively. For the solid 
line, we have the Voronoi region of 0: = %Z2 where %  
denotes the rotational operator [5]. The average energies 
of the 2-D shells are {E(J), J = 0,1,2,3} = {1.5,3.5,6.5, 
8.5}. Assuming a continuous approximation (Step I), we 
obtain (AR>* = 8/rr and {E(J)} = 1.27,3.82,6.37,8.91}. 
The difference between the elements of these two sets is 
the main cause for any suboptimality of TC, as the 
shaping set. 

In the following, we introduce some methods to faciliy 
tate the realization of the addressing lookup table in the 
A, constellations. 

B. Structure of the Addressing Lookup Table for 
A, Constellations 

We assume that the shaping set in the n-domain is 
equal to TC,(K, L) c C,(K). We use a property of 
TC,(K, L) to simplify the realization of the addressing 
lookup table. In general, the projection of TC,(K, L) on 
any m-D subspace is equal to the set TC,(K, L). This 
property of the TC, set is the basis for a recursive 
addressing scheme proposed in [6]. In the present work, 
we partition the projections on the 2-D subspaces, which 
are TC2’s, into subsets such that the addressing can be 
achieved directly on them. This results in a logical table 
with many “don’t care” entries. We first show that for a 
uniform probability density on the points of A, (which 
results in a uniform probability density on the points of 
TC,), the induced probability density on the TC2’s de- 
pends only on the sum of the coordinates. This means 
that the points of F2’s are used with equal probability. 
This allows us to address the points of the F2’s with a 
fixed length code. 

The dimensions of the n-domain are labeled by 
Y,;*., Y,- 1. To compute the induced probability density 
on the points of TC,(K, L) in the YO, Yi subspace, we 
draw from every point (Y2,.*.,Y,-1> E TC,-,(K, L), a 
2-D plane parallel to the Ya, Yi subspace and find the part 
of it which is located inside TC,(K, L). The intersection 
of such a plane with TC,,(K, L) is the set TC,(K, L - 
CgSiJ,> where J,, = YP - 0.5. The points of this set are 
mapped to the Y,, Yi subspace. By counting the number 
of times that a given point is used, the induced probability 
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Fig. 3. Example of A, constellation. 

density is calculated. The total number of times that the 
set F,(K, b) is used is equal to the total number of times 
that the sets TC,(K, a), a 2 b are used. The number of 
times that the set TC,(K, a) is used is equal to I F,-,(K, L 
- a)l. Using this fact, the frequency of F,(K, b) is found 
as 

L-b 
N,(b) = c IFnpz(K, L - a)\ = c IF,-dK,U 

bsn<L I=0 

= ITC,-,(K, L - b)l. (5) 

From (5), it is seen that for fixed K and fixed L, the 
frequency of the points of F,(K, 6) are equal. This means 
that if we partition the 2-D subspaces of TC,(K, L) into 
F,(K, b)‘s b = O;.., m in(2K - 2, L), the set TC,(K, L) 
can be expressed as a subset of the n/2-fold Cartesian 
product of these partitions. In practice, to avoid compli- 
cated mathematical operations in the following addressing 
steps, we further partition each F,(K, b) such that the 
number of points in each of the final partitions is an 
integral power of two. 

The computational approach presented here can be 
used to compute the shaping performance for a given 
number of energy shells per 2-D (K). The procedure is as 
follows. Using the same reasoning as used in deriving (51, 
the frequencies of the 2-D shells are found as 

N,(J) = ITC,-,(K, L - J>I. 

The corresponding probabilities are 

(6) 

P(J) = 
ITC,-,(K, L - J>l 

XF:;ITC,-,(K, L - J)I ’ (7) 

which results in the average energy per two dimensions 
P2 = CF:JP(J)E(J). This is used to calculate the discrete 
set of points in Fig. 1. 

Example: In the constellation A,(M, K, 2’) = A&28, 
4,64), the 2-D subconstellation of 128 point (which is 
selected from the cross constellations [71) is partitioned 
into K = 4 shells, each of 2* = 32 points. The average 
energy of the 2,D shells is equal to {E(J), J = 0, 1,2,3} = 
{5,15.5,25.5,36}. A circular 2-D subconstellation would 
result in {E(J), J = 0,1,2,3} = {5,15.5,25.5,35.75}. As- 
suming continuous approximation over a 2-D circular 
region, we obtain {E(J)} = (5.09, 15.28, 25.47, 35.65). 
There are K” = 44 = 256, N-D partitons, and shaping is 
achieved by selecting 2’ = 64 of them. We have I A, I = 226 
and r, = 2 (CER, = 1.41). The lookup table has &input 
and eight output lines (bits). The output lines are divided 
into four groups, each with two lines. These are used to 
select a shell within each 2-D subspace. Another group of 
20 lines, divided into four groups of 5 lines, are used to 
select a point within each of the selected 2-D shells. 

To specify the shaping set, namely TC,(4, L, 64), we 
need to find L. Using (21, we obtain 

{IF,(4,1)1} = {1,4,10,20,31,40,44,40,31, 

20,10,4,1,0,0;~~). (8) 

It is seen that Cf=,F,(4, I> = 66. This means that L = 4, 
and only 29 points of the 31 points in F4(4, 4) are included 
in TC,. In the following, we discuss how to select the 
subset of F&4,4). 

