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We introduce two methods for the fixed rate entropy coding of 
a memoryless source using a dynamic prograniming approach. 
The core of the schemes is a recursive relationship which is 
built in a hierarchy of steps. Each step involves the carte- 
sian product of two lower dimensional subspaces. For N = 2', 
the corresponding hierarchy is composed of u steps where the 
i th  step, i = 0, .  . . , u  - 1, is based on the  (pair-wise) cartesian 
product of the 2'-D subspaces. 

A shell P N ( C )  is defined as the set of N-D points of self 
information C. We have the following recursive relationship, 

where @ denotes the cartesian product, N = N l  + N2, and 
the union is computed over all the pairs (C1,C2) satisfying 
C1 + C2 = C. We are specially interested in the case that  
N1 = N2 = hr/2. Each cartesian product element in (1) is called 
a cluster. The C1/C2 are in some sense the s tate  variables 
t 31 the system. TO' reduce the complexity, we are interested 
in merging the neighboring states (aggregating the shells into 
macro-shells). 

For a given input vector x, by decoding of a shell we mean 
the process of finding the element of the shell which has the 
minimum distance to x. Using (I), we can decode a shell 
recursively. To do this, x is split into two parts xl and xz 
of lengths N ,  and N2. Assume that the nearest vectors of 
FNl(Cl)/FN,(C2) to xl /xz are equal to il/i2 with the mini- 
mum distancesdl/d2. The nearest vector of FN, (Cl)@F,q,(CZ) 
to x is equal to  ( k l , i 2 )  with the minimum distance dl +d2. 
The minimum distance of a shell is equal t o  the  lowest of the 
minimum distances of its clusters. For N1 = N2 = N/2, if we 
know the minimum distance and the nearest vector for all the 
shells of the N/2-D subspaces, we can decode all the N-D 
shells. We can also use the recursive structure of the shells to 
develop an algorithmic addressing/reconstruction procedure. 
The basic idea is that  the addressing within each cluster can 
be achieved independently along its lower dimensional compo- 
nents. It  remains to select a single cluster within a shell. This 
is achieved by arranging the clusters in a preselected order and 
assuming that  the points in a higher order cluster have a larger 
label. Based on this ordering, a cluster is selected according to 
the range of the index and the corresponding residue with re- 
spect to the s tar t  of the range is used for the addressing within 
the cluster. In the following, we introduce two methods for the 
recursive aggregation of shells. 

In the first method, the one-D symbols are aggregated into 
K information macro-shells with a fixed spacing (increment 
in the self-information) A. The probabilities of the points 
in the i th  macro-shell satisfy 0 < - logz p < co for i = 0 and 
~ + ( i - 1 ) A <  - l o g 2 p < ~ + i A ,  for i=1, ..., K - 1 .  Obvi- 
ously, some of the one-D shells may remain empty. The higher- 
dimensional macro-shells are considered as the set of the high 
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Method N R Memory Computation SNR (dB) 
SMS 16 1.5 1.25 k 54 (33) 7.43 
L-F 16 1.5 7.9 k sio ' 7.47 
SMS 16 2.5 2.5k 220(97) 12.91 
L-F 16 2.5 21.0 k 2240 13.00 
SMS 32 3.5 14.3 k 1060(290) 18.7 
GF 32 3.5 307 k 12500 18.8' 

Table 1: Comparison between our method based on the se- 
quential merging of shells (denoted by SMS) with the scheme 
of [2] (denoted by L-F) in conjunction with a memoryless 
Gaussian source (N is the dimensionality and R is the rate 
per dimension.). The memory size is in byte (8 bits) per N 
dimensions and the computational complexity is the number 
of additions/comparisons per dimension. The  values inside 
parenthesis are the computational complexities of our method 
in the case of allowing for the parallel processing. (The value 
denoted by t is obtained using interpolation.). 

dimensional symbols with a fixed sum of the indices. This re- 
sults in a recursivemerging rule for the states. The final subset 
is selected as the union of the N-D macro-shells with the sum 
of the indices less than a given value L,,. This results in 
min[2'K, t,,] states in the i th  step of our hierarchy. 

In the second method, we have a sequential aggregation of 
the macro-shells in the 2'-D subspaces, i = 0,. . . , u - 1. In 
other words, the  merging of the states is achieved gradually 
a t  different stages of our hierarchy. The subspaces involved 
a t  each step of the hierarchy are partitioned into a number of 
macro-shells of increasing average self information and iden- 
tical cardinalities. The key point is to approximate the self 
information of the points within a given macro-shell a t  each 
stage by their average value. In other words, all the points 
within a macro-shell are assumed to have the same self infor- 
mation as their average value. To facilitate the addressing, the 
macro-shells are restricted to have an integral bit rate. The 
corresponding addressing is decomposed into a hierarchy of 
addressing steps where each step selects a macro-shell among 
a relatively small number of similar macro-shells. As the sub- 
sets involved in each addressing step are of iniegral, equal b i t  
rates, the corresponding addressing has a trivial complexity. 
A similar addressing scheme is discussed in detail in [I]. 

Table 1 presents a comparison between the present method 
and the scheme of [2] in terms of performance and complexity. 
Other advantages of our method are as follows: (i) it can be 
more easily used in conjunction with a quantization lattice, 
(ii) it allows for the parallel processing. 
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