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'Abstract :  In this paper, we introduce two efficient addressing 
schemes for the nearly optimum shaping of multi-dimensional sig- 
nal spaces. Using K concentric circles, the 2-D (two-dimensional) 
subspaces are partitioned into K shells of equal volume. The  2-D 
shells are indexed in the radial direction from zero to K - 1. The  
average energy of a 2-D shell is proportional to its index plus a 
fixed offset. In an N =2n-D space, we obtain Kn shaping clus- 
ters of equal volume. Shaping is achieved by selecting T 5 Kn of 
the N-D clusters with the least average energy (least sum of the 
2-D indices). This results in a set of T integer n-tuples with com- 
ponents in the range [0, K - l ]  and the sum of the components 
being a t  most a given number L,,,. The problem of addressing 
is to find a one-to-one mapping between the set of these n-tuples 
and the set of the integers (0, T - 11 such tha t  the mapping and 
its inverse can be easily implemented. In the proposed schemes, 
the N-D clusters are grouped into blocks such that  the addressing 
within the blocks, which is achieved using a common algorithm for 
all the blocks, has a low complexity. The  addressing of the blocks 
is based on some recursive relationship which allows us to decom- 
pose the problem into smaller parts each of a low complexity. The 
overall scheme requires a moderate amount of memory and has 
a small computational complexity. The introduced methods are 
compared with the previously known schemes. The reduction in 
the complexity is substantial. 

1 Introduction 

In a data transmission system, the da ta  is encoded such that  
in each signaling interval one of the M equiprobable symbols is 
produced. The  overall transmission system can be modeled as a 
discrete-time system. In the discrete model, the channel provides 
us with a given number of dimensions, say N ,  per signaling in- 
terval. To achieve the transmission, we select M points over the 
channel space. Each of the source symbols is represented by one 
of these points. This is called a signal constellation. 

In selecting the boundary of a constellation (shaping region), 
the objective is to minimize the average energy of the constellation 
for a given number of points from a given packing. In continuous 
approximation, the distribution of the constellation points is ap- 
proximated by a continuous uniform density within the shaping 
region. The  reduction in the average energy per two dimensions 
due to the use of the region C as the boundary instead of using a 
hypercube is called the shaping gain of C and is denoted as ys(C). 

The price to be paid for shaping (y, > 1) involves: (i) an increase 
in the factor CER2 (Constellation-Expansion-Ratio) which is de- 
fined as the ratio of the number of points per two dimensions to 
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the minimum necessary number of points per two dimensions [I], 
(ii) an increase in the factor PARz (Peak-to-Average-power-Ratio) 
which is defined as the ratio of the peak of energy per two dimen- 
sions to the average energy per two dimensions [I], and, (iii) an 
increase in the  addressing complexity where addressing is the as- 
signment of the source symbols to the constellation points2. 

In general, there exists a tradeoff between .y, and CERz and also 
between y, and PAR2. An optimally shaped region is a region 
which optimizes both of these tradeoffs [2]. 

The major problem associated with shaping in a high dimen- 
sional space is the addressing complexity. For example, for 2-D 
subconstellations composed of 256 points in an N = 32-D space, a 
direct addressing scheme using a lookup table requires a block of 
memory with about 212' memory locations where 128 arises from 
8 bits/2-D times 16, 2-D subspaces per signaling interval. 

P r e v i o u s  re levant  works: Conway and Sloane in [3] intro- 
duced the idea of the Voronoi constellation based on ;sing the 
Voronoi region of a lattice A, as the shaping region. The Voronoi 
constellations are further considered by Forney in [4]. In the work 
of Wei [5], shaping is a side effect of the method employed to trans- 
mit a nonintegral number of bits per two dimensions. Forney and 
Wei generalize this method in [I]. In [6], Calderbank and Ozarow 
introduced a shaping method which is directly achieved on the 2-D 
subspaces. The  idea of the trellis shaping is introduced by Forney 
in [7]. Lang and Longstaff in [8] use an addressing scheme which 
is based on decomposing the space into lower-dimensional sub- 
spaces via generating function techniques. Prior to [a], a similar 
addressing scheme was used by Fischer in [9]. 

In [lo], Kschischang and Pasupathy discuss a shaping method 
which is based on using the 2-D points with nonequal probability. 
In [ l l ] ,  Livingston discusses a shaping method in which the 2-D 
subspaces are partitioned into circular shells of increasing size. In 
this method, the 2-D shells are used with equal probability induc- 
ing a nonuniform distribution on the 2-D points. In a continuation 
to [6] and [I l l ,  Calderbank and Klimesh in [12] use a balanced bi- 
nary code to select the sequence of the 2-D circular shells. In their 
scheme, as all the shaping code words have an equal number of 
zeros and ones independent of the size of the circular shells the 
data rate per signaling interval remains constant. 