If all the points of F,(4,4) were included, the frequen- 
cies of the 2-D shells would be {N,(J), J = 0, 1,2,3} = 
{32,20,10,4}. The twoqoints of F4(4, 4) with the highest 
E(Jt) are the points J = (Jo, Jl, J,, J3) = (l,l, l,l> with 
E<fi = 62 and the point .?= (0, 1, 1,2) with E(J> = 61.5.l 
If we discard these two points, the induced probability 
density on different dimensions of TC,(4,4,64) will no 
longer be the same. For the first dimension, the frequen- 
cies are {31,19,10,4}, and for the second, third, and 
fourth dimensions, (32, 18, 10, 4}, 132, 18, 10, 4), and 
{32,19,9,4}, respectively. This results in average energies 
of 13.258, 13.094, 13.094, and 12.938 along the first-fourth 
2-D subspaces. The overall average energy is P2 = 13.096, 
resulting in r, = 0.614 dB. Using continuous approxima- 
tion, the maximum shaping gain (K = a) for N = 8 and 
CER, = 1.41 is y, = 0.698 dB [2]. 

The finest partitioning is obtained by K = 32 (P = 4), 
which results in yS = 0.727 dB. This requires a lookup 
table with 18 input and 20 output lines. The size of the 
memory with respect to K = 4 (six input and eight output 
lines) has increased by the multiplicative factor 10240. As 
a result of this large increase in the complexity, the 
shaping gain has increased by about 0.1 dB. 

To build up the lookup table, we partition F,(4, I), 
1 = 0,-a*, 4 of TC,(4,4) into subsets, each with an integral 
bit rate as in Fig. 4.The first moment shells are denoted as 

’ There are 24 points with E(.f) = 61.5. These are the points indexed 
by the permutations of (0, 1, 1,2) and (0, 0, 1,3), 12 points from each. 
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Fig. 4. The X,(4,4) partitioned into the addressing subsets. 

A, B, C, D, and E. The addressing subsets have the same 
subscript and also the same sign. If F&4,4) were com- 
pletely included in TC,, we could specify all the points of 
TC, with this partitioning. For this example, we need a 
finer partitioning. This can be avoided by discarding the 
point indexed by (O,O, 2,2) with E = 61’ instead of the 
point indexed by (1, 1,2,0> with E = 61.5. This results in 
the average energy per two dimensions P2 = 13.098. The 
loss in the shaping gain compared to the previous case 
(Pz = 13.096) is negligible. Table I shows the index vector 
of the points of TC,. The indexes are obtained from the 
permutations of the given vectors. It also gives the num- 
ber of points obtained from each vector N, and the 
average energy of the corresponding N-D clusters E. 

We reach the conclusion that the points of F,(K, L) 
represent the clusters with almost the same E, and select- 
ing an arbitrary subset of them results in negligible degra- 
dation. This subset should be selected on the basis of the 
addressing complexity. 

Table II contains a prefix code for the addressing in the 
n-domain. The “don’t care” entries can be used to con- 
struct a logical table of reduced complexity. Obviously, for 
a constellation like A,,(128,4,2’*) which needs a lookup 
table with 22 input and 24 output lines, the effect of the 
“don’t care” entries will be more pronounced. 

Although the method described here can be used ti 
reduce the complexity of the addressing lookup table, for 
some applications, the complexity may still remain im- 
practical. In the following section, by recursively applying 
the same idea to higher dimensional constituent sub- 
spaces, we develop a method to further reduce the com- 
plexity. This method makes use of a set of prefix coding 
schemes to decompose the addressing into lower dimen- 
sional subspaces. 

C. Prejix-Coded Addressing Decomposition 
Consider the shaping set TC,(K, L, 2’) where m is an 

integral power of two. The F,,(K, 0’s, 1 = 0,.-a, L, m’ = 
m/2 are partitioned into blocks such that each block has 

’ There are six points with E = 61. These are the points indexed by 
the permutations of (0, 0,2,2). 

TABLE I 
POINTS OF THE SHAPING SET IN THE ~-DOMAIN OF THE 

A,(128,4,29 CONSTELLATION 

Points /if E Points A” E 

0000 1 20.0 0012 12 51.0 
0001 4 30.5 0111 4 51.5 
0002 4 40.5 0022 5 61.0 
0011 6 41.0 0013 12 61.5 
0003 4 51.0 0112 12 61.5 

an integral bit rate and the number of blocks is minimum. 
Each block of F,.(K, 1) corresponds to a nonzero element 
in the binary expansion of IF,,JK, 01. The Cartesian prod- 
uct of a block of F,,(K,l,) with a block of F,,(K,Z,) 
results in a cluster (of integral bit rate) in F,(K, 1, + I,). 
For a uniform density on the 2’ points of TC,, it is easy 
to show that the m-D clusters can be labeled with a prefix 
code. Based on this prefix code, part of the input data 
stream is used to select one of the m-D clusters. The 
remaining bits, up to a total of t bits, are split into two 
parts, with the lengths equal to the bit rate of the corre- 
sponding m’-D blocks (components of the selected m-D 
cluster). These bits are subsequently used to select a point 
within those m’-D blocks. 

The m” = m’/2 = m/4-D constituent subspaces are 
similarly partitioned into blocks of integral bit rates. The 
m’-D blocks are expressed as the union of the m’-D 
clusters where, in turn, each m’-D cluster is an element in 
the Cartesian product of the m” = m’/2-D blocks. This 
means that the m’-D blocks are the union of the m’-D 
clusters where each m’-D cluster is obtained by concate- 
nating two mN = m’/2-D blocks. This results in a recur- 
sive partitioning structure. To complete the recursion, we 
need a means to select a single m’-D cluster within each 
m’-D block. This is achieved by assigning an independent 
prefix coding scheme to each m’-D block and using its 
codewords to address the corresponding m’-D clusters. 

