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Fixed-Rate Entropy Coded Vector-Quantization
A. K. Khandani!, P. Kabal!! and E. Dubois!

We introduce two methods for the fixed rate entropy coding of
a memoryless source using a dynamic programming approach.
The core of the schemes is a recursive relationship which is
built in a hierarchy of steps. Each step involves the carte-
sian product of two lower dimensional subspaces. For N =2°,
the corresponding hierarchy is composed of u steps where the
ith step, 1=0,...,u—1, is based on the (pair-wise) cartesian
product of the 2-D subspaces.

A shell Fy(C) is defined as the set of N-D points of self
information C. We have the following recursive relationship,

Fp(C) = [Fn,(C1) ® Fy,(C2)) m

where ® denoctes the cartesian product, N =N;+ N,, and
the union is computed over all the pairs (C,, C,) satisfying
Ci+Cy=C. We are specially interested in the case that
N, = N, = N/2. Each cartesian product element in (1) is called
a cluster. The C,/C; are in some sense the state variables
of the system. To reduce the complexity, we are interested
in merging the neighboring states (aggregating the shells into
macro-shells).

For a given input vector x, by decoding of a shell we mean
the process of finding the element of the shell which has the
minimum distance to x. Using (1), we can decode a shell
recursively. To do this, x is split into two parts x; and x;
of lengths Ny and N,. Assume that the nearest vectors of
Fy, (C1)/ Fx,(C2) to x1/x, are equal to X,/%; with the minj-
mum distancesd,/d,. The nearest vector of Fy, (C)® Fy,(C2)
to x is equal to (%;,X,) with the minimum distance d; + d,.
The minimum distance of a shell is equal to the lowest of the
minimum distances of its clusters. For Ny =N, =N/2, if we
know the minimum distance and the nearest vector for all the
shells of the N/2-D subspaces, we can decode all the N-D
shells. We can also use the recursive structure of the shells to
develop an algorithmic addressing/reconstruction procedure.
The basic idea is that the addressing within each cluster can
be achieved independently along its lower dimensional compo-
nents. It remains to select a single cluster within a shell. This
is achieved by arranging the clustersin a preselected order and
assuming that the pointsin a higher order cluster have a larger

label. Based on this ordering, a cluster is selected according to

the range of the index and the corresponding residue with re-
spect to the start of the range is used for the addressing within
the cluster. In the following, we introduce two methods for the
recursive aggregation of shells.

In the first method, the one-D symbols are aggregated into
K information macro-shells with a fixed spacing (increment
in the self-information) A. The probabilities of the points
in the ith macro-shell satisfy 0< — log,p<c¢g for i=0 and
co+({~1)A< —log,p<cy+iA, fori=1,..., K ~1. Obvi-
ously, some of the one-D shells may remain empty. The higher-
dimensional macro-shells are considered as the set of the high
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Method N R Memory Computation SNR (dB)
SMS 16 15 125k 54(33) 7.43
L-F 16 1.5 79k 670 747
SMS 16 25 25k 220(97) 12.91
L-F 16 2.5 210k 2240 13.00
SMS 32 35 143k  1060(290) 18.7
I-F 32 35 307k 12500 18.8t

Table 1: Comparison between our method based on the se-
quential merging of shells (denoted by SMS) with the scheme
of {2] (denoted by L-F) in conjunction with a memoryless
Gaussian source (N is the dimensionality and R is the rate
per dimension.). The memory size is in byte (8 bits) per N
dimensions and the computational complexity is the number
of additions/comparisons per dimension. The values inside
parenthesis are the computational complexities of our method
in the case of allowing for the parallel processing. (The value
denoted by t is obtained using interpolation.).

dimensional symbols with a fixed sum of the indices. This re-
sults in a recursive merging rule for the states. The final subset
is selected as the union of the N-D macro-shells with the sum
of the indices less than a given value Ly,,. This results in
min {2 K, L] states in the ith step of our hierarchy.

In the second method, we have a sequential aggregation of
the macro-shells in the 2-D subspaces, i=0,...,u—1. In
other words, the merging of the states is achieved gradually
at different stages of our hierarchy. The subspaces involved
at each step of the hierarchy are partitioned into a number of
macro-shells of increasing average self information and iden-
tical cardinalities. The key point is to approximate the self
information of the points within a given macro-shell at each
stage by their average value. In other words, all the points
within a macro-shell are assumed to have the same self infor-
mation as their average value. To facilitate the addressing, the
macro-shells are restricted to have an integral bit rate. The
corresponding addressing is decomposed into a hierarchy of
addressing steps where each step selects a macro-shell among
a relatively small number of similar macro-shells. As the sub-
sets involved in each addressing step are of integral, equal bit
rates, the corresponding addressing has a trivial complexity.
A similar addressing scheme is discussed in detail in {1].

Table 1 presents a comparison between the present method
and the scheme of [2] in terms of performance and complexity.
Other advantages of our method are as follows: (i) it can be
more easily used in conjunction with a quantization lattice,
(ii) it allows for the paralle] processing.
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