In our previous work [13], some practical addressing schemes to 
achieve (or approximate points) on the optimum tradeoff curves 
is given. The  addressing scheme of Lang and Longstaff is further 
discussed (and applied to an optimally shaped constellation) by 
Kschischang and Pasupathy in [14] (also refer to [15]). Laroia, 
Farvardin and Tretter in [16] (also refer to [17]) apply ideas devel- 
oped by the first two authors in the context of a type of structured 
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vector quantizer to constellation addressing. This results in an ad- 
dressing decomposition scheme which has some similarities with 
the scheme of [8]. More recently, Kschischang in [18] discusses the 
structure of a prefix code which closely approximates the optimum 
nonuniform probabilities of the  2-D points. 

In this paper, we introduce two efficient addressing schemes for 
the nearly optimum shaping of multi-dimensional signal spaces. 
The basic idea is to partition the signal space into the union of 
subsets (blocks) such that  the addressing within the blocks, which 
is achieved using a common algorithm for all the  blocks, has a low 
complexity. T h e  addressing of the  blocks is achieved using some 
recursive relationship which allows us to decompose the problem 
into some smaller parts each of a low complexity. The  overall 
scheme requires a moderate amount of memory and has a small 
computational complexity. 

First, we define two discrete sets (see also (131): 

We refer to (Jo,. . . , Jn-l) as  the index vector of the points of F,, 
TC,, sets. 

2 Optimum shaping using a finite 
number of 2-D shells 

In an optimally shaped region, the boundary of the 2-D subspaces 
is a circle, i.e., S2(R)  [2]. Using K concentric circles, each S2(R) 
is partitioned into K shells of equal volume. The  2-D shells are in- 
dexed in the radial direction by J € (0, K - 1). The  average energy 
of the J ' th  shell is E ( J )  = ( J  + 0.5)(AR), where AR= R/*, [13]. 
In an N = 2n-D space, we obtain K n  clusters of equal volume. The 
average energy of the cluster indexed by ( Jo , .  . . , Jn-l) is equal to 
E = ( x i  J, + 0.5n)(AR)2. This means that  the points of Fn(K,  L) 
represent the clusters with the equal energy. Using this fact, s h a p  
ing is opiimally achieved by selecting a subset of these points with 
the least x i  Ji .  This results in the set 7C,,(K, L,, - 1) and an 
arbitrary subset of Fn(K,  L,,) for some L,,, E [0, n ( K -  I)]. This 
is denoted as the shaping set. If the cardinality of the shaping set 
is equal to T ,  we obtain, 

The overall shaping is optimum t o  the extent that  the resolution 
of the partitioning of the 2-D subspaces allows. For small values 
of C E b  (which are of practical interest), one can closely approxi- 
mate the optimum tradeoff using a small K ,  [6] (asymptotic case), 
(131 (general case). 

For the addressing, we need a one-to-one mapping between the 
set of the da ta  values 0 5 I5 T - 1 and the elements of the shap- 
ing set such that  the mapping and its inverse can be easily irn- 
plemented. The  basic idea behind the addressing methods intro- 
duced here is to partition the shaping set into the union of subsets 
(blocks), Bn's, such that  the addressing of the blocks (intra-block 
addressing) and also the addressing within the blocks (inter-block 
addressing) is an easy task. 

The blocks are arranged in a preselected order and are indexed 
by 0 5 b 5 B,,. For b2 > bl, the points of Bn(bz) correspond to 
larger da ta  values comparing to the points of B.(bl). The  cardi- 
nality of the block b is denoted by ATb= (Bn(b)(. For each block, 
0 b 5  B,,, the  total number of points in the preceding blocks 
is denoted by Tb, i.e., Tb= Ni. For a given da ta  value 
0 5 15 T - 1, we first find the index b such that  Tb < I  < Tb+l. 
Then the residue R, =I  - Tb is used to address a point within the 
block Bn(b). 

The  shaping methods discussed here can be easily used in con- 
junction with the coding schemes of [19], [5]. One can also perform 
the shaping in a higher dimensional space and use its lower dimen- 
sional subspaces for the channel coding. 