To obtain an estimate of the complexity, for K = 4, 
CER, = 1.19, and N = 16,32,64, the number of code- 
words for the first addressing step is equal to 146,150, 564}3 
and the total number of blocks is equal to (82,280, 1048},4 
respectively. For K = 8, CER, = 1.414, and N = 16,32, 
64, these quantities are equal to {113,414,1323} and 
{206,786,28131, respectively. For each block, we store a 
small prefix code (with the codewords labeling the clusters 
constituting that block) and two pointers for each of its 
clusters (labeling the lower dimensional blocks constitut- 
ing that cluster). In the following, we explain an alterna- 
tive (to the prefix coding) for the selection of the clusters 
within the blocks. 

Assume that the clusters within each block are ar- 
ranged in a given order. Also assume that all the elements 
of a higher order cluster have a larger label. Using this 

3 This is the total number of the nonzero elements in the binary 
extansjon of JF,(K, l)rs, 1 = O;.., L, m  = N/2. 

This 1s the total number of the nonzero elements in the binary 
expansion of IF,JK, I)I’s, 1 = O;.., L, m  = 2,4,8;.., N/2. 
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TABLE II 
A PREFIX CODE FOR THE ADDRESSING IN THE ~-DOMAIN OF THE A&128,4, 26) CONSTELLATION. THE “ X ” DENOTES 

THE “DON’T CARE” ENTRIES. 

BD X X X 0 0 O.C,A X 1 1 1 0 1 
DB X X X 0 0 1 A4 X 0 0 1 1 0 
AD X X 0 0 1 0 &A X 0 1 1 1 0 
DA X X 1 0 1 0 ClC2 X 1 0 1 1 0 
BC, X X 0 0 1 1 GCl X 1 1 1 1 0 
C,B X X 1 0 1 1 BC2 X 0 0 1 1 1 
BB X X 0 1 0 0 GB X 0 1 1 1 1 
ClG X x 1 1 0 0 AC, 0 0 1 1 1 1 
AB X 0 0 1 0 1 GA 1 0 1 1 1 1 
BA X 1 0 1 0 1 ‘44 0 1 1 1 1 1 
AC, X 0 1 1 0 1 ‘GA 1 1 1 1 1 1 

structure, the clusters can be selected according to the 
range of the data value involved in that addressing step. 
After finding the cluster, the cardinalities of all the previ- 
ous clusters are subtracted from the data value, and the 
residue is used to select a point within that cluster. 
Similar to the previous case, this is easily achieved by 
splitting the corresponding bit stream into two parts. This 
is the end of a recursion step. As all the cardinalities are 
integral powers of two, most of the computations are 
equivalent to bit operations. 

In the proposed scheme, the range of each block was 
limited to a single IF,(K, Z>l, 1 = 0,s.., L, m  = 2,4,8;**, 
N/2. This results in the best possible tradeoff for a given 
number of shells per 2-D (K). By relaxing this constraint, 
it is possible to further reduce the complexity while the 
degradation is negligible. This is studied in the following 
section where we impose a different constraint that all the 
blocks have the same bit rate. This new constraint elimi- 
nates the need for the prefix coding. Obviously, relaxing 
both of these constraints results in a more general scheme 
which is not discussed here. 

D. Direct Addressing Decomposition 
Consider an N’-D unshaped constellation, i.e., A,, = 

{SJN’/‘. This constellation is partitioned into K energy 
shells of equal volume. The 2-fold Cartesian product of 
the set of the partitions is shaped by using a lookup table. 
Assuming continuous approximation, the calculation of 
the tradeoff is quite similar to the one presented in [2, 
Section VI]. The final result is shown in Fig. 5. 

The main point is that for small values of CER,, a 
moderate value of K can essentially achieve the optimum 
tradeoff. This phenomenon is a generalization of the same 
effect observed for dimensional&y two in the pioneering 
work of [3]. This property allows us to decompose the 
addressing into some intermediate steps achieved on the 
two-fold Cartesian product of a set with low cardinality.5 

For a dimensionality N = 2”, this results in u - 1 ad- 
dressing steps. The ith step, i E [l, u - 11, is achieved on 
the 2’-D subspaces and results in dimensional&y 2’+‘. We 
assume that the subspaces involved in the ith addressing 
step are partitioned into Ki = 2ki shells. The ith address- 

’ We already observed in [2, Fig. 51 that the same property is valid for 
the &$“(1/2, I/I’) regions. This means that the address decomposit ion 
procedure discussed here can be applied to that case too. 

CER 

Fig. 5. Tradeoff between CER, and 7/S using a finite number of energy 
shells in the N/2-D subspaces. 

ing step, i = l;**, u - 2, requires a lookup table with 
2k. x 22kl bits. The last step requires 2k,-, X 22k--rs 
bits. An upper bound to total memory size M, is obtained 
by setting rS = 0. Fig. 6 shows the final tradeoff curves for 
{Ki, i = 1, ... ] = {64,64,128,256, *a* >. It is seen that the 
suboptimality is negligible. 

By selecting smaller values for the ki’s, one can further 
decrease the size of the memory at the price of some 
performance degradation. Specifically, it is appropriate to 
use a small number of partitions in the first u - 2 ad- 
dressing steps and a large number at the last step. This is 
due to the facts that: 1) shaping is essentially achieved at 
the last step, and consequently a higher resolution at this 
step has a more important effect on the overall perfor- 
mance; and 2) even for a large k,_ i, due to the subtrac- 
tion of r,, the addressing of the last step does not need a 
large lookup table. Table III shows some examples of the 
performance and complexity of the proposed scheme. 

The addressing decomposition methods introduced here 
have some similarities with the scheme of [S]. The key 
point to the scheme of [81 is that the weight distribution of 
the integer lattice (or more generally, a lattice which is 
equal to the Cartesian product of some lower dimensional 
sublattices) is equal to the convolution of the weight 
distributions in its subspaces. This fact is used in [8] to 
successively decompose the addressing into lower dimen- 
sional subspaces. The major difference is that here, by 
imposing the appropriate constraint(s), we have been able 



1.2 
N=32, Optimum- 
N=32, K4=256 .---. 
N=16, Optimum . 

l- N=16, K3=128 --. 

stellations, we use the boundary around the origin of a 
lattice to select this subset. This approach restricts the 
selection of the boundary and is potentially suboptimum. 
However, by using the group property of the lattices, it 
has a payoff in reduced addressing complexity. By using 
the O ,* lattice, we can achieve a point on the optimum 
tradeoff curves. It is shown that this is the unique lattice 
achieving a nontrivial point on the optimum tradeoff 
curves. 

1.05 1.1 1.15 1.2 1.25 1.3 
CER 

Fig. 6. Tradeoff between CER, and 3: using the direct address decom- 
position method. 

TABLE III 
PARAMETERS OF THEPOINTACHIEVEDLJSING THEDIRECT 

ADDRESSINGDECOMPOSITION‘METHOD. THE VALUES 
INSIDEPARENTHESESAFCETHEOPTIMUM ~,.COLUMN 

Mt IS MEMORY SIZE IN BYTES (8 b)/N-D 
(No COMPUTATION). 

Consider a lattice At such that the projection of its 
Voronoi region on any dimension is the region [ - 1,ll. 
We use the notation I/,(KA”,) to denote the subset of 
points of 2” + (l/2)” bounded within the Voronoi re- 
gion around the origin of KAS,. This is the Voronoi 
constellation based on 2” + (l/2)” and the shaping lat- 
tice KA”,. The shell-addressed Voronoi constellations are 
based on using the points of such a set to shape the 
n-domain. The complexity of the addressing is that of a 
linear mapping plus the complexity of decoding of A”,. 
Assuming binary lattices to have an integral total rate, M 
and K should be integral powers of two, i.e., M  = 2” and 
K = 2k. 

N CER, PAR x dB 4 {ki, i = 1, ... } 

16 1.19 2.69 0.73 (0.76) 1.8k t3,4,6) 
16 1.19 2.70 0.74 (0.76) 2.0k (4,4,61 
16 1.41 3.28 0.85 (0.9) 0.87k {4,4,61 
16 1.41 3.30 0.87 (0.9) 2.25k {4,4,7) 
32 1.19 2.76 0.85 (0.89) 2.lk {4,4,5,6) 
32 1.19 2.77 0.87 (0.89) 3.5k (4,4,5,71 
32 1.41 3.38 0.98 (1.06) 3.25k (4,4,5,8) 
32 1.41 3.40 1.00 (1.06) 8.0k I4,5,6,81 
32 1.41 3.41 1.02 (1.06) 9.7k (4,5,6,9) 
64 1.19 2.82 0.94 (1.0) 8.3k {4,4,5,6,81 

In the A, constellations, the available signal space in 
the n-domain is restricted to positive coordinates. To 
obtain symmetry, the 2-D shells are further partitioned 
into two subshells, each with 2m-k-1 points. The two 
subshells of the Jth shell are mapped to the points 
Y = f(J + 0.5). This results in the set SC,(2k) in the 
n-domain. Shaping is achieved by selecting the set 
V,(2kAS,> c SC,(2k) to shape the n-domain. 

to avoid the computation of the convolutions. This sub- 
stantially reduces the complexity. It is also possible to 
combine the decomposition methods proposed here with 
that of [8]. 

An alternative to the addressing by a lookup table is the 
use of a Voronoi constellation [9], [lo]. In the following, 
the idea of the shell mapping is extended to this case. This 
is achieved by replacing the general Yen boundary by the 
Voronoi region of a lattice. 

The average energy is determined by the absolute first 
moment of the n-domain. Consequently, in selecting A”,, 
one should try to minimize the absolute first moment of 
the lattice Voronoi region for a given volume. A lattice 
with a pyramidal Voronoi region results in a spherical 
constellation. However, we know that such a lattice exists 
only in dimensionality two [ll] (this is the lattice 0; = 
MZZ’). An analytical method to calculate the absolute first 
moment of the lattices together with numerical results for 
the lattices D, and SD,, is given in 1121. 

III. SHELL-ADDRESSED VORONOI  CONSTELLA~ONS 

For A”, = D,*, we obtain the constellation ~l,(2”,2~, 
2k”-1). This corresponds to the point r, = 1 (CER, = 
(2)l’“) on the optimum tradeoff curves. These are the 
A-points in [2, Table I]. For N = 4 (n = 2), we have 
0; = %Z2 and the constellation is spherical. This is the 
case shown in Fig. 3. 