In explaining our schemes, for the sake of simplicity, we assume 
that  the shaping set is equal to the  set TC,(K, L,,). This can 
be easily generalized to the case tha t  the Fn(K,  L,,) is partially 
included in the shaping set [20]. 

3 Blocks of identical first 2-D index 
Define a block as the set of the index vectors with the same first 
(leftmost) component. This component serves as the block in- 
dex. The  key point to the  addressing scheme to be introduced 
is that  the vectors composed of the remaining n - 1 components 
in block b spans the  set 7Cn-, ( K ,  L,, - 6). This results in 
ATb = ITC,,-l(K, L,, - b)l .  This fact is used in [13] to compute 
the shaping performance. Now, assume that  the addressing of a 
data value has resulted in block index b. In this case, by replacing 
L,, by L,, - b, the addressing problem reduces to an equiva- 
lent form in n - 1 dimensions. This procedure is repeated for n - 1 
steps until all the components of the index vector are computed 
( the n'th component is equal to the n - l ' th  residue). Thisscheme 
results in a lexiographical ordering for the elements of the shaping 
set with respect to the components of the index vector. 

In the following, we talk about the storage and the computa- 
tional requirements of the method. In general, all over this pa- 
per, to facilitate the access to the lookup tables, we assume that: 
(i) each memory location is composed of an integral number of 
bytes (8 bits), and (ii) all the entries of a given table are of the 
same size. These restrictions increase the size of the memory. 

3.1 Storage requirement 

Assume that  s( i)  is equal to the sum of the first (leftmost) 
i components of the index vector where s(0) = 0. To achieve 
the i'th addressing step, i = 1, .  . . , n  - 1, we need the values of 
C ! J , o l T C . - i ( K , L m , - s ( i - l ) - j ) l ,  J=O ,..., K - 1 .  W e o b -  
tam an efficient method to store these values by considering that: 
(i) the preceding components affect the result only through their 
sum, namely s( i  - I), (ii) the s ( i  - 1) acts as  an offset to the values 
and, consequently, its effect can be easily compensated by adding 
an appropriate offset to the corresponding da ta  value. Using these 
facts, we employ a set of n - 1 lookup tables where the i'th table, 
1 = 1,. . . , n - 1, contains the values of 

4,) 
Ss(8) = l zn-a(Kt  Lmax -111, 0 5 ~ ( i )  5 smax(i) - 1 > 

)=O (4) 
where, s,,(i) = min [ i ( K  - l ) ,  L,,] . 

Considering that ,  ITC,(2", P)I 5 2"", Vp, it is easy to show that 
the entries of the i'th lookup table, 1 = 1, .  . . , n - 1, are a t  most, 

m(i )  = min [ [log, TI ,  ( n  - i + 1) [log, Kl ] , (5) 



bits long where T is the  cardinality of the shaping set. The  total 
memory size is equal to 

bytes where s,,(i) and m(i) are given in (4) and (5), respectively. 

3.2 Computation requirement 

To compensate the effect of the offset within the lookup tables, the 
data value involved in the i'th addressing step, i = 2, . . . , n - 1, is 
computed as, 

where Ri-l is the residue of the previous step and s ( i  - 1) is the 
sum of all the previous components. The  value of the summation 
in (7) is the s( i  - 1)'th element of the i'th lookup table (element 
indexed by s( i  - 1) - 1). 

As the elements of the lookup tables are sorted, the search in the 
i'th table requires a t  most [log2[l + s,,(i)]l comparisons where 
s,,(i) is given in (4). We also need n - 1 additions to determine 
the residues plus n - 2 additions to determine the data values. The 
total number of the additions (including comparisons) per block 
is equal to 

Table (1) shows some examples of the storage and the computation 
requirements. 

N L,, M1 Nadd ys d B  PAR2 
16 17 0.2 k 45 0.90(0.92) 3.52 
32 29 1.3 k 100 1.07(1.09) 3.66 
64 54 8.9 k 240 l.lS(1.21) 3.76 
128 104 6 5 k  550 1.27(1.30) 3.84 

Table 1: Parameters of the achieved point using K = 8 ,  
CER2 = 1.5. Column M1 denotes the memory size in bytes per 
N-D. Column Nadd denotes the number of the additions per N-D 
(no multiplications). The values inside parenthesis are the opti- 
mum 7,. 