The major complexity in a Voronoi constellation is that 
of decoding the shaping lattice. The decoding of D,* is 
efficiently achieved using the following definition [13]: 

D,* = {(2Z)“} u {(2Z)” + (1)“). (9) 

Returning to our general view of shaping, the 2-D 
subconstellations are partitioned into a set of concentric 
shells of equal volume. The shells are indexed by J = 
0;.*, K - 1. Assuming continuous approximation in 2-D, 
the average energy of the Jth shell is proportional to 
J + 0.5. The shell indexes are mapped to the points of the 
1-D half integer grid, 2 + (l/2), bounded within [O, Kl. A 
block of n shell sequences is mapped to a point of the 
n-D half integer grid, 2” + (l/2)“, bounded within the 
hypercube [O, K]“. In our general approach, shaping is 
achieved by using the TC, set to select a subset of points 
of 2” + (l/2)” with the least sum of the coordinates. 
This corresponds to a subset of shell sequences with the 
least average energy. In the shell-addressed Voronoi con- - -~~, I I, I I 

Based on this definition, to decode a vector x = (xi, 
i = O ;.., y1 - l), we first find the two nearest integers on 
the two sides of each component of x. The nearest 
integers on the two sides of the component xi are de- 
noted as xp and xL? where superscripts e/o stand for 
even/odd. The noint xe = (x?. i = O :... n - 1) is the 
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nearest point of 22” to X. Similarly, the point x0 = <xl?, 
i = (),a.., y2 - 1) is the nearest point of 22” + (1)” to X. 
The nearest of the two points P, x0 is the nearest point 
of the lattice D,* to X. The decoding of D,* is much 
simpler than the decoding of the popular lattices (like E, 
and A,,) used in the standard Voronoi constellations. 

In the following, we show that the point corresponding 
to the lattice D,* is the only nontrivial point that a 
shell-addressed Voronoi constellation can achieve on the 
optimum tradeoff curves. The other point is the trivial 
case of a cubic constellation. 

Referring to the definition of the region Y%Yn in [2], to 
achieve an optimum point, the first condition is that the 
points [On- ‘, k 21, where [.I denotes the set of all the 
points obtained by the permutations of the components 
within [.I, should be the nearest point to the origin along 
each dimension of AL. Also, to realize a point with the 
parameter l/n I 4 I 1, we should have [(f2$)“] E A”,. 
Using the group property of the lattice, this requires that 
[On-‘, f (4 - 4$)] E A”,, and also [On-i, * 4+] E A”,. 
This contradicts the first condition for all the range of 
@  I 1, except for (J = l/2 and Cc, = 1 where +!I = l/2 
corresponds to the D,* lattice and I,!J = 1 corresponds to 
the integer lattice (resulting in a cubic constellation). 

For N around 12, the point achieved by the shell-addre- 
ssed Voronoi constellation based on the D,* lattice is 
located near the knee of the optimum tradeoff curves. As 
N increases, specifically for N > 16, this point moves 
toward the initial parts of the curves. It should be men- 
tioned that in a practical scheme, the initial part of the 
curves may be the most interesting part. In the following, 
we introduce a method to achieve a higher y$ in spaces of 
higher dimensionality. This is based on a multilevel ad- 
dressing procedure which combines the shell-addressed 
Voronoi constellation method with a lookup table to 
move along a curve which is nearly optimum. In the rest 
of the paper, we make frequent use of Fig. 7 to explain 
our schemes. The actual values corresponding to this 
figure will be written inside double braces ({a}}. 

IV. TWO-LEVEL SHELL-ADDRESSED CONSTELLATIONS 

A. Basic Structure 

The two-level shell-addressed constellations AZ’ are 
based on a shaping region as close as possible to the 
region d/,(1/2, @ ‘) introduced in [2]. These constella- 
tions provide a means to move along a curve which is 
nearly optimum. Examples of such curves are given in [2, 
Figs. 3 and 51. The structure of J#’ {{At}} constellations 
is as follows. A constellation A,,(2”, 2k, 2kn-1), n = N’/2 
is employed along each, N’-D subspace. The shaping set 
in the n-domain is equal to Vn(2kD,*) {{1/,(4SZ’)}}. By 
using a partitioning lattice Af: {{2Z2}} which has 2kD,* 
{{4!XZz}} as a sublattice, V,(2kD,* > is partitioned into 
2k’ = IAi/2kD,*l {{23 = ]2Z2/4%Z2]}} shaping clusters, 
each with 2”’ = ]Z”/Afll {{22 = 1Z2/2Z2])} points. This is 
based on the decomposition 

Z” = 2kD,* + [Zn/A$] + [ Afl/2kD,*], (10) 

N-domain 

YI n-domain 

NT8 
N’=N/2=4 
n=N’/2=2 
n’=N/N’=2 

kc2 
k’=3 
k” = 2 

2’D’ = 48Z= 
a:: 2222 
2k’D:, =S8Z2 

Fig. 7. Example of a multilevel shell-addressed constellation. In this 
exam T le, N  = 8, N’ = 4, n = 2, n’ = 2, k = 2, k’ = 3, k” = 2, 2kD,* = 
4WZ , A{ = 2Z2, and 2k’D$ = 8fRZ’. 

obtained from the partition chain Z”/A{/2kD,* {{Z2/ 
2Z2/ 4%Z2}}. In matrix notation, we have 

Z” = 2kD* + aG + bH n (11) 

where G and H are generators of [Z”/Ai] {{[Z2/2Z2])} 
and [Ai/2kD,*] {{[2Z2/4%Z2]}}, respectively, a is a bi- 
nary k”-tuple, and b is a binary k’-tuple. Using (ll), each 
coset of [Zn/2kD,*] {{[Z2/4%Z211) is labeled by (a, b). 
Each shaping cluster in the n-domain is the set of the 
points with the same b. This means that b determines a 
cluster within the n-domain and a determines a point 
within that cluster. 

The partitioning of the N’-D subspaces results in 2k’n’, 
IZ’ = (N/N’), {{26}} shaping partitions in the N-domain. 
The third step of shaping is achieved by using a lookup 
table to select 2’ of these N-D partitions of the least 
average energy. The whole constellation is denoted as 
Az’(2”, 2k, Ai, 2’). The lookup table has t input lines and 
k’n’ output lines. The output lines are divided into IZ’ 
groups. Each group of the output lines is assigned to one 
of the N’-D subspaces, and is used as the b part of the 
label in (11). Another k”n’ data bits, divided into n’ 
groups, are used as the a part of the label in (11). Finally, 
another N(m - k - 1)/2 data bits select one point within 
each 2-D subspace. 
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The B/’ {{Bl}) constellation is devised to achieve a 
single point near the tradeoff curve of A:’ without using 
the lookup table. These are the marked points in [2, Fig. 51. 
The shaping/partitioning of the N’-D subspaces is the 
same as in the A:’ constellations. The shaping clusters of 
each of the N’-D subspaces are mapped in the order of 
increasing energy to the points of 2 + (l/2) bounded 
within [ -2k’, 2k’] {{[ -23, 23]}} along a dimension of the 
n’-domain. The positive and negative points are mapped 
to the same cluster. Each point is labeled by the label of 
the corresponding cluster, namely, the k’-tuple b in (ll), 
and an extra bit which is selected according to the sign of 
the point. This sign bit is later used as 1 b of the k”-tuple 
a in (11). This results in the set SC,X2k’) {{SC,(S)]} in the 
n’-domain. In Fig. 7, just the positive part of the n”-do- 
main is shown. The shaping set in the II’-domain is 
selected as l$(2k’Dz,> c SC,,(2k’) {{V,(8%Z2> c X,(8)}}. 
This allows to use a voronoi constellation for the address- 
ing. In the A:’ constellation, this part of the addressing 
was achieved by a lookup table. In each signaling interval, 
n’(k’ + 1) - 1 data bits are used to select a point in the 
n’-domain. The label of each component of the selected 
point (which is the k’-tuple b plus a sign bit) with another 
k” - 1 data bits are used in (11) to determine the corre- 
sponding 2-D shell indexes. 

To store the labels, we require a block of memory with 
M , = k’ X 2k’ bits (compared to the AC’ constellations 
which require n’k’ x 2”‘k’ bits.). The reduction in the 
complexity is based on a similar phenomenon, as in the 
case of the addressing decomposition methods. The key 
point is that the same addressing structure is used for 
several times. In the present context, the memory block 
storing the labels is the same for all the dimensions of the 
II’-domain. 

The whole constellation is denoted as B:‘(2”, 2k, Afl). 
The shaping redundancy is r, = n’ + 1 and the total rate 
is mN/2-n’ - 1. As in the case of the A;’ constella- 
tions, we have the appropriate choice of n’ = 2. In the 
sequel, we assume that n’ = 2. 

B. Perjonnance Measure 
To calcualte the shaping gain, first, by using (111, the 

average energies of the N’-D points mapped to each 
shaping cluster in the n-domain are calculated. Then, by 
adding the average energies along different dimensions of 
the n’-domain, the average energy of the final subset of 
the N-domain is found. 

As an example, Table IV shows the shaping gain of the 
B&(32,4, A$) constellation for different partitioning lat- 
tices. For this constellation, we have r, = 3 (CER, = 1.3). 
By changing M , we can change the total rate of the 
constellation for fixed lookup table complexity, fixed 
CER,, and essentially fixed y$. As an example, 
B&(64,4, Z4> results in y$ = 0.72 dB and B&(128,4, Z4> 
results in y, = 0.71 dB. 

Using a similar computational approach as used in the 
case of Fig. 1, the maximum shaping gain for CER, = 1.3, 
N = 16, and K = 4 is found to be equal to y, = 0.77 dB. 

TABLE IV 
SHAPE GAINOFTHE Bf6(32,4,A$) CONSTELLATIONSFOR 

CER, = l.3;Ms DENOTESTHEREQUIREDMEMORY 
SIZEIN BYTES@ b) PER N DIMENSIONS 

A4 

D4* 
WZ4 

3 

k’ MS 
8 0.25k 
9 0.56k 
10 1.25k 
11 2.75k 

-rs dB 
0.62 
0.66 
0.70 
0.73 

V. MULTILEVELSHELL-ADDRESSED CONSTELLATIONS 

As far as the shaping region in a domain is selected as 
the Voronoi region of a lattice, it can be easily partitioned 
into shaping clusters of equal volume. This provides us 
with a way to achieve another level of shaping/addressing 
on their Cartesian product. This can be done several 
times to produce a multilevel (nested) form of shaping. 
Similarly to the B/’ constellations, this can be used to 
achieve single points with high shaping redundancy near 
the optimum tradeoff curves. 