4 Blocks of identical binary coeffi- 
cients 

For a given K = 2', N = 2n and integer L E [0, n ( K  - I)], consider 
k binary, n-D vectors g,, i = 0 , .  . . , k - 1 where the weight of g, is 
equal to w(') and, 

k-1 
L = C w(')2' , 

1=0 
(9) 

where 0 5 w(') 5 min(n, L/2'). The k-tuple w = (w('-'), . . . , w(O)) 
is denoted as a binary coefficient vector of L. For n = 1 this is the 
normal binary representation with k bits. For n > 1, the binary 
coefficient vector of L for L 4 (0, 1, n ( K  - 1) - 1,  n ( K  - 1)) is not 

unique. We use the set of the binary coefficient vectors of L to 
partition the Fn(K,  L)  into blocks. 

For a given k-tuple w of the form mentioned, consider the set 
of the binary k x n matrices such that  the weight of the i'th row 
is equal to w('). Assume that  for a given matrix of this set, the 
(i,  j) ' th element is the i'th digit (coefficient of 2') in the binary 
representation of the shell index along the j ' th 2-D subspace. By 
permuting the elements of the rows, we obtain different matri- 
ces corresponding to a subset of points of Fn(K,  L). There are 
n::: c,"';' such points, where c,""' is the combinatorial coeffi- 
cient, and their union results in one block. 

We assume that  the blocks have a lexiographical ordering ac- 
cording to the elements of the binary coefficient vector. For a given 
data value I ,  the intra-block addressing is the determination of the 
label b (and wb) such tha t  Tb 5 I < Tb+l. This is explained in the 
following: 

4.1 Intra-block addressing 

Assume that  the shaping set is equal to 7Cn(2k, L,,). If the most 
significant component of w is known to be equal to w(~-'), the 
shaping set reduces to the union of c,""-I' of its subsets each of 
cardinality )Xn(2'-', L,, - ~(~-')2'- ')). Each of these subsets 
is the collection of the integer n-tuples with n - w("-') components 
having value in the range [o, 2k-1 - 11 and w(~- ' )  components hav- 
ing value in the range [Zk--', 2' - 11 and the sum of the components 
is less than or equal to L,,. 

In this case, considering the lexiographical ordering of the 
blocks, w ( ~ - ' )  is selected as the largest integer satisfying, 

where Ik-I = I  is the da ta  value. Then, the residue Rk-l is ex- 
panded as, 

where, 

The value Pk-l is used in the inter-block addressing to permute 
the gk-,. After gk-~ is known, the shaping set reduces to the 
set TC,,(2'-', L,, - w ( ~ - ' ) ~ ~ - I )  shifted by an offset vector equal 
to 2k-1gk-l. The value I k - 2  is used to address one point of this 
set. By replacing k by k - 1 and L,, by L,, - in 
the original problem, the same algorithm is used t o  find w('-~). 
The procedure is repeated for k steps until all the elements of the 
coefficient vector are computed. The  expansion of the residue in 
(11) needs one multiplication, one division and one addition per 
recursion step times k - 1 steps (no expansion in the last step). 

4.1.1 Tradeoff  b e t w e e n  t h e  s t o r a g e  and t h e  c o m p u t a -  
t iona l  complexi t ies  

The  major complexity of this method is that  of calculating the 
summation in (10). The alternative is to use a lookup table to 
store the required results. We also need a block of memory to 
store the combinatorial coefficients. This block is used in the inter- 
block addressing and will be computed later. The total memory 
size is shown in column Ml of Tables (2) and (3).  In this case, the 



number of the multiplications, divisions per block is equal to k - 1. 
Columns Nd, Nmsl in Tables (2) and (3) show the corresponding 
computational complexity. 

As an intermediate solution, it is also possible to store a subset 
of the values of the summation and to compute the intermedi- 
ate cases. This results in a tradeoff between the storage and the 
computational complexities. 

Table 2: Parameters of the achieved point using K =8, 
CER2 = 1.5. Column Ml denotes the total memory size in bytes 
per N-D. Column Nodd/Nmul denotes the number of the addi- 
tions/multiplications (including divisions) per N-D. The  values 
inside parenthesis are the optimum y,. 

Table 3: Parameters of the achieved point using K =4,  
CER2= 1.25. Column M, denotes the total memory size in bytes 
per N-D. Column Nodd/Nmrl denotes the number of the addi- 
tions/multiplications (including divisions) per N-D. The values 
inside parenthesis are the optimum y,. 