Notation B2r,“‘q(2m, 2k, h$l,.*., hf: > is used as the 
complete notation for this constellatfon. This constella- 
tion has a B$“;Nq-1(2m,2k, A$ ;**, A:,-,) along each of its 
N,-D subspac&, and the lattices A$, and D,*, nq = N/N, 
are used to partition/shape the Cartesian pioduct of the 
BNl;; %l’s. Addressing in B37,Nq requires a set of 4 
m ;mory blocks with ki, i = l;.., 4 input and output lines 
where 2k:+1 = ]Afi/2k:Dz,(, k; = k, n, = N,/2. The total 
rate is equal to mN/2 - rs where rs = 1 + NC:Jl/N,). 

VI. COMPARISONWITHOTHERTECHNIQUES 

In the following, we compare our addressing schemes 
with the pioneering works of [lo], [3], and [141. 

In the Voronoi constellations, the Voronoi region of a 
lattice is used as the shaping region 191, [lo]. The complex- 
ity of the addressing is that of a linear mapping plus that 
of decoding the shaping lattice. In [31, the 2-D subspaces 
are partitioned into the circular shells of equal volume. 
Then, a multilevel shaping code is used to specify the 
sequence of the 2-D subregions. In [14], the Voronoi 
region of an infinite dimensional lattice obtained from a 
convolutional code is used as the shaping region. The 
addressing complexity is that of a linear mapping plus the 
decoding of the code trellis diagram. 

The major problem in the Voronoi constellations based 
on the binary lattices is that they have a cubic 2-D 
subconstellation (instead of spherical). For a given CER,, 
this decreases the achievable ys and also increases the 
PAR. The Voronoi constellations also suffer from the 
problem of ties, which occurs when some points are 
located on the boundary of the shaping region. The ties 
complicate the addressing procedure, and potentially may 
result in a constellation which is not symmetric. 

The shell-addressed Voronoi constellations introduced 
here have a spherical 2-D subconstellation. Their address- 
ing is achieved by a Voronoi constellation of half the 
original dimensionality. This reduces the addressing com- 
plexity. Also, an important class of our schemes achieving 
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TABLE V 
COMPARISONBETWEENTHEVORONOICONSTELLATIONS(VC)ANDTHECALI)ERBANK,OZAROWMETHOD(C/O)WITH 

THEOPTIMUMCONSTELLATIONS;THEVALUESINPARENTHESESARETHEOPTIMUMVALUESOF CER,,PAR 
FORTHEGIVENY, 

N Ys 

4 0.37 
8 0.65 

12 0.75 
16 0.81 
24 1.03 
32 0.85 

vc [lOI 
CER, 

1.41 (1.09) 
2.00 (1.26) 
3.00 (1.26) 
1.54 (1.24) 
4.00 (1.50) 
1.35 (1.16) 

PAR 

4.62 (2.27) 
6.98 (2.81) 
8.24 (2.86) 
5.58 (2.88) 
15.2 63.67) 
4.94 (2.70) 

Ys 

- 
0.63 
0.69 
0.80 
0.86 

c/o [31 
CER, 

1.55T.13) 
1.45 (1.14) 
1.50 (1.16) 
1.46 (1.17) 

PAR 

3.42 (2.51) 
3.02 (2.55) 
3.46 (2.67) 
3.40 (2.72) 

a point on the optimum tradeoff curve is based on the 
lattice D,* which has a simple decoding algorithm. In a 
shell-addressed Voronoi constellation, the ties, although 
still existing, do not result in an addressing problem or 
asymmetry. 

The schemes of [3] also use a spherical 2-D subconstel- 
lation and do not have the problem of ties. To have a fair 
comparison of [3] with this work or with [lo] and [14], it 
remains: 1) to find an appropriate shaping code which has 
an integral (or rational) bit rate per signaling interval (to 
avoid the problem of the nonintegral bit rate), and 2) to 
find an efficient addressing scheme to map the data bits to 
the codewords. As mentioned in [3], the addressing prob- 
lem is not a major issue. However, the problem of ‘the 
nonintegral bit rate needs to be further discussed. 

As already mentioned, we are essentially able to closely 
approximate any point up to the knee of the optimum 
tradeoff curves. In Table V, we have compared some of 
the values obtained in [lo] and [3] with the optimum 
values calculated in [2]. 

It should be mentioned that by applying the peak 
constraint technique [lo], [14], it is possible to modify the 
Voronoi constellations in such a way that the 2-D points 
outside a circle of selected radius are not allowed. This 
constraint can be applied to the m inimum distance de- 
coder [15] of the lattice. Such a modification to some 
extent remedies the deficiencies caused by a cubic 2-D 
subconstellation. For example, our simulation results show 
that for the E, lattice, one can achieve almost all the 
shaping gain given in Table V, but with CER, = 1.7 and 
PAR = 4 instead of CER, = 2 and PAR = 6.98. It should 
be mentioned that most probably for the higher dimen- 
sional lattices (like A,,), the improvement due to this 
technique will be more pronounced. 

As a more detailed comparison, a four-state trellis 
diagram of [14] (in conjunction with the peak constraint 
technique) achieves y, = 0.97 dB, CER, = 1.5, PAR = 
3.75. For N = 32, a two-level shaping code of [3] achieves 
-ys = 0.86 dB, CER, = 1.46, PAR = 3.40. For N = 32, our 
direct address decomposition method needs M , = 2.1 
kbytes/N dimensions to achieve 7, = 0.85, CER, = 1.19, 
and PAR = 2.76. As an alternative, we need M , = 3.25 
kbytes/N dimensions to achieve ‘y, = 0.98, dB, CER, = 
1.41, and PAR = 3.38. The achieved points are very near 
the L-point/K-point in [2, Table I]. On the other hand, to 
realize the L-points/K-points, the appropriate number of 

shells per 2-D subspaces is equal to 4/8 (as an example, 
refer to Fig. 1). For these numbers of partitions, a direct 
addressing scheme requires a lookup table with M , = 1.05 
X 106/6.5 X 10’ kbytes/N dimensions to closely approx- 
imate the L-point/K-point. 

In addition to better, performance, our address decom- 
position methods have two other advantages over [3] and 
n41. 

The examples given in [3] and [141 achieve fixed 
tradeoff points with relatively high CER,. The 
achieved points are relatively far from the knee of the 
optimum tradeoff curves. In a coding scheme carrying 
a large bit rate per dimension, a high value of CER, 
may be hard to implement. However, our methods 
are not confined to a tixed tradeoff point. Specifically, 
for CER, = 1.19 (L-points in [2, Table I]>, we can 
achieve a higher y, than [3] or almost all the ys of 
[14] with a substantial decrease in CER, and PAR. It 
should be mentioned that it is possible to find other 
examples for the application of the ideas introduced 
in [3] and [14], achieving different, possibly better, 
tradeoff points. 
It seems that our methods, which have no computa- 
tion, are easier to implement. 

VII. SUMMARY AND CONCLUSIONS 

We have introduced several practical addressing 
schemes. These are based on partitioning the constella- 
tion into the shaping clusters of equal volume and select- 
ing a subset of the clusters with low average energy. In 
one class of schemes, addressing is achieved by a lookup 
table. By decomposing the addressing, we have substan- 
tially decreased the complexity of the lookup table. In 
another class of schemes, addressing is based on the use 
of Voronoi constellations. Hybrid multilevel addressing 
schemes which combine both classes are also considered. 
As an example of performance, in 32-D space, by increas- 
ing the number of the 2-D points by 41% and using 3.25 
kbytes of memory (no computation), we realize a shaping 
gain of 0.98 dB. 

In general, the shaping gain supplements the coding 
gain, and thereby offers an additional gain that could 
otherwise only be obtained through a large increase in 
coding complexity. It seems that after the initial coding 
gain associated with the Ungerboeck schemes [16] or with 
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the Wei schemes [4], this is the easiest way to obtain 141 L. F. Wei, “Trellis coded modulation with multidimensional con- 
stellations,” IEEE Trans. Inform. Theoy, vol. IT-33, pp. 483-501, 
July 1987. 
G. D. Forney, “Coset codes-Part I: Introduction and geometrical 
classification,” IEEE Trans. Inform. Theory, vol. 34, pp. 1123-1151, 
Sept. 1988. 
A. K. Khandani and P. Kabal, “An efficient addressing scheme for 
the nearly optimum shaping of multidimensional signal spaces,” 
submitted to-IEEE Trans. Znform. Theory, Aug. 1992.- _ 
G. D. Fornev. Jr., R. G. Gallager. G. R. Lana. F. M. Lonestaff. and 
S. U. Quereihi, “Efficient midulation for bandlimited ihannels,” 
IEEE J. Select. Areas Commun., vol. 2, pp. 632-647, Sept. 1984. 
G. R. Lang and F. M. Longstaff, “A leech lattice modem,” IEEE J. 
Select. Areas Commun., vol. 7, pp. 968-973, Aug. 1989. 
J. H. Conway and N. J. A. Sloane, “A fast encoding method for 
lattice codes and quantizers,” IEEE Trans. Inform. Theory, vol. 
IT-19, pp. 820-824, Jan. 1983. 
G. D. Forney, Jr., “Multidimensional constellations-Part II: 
Voronoi constellations,” IEEE J. Select. Areas Commun., vol. 7, 
pp. 941-958, Aug. 1989. 
.I. H. Conway and N. J. A. Sloane, “A lower bound on the average 
error of vector quantizers,” IEEE Trans. Inform. Theory, vol. IT-29, 
pp. 820-824, Nov. 1983. 
A. K. Khandani, “Shaping multi-dimensional signal spaces,” Ph.D. 
dissertation, McGill Univ., Mar. 1992. 
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and 
Groups. New York: Springer-Verlag, 1988. 
G. D. Fomey, “Trellis shaping,” IEEE Trans. Inform. Theory, vol. 
38, pp. 281-300, Mar. 1992. 

“Coset codes-Part II: Binary lattices and related codes,” 
Is Trans. Inform. Theory, vol. 34, pp. 1152-1187, Sept. 1988. 
G. Ungerboeck, “Channel coding with multi level/phase signals,” 
IEEE Trans. Inform. Theoy, vol. IT-28, pp. 55-67, Jan. 1982. 
R. Laroia, N. Farvardin, and S. Tretter, “On SVQ shaping of 
multidimensional constellations-High-rate large-dimensional 
constellations,” in Proc. 26th Annu. Conf. Inform. Sci. Syst.; 
Princeton, NJ, Mar. 1992, pp. 527-531. 

higher gains. 
A. Recent Related Results 

Recently, Laroia et al. in [17] developed an addressing 
decomposition scheme using ideas from a type of struc- 
tured vector quantizer. In their work, an example for 
N = 64 is given which needs 15 multiply-adds/ZD, to- 
gether with a total memory of 1.5 kbytes/N-D, to achieve 
a tradeoff point with CER, = 1.5 near the optimum curve 
(the optimum -yS for N = 64, CER, = 1.5 is equal to 1.2 
dB [2]>. The complexity and performance of this method 
can be compared with our results given earlier. 
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