4.2 Inter-block addressing 

The next step is to provide a mapping between the integer numbers 
P, ,  0 5 P, < c,"'~', and the set of the binary n-tuples of weight w('). 
Such a mapping is discussed in detail in [21]. The basic theorem 
is as follows [21]: 
Theorem: Consider the set G(n ,w)  of binary sequences 
g = (go,. . . , g,-l) of length n and weight w. Define the partial 
weight as, wk = C:=;;' g,. The binary sequences g E G(n, w) can be 
ordered according to 

where C," = 0 for w > n and 0 5 P ( g )  < C,". A similarly motivated 
combinatorial coding scheme was employed in [22] in a speech 
coding context. 

We assume that  the C,W_,'s, 1 5  i 5 n - 1, are precomputed 
and stored. In general, as C: =C,"-", just the values 
of C z  for w 5 1 + [rn/2J are stored. Using the identities 
zw C$ = xu C:W+~ = 2"'-I , we obtain C z  < 2"-', Vw. This 
means that  the Cz's, Vw, can be represented with m - 1 bits. 
This results in the memory size, 

bytes where T is the cardinality of the shaping set. 

The  whole mapping requires a t  most k(n - 1) comparisons and 
A =  Ci w, additions. Column A,, in Tables (2), (3) shows the 
maximum value of xi  w, over 0 5 L < L,,. 

Note: In [20], the addressing scheme using blocks of identical 
binary coefficients discussed here is generalized to the non-binary 
case. 

5 Comparison with other techniques 

In the following, we compare our schemes with that  of (41, [6], [7], 
[13], [16]. As we are essentially able to closely approximate any 
point up to the knee of the optimum tradeoff curves, in Table (4), 
we have compared some of the values obtained in [4] and [6] with 
the optimum values calculated in [2]. A four s tate trellis diagram 

Table 4: Comparison between the Voronoi constellations (VC) 
and the Calderbank, Ozarow method (C/O) with the optimum 
constellations, the values in parenthesis are the optimum values of 
CER,, PAR for the given 7,. 

of [7] (in conjunction with the peak constraint technique) achieves 
y, = 0.97 dB, CER, = 1.5, P A b  = 3.75. 

In [16], an example for N = 64 is given which needs 15 multiply- 
adds per 2-D, together with a memory of 1.5 kilo-byteslN-D, to 
achieve a tradeoff point with CER2= 1.5 near to the optimum 
curve (the optimum 7, for N =64, CER, = 1.5 is equal to 1.2 dB). 

Table (5) shows the performance and the complexity of our 
schemes for N = 64. 

Method CER. N d  Nm.1 MI 7, dB 
Blocks of identical 1 .XI 210 0 3.0 k l.OO(1.06) 

first 2-D index 1.5 240 0 8.9 k 1.18(1.21) 
Blocks of identical 1.25 100 2 1.1 k l.OO(1.06) 
binary coefficients 1.5 160 4 2.6 k 1.18(1.21) 

Table 5: Performance and complexity of the two schemes for 
N =64, CER, = 1.2511.5. Column Ml denotes the memory size 
in bytes per N-D. Column Nodd/Nmul denotes the number of the 
additions/multiplications (including divisions) per N-D. The val- 
ues inside parenthesis are the optimum y,. 

The addressing decomposition method of [13] uses a pure lookup 
table (no associated computation) to achieve nearly optimum 
tradeoff points. Table (6) shows some examples of the perfor- 
mance of this scheme. 

For N 5 32, the selection between the methods introduced here 
and that  of [13] is essentially a matter of tradeoff between the 
computational and the storage complexities. However, in higher 
dimensional spaces, the present methods are superior. 



N CER, M, 7, dB PAR 
16 1.25 1.5 k 0.79(0.81) 2.86 

Table 6: Parameters of the point achieved using the addressing 
decomposition method of [13]. The values inside parenthesis are 
the optimum 7,. Column Mi is memory size in kilo-bytes/N-D 
(no computation). 

6 Summary and conclusions 

We have introduced two efficient addressing schemes for the 
nearly optimum shaping of multi-dimensional signal spaces. These 
schemes are based on the observation that the average energy of 
a 2-D shell can be replaced by its index. Using this fact, we have 
partitioned the signal space into blocks such that the inter-block 
addressing has a low complexity. The intra-block addressing is 
achieved using some recursive relationship which allows us to de- 
compose the problem into smaller parts each of a low complexity. 

As an example of performance, in an N = 128 dimensional space, 
by increasing the number of the 2-D points by 50% and using a 
relatively simple algorithm, we realize a shaping gain of 1.27 dB. 
It seems that after the initial coding gain associated the Unger- 
boeck's schemes [19] or with the Wei'sschemes [5] this is the easiest 
way to obtain higher gains. 
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