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Abstract
Most array processing algorithms are based on the assump-

tion that the signals are generated by point sources. This

is a mathematical constrain t which is not satis�ed in many

applications. In this paper, we consider situations where

the sources are distributed in space with a parametric an-

gular cross-correlation kernel. W e propose an algorithm

that localizes the distributed sources by estimating their

parameter vector. The method is based on minim izing a

scalar product between the array manifold and the noise

eigenvectors of the correlation matrix. W e study two cases

corresponding to completely correlated and totally uncor-

related signal distributions. W e compare our method to

the conventional MUSIC algorithm. The sim ulation stud-

ies show that the new method outperforms the MUSIC al-

gorithm by reducing the estimation bias and the standard

deviation.

R�esum �e
La plupart des algorithmes de traitement d'antenne re-

posent sur l'hypoth�ese que les signaux re�cus sont g�en�er�es

par des sources ponctuelles. Il s'agit l�a d'une contrainte

math�ematique qui n'est pas satisfaite dans plusieurs appli-

cations. Dans cet article, nous supposons que les sources

sont distribu�ees spatialement selon un patron de directiv-

it�e appartant �a une classe param�etrique de noyaux de cor-

r�elation crois�ee angulaire. Nous proposons un nouvel algo-

rithme param�etrique pour la localisation des sources dis-

tribu�ees. Cet algorithme est bas�e sur la minimisation du

produit scalaire entre la vari�et�e d'antenne et les vecteurs

propres du sous-espace bruit. Nous �etudions deux cas parti-

culiers correspondants �a une distribution spatiale coh�erente

et non-corr�el�ee, respectivement. Des simulations montrent

qui les performances de l'algorithme propos�e surpassent

consid�erablement celles de l'algorithme MUSIC.

1. Introduction

In array processing it is frequently assumed that the signals

of interest are generated by point sources. This is a model-

ing assumption that is seldom satis�ed in reality and many

practical examples can be found where it does not hold. In

sonar, the re
ection of the signal and the penetration into

the lower levels of the seabed create a spatial distribution

of the receiving waveform which a�ects the performance [1].

Another example arises in radar where a short pulse is shot

towards the target. When the target is spread in range,

the received signal is a superposition of the re
ections of

the transmitted pulse from di�erent parts of the target, and

appears as a distributed source [2].

For narrowband point source con�gurations, the dimen-

sion of the signal subspace, de�ned as the span of the loca-

tion matrix, is equal to the number of uncorrelated signals.

Thus each source has a one-dimensional representation in the

signal subspace. A distributed source can be contemplated

as a superposition of a large number of closely-spaced point

sources. Thus the corresponding location matrix spans the

whole space and the noise subspace is empty. This explains

why the conventional array processing techniques such as

MUSIC and ESPRIT, which are based on the signal and

noise subspace decomposition for point source scenarios, of-

ten lead to erroneous results when applied to distributed

sources [1].

In this paper we propose a parametric approach to lo-

calize distributed narrowband sources using measurements

from the array output. W e assume that the source distribu-

tion pattern is chosen from a parametric class of functions,

with each function in this class being uniquely represented

by a parameter vector. With this assumption the localiza-

tion problem becomes the one of parameter estimation. The

proposed method is based on minimi zing a scalar product

between the array manifold and the noise subspace eigen-

vectors of the correlation matrix. The de�nition of the ar-

ray manifold is di�erent from the conventional one used by

the MUSIC algorithm and the scalar product is also based

on a kernel that introduces an orientation in space. The di-

mension of the signal subspace is a crucial factor which is

required for parameter estimation. W e de�ne the concept

of time-extension-width product and show that the e�ective

dimension of the signal subspace is directly related to the

product of time and extension width.

2. Problem formulation

Consider an array of p sensors monitoring a wave �eld gen-

erated by q spatially distributed narrowband sources in an



additive background noise. For distributed sources the ob-

servation vector in the frequency domain is given by

x =

qX
i=1

Z �

2

��

2

a(�)si(�; i)d� + n; (1)

where a(�) is the p � 1 location vector of the array in the

direction �, n is the p�1 additive noise vector, and si(�; i)

is the angular signal density of the i-th source which is also a

function of the angle of arrival, �, and the parameter vector,

 i. Examples of the parameter vectors are the two limits of

the directions of arrival (DOA) for a uniform source distri-

bution or the angle of maximumpower and �3 dB extension

width for a bell-shaped distribution.

For a uniform linear array with the phase reference point

at the �rst sensor, the location vector is given by a(�) =

[1 �� : : : �
p�1

�
]T ; and �� = exp(j!0d sin(�)=v), where d is

the distance between two consecutive sensors, v is the wave

speed, !0 is the center frequency of the source signal, and

T is the transpose operator. If the distance d is equal to

half the wavelength at frequency !0, �� will be given by

�� = exp(j� sin �).

The signal and noise samples are modeled as zero-mean,

independent, circular, complex Gaussian random variables.

The signals and noise are also considered to be uncorrelated

from each other. The correlation matrix of the noise is as-

sumed known but for a scalar, �2
n
. In the sequel, we will con-

sider spatially white noise. Generalization to the nonwhite

case is done by using pre-whitening. With these assumptions

the correlation matrix of the array output is given by

Rx =

qX
i=1

qX
j=1

Z �

2

��

2

Z �

2

��

2

a(�)pij(�; �
0; i;  j)

�a
H (�0)d�d�0 + �

2

n
I; (2)

where I is the p� p identity matrix and

pij(�; �
0; i;  j) = E[si(�; i)s

�

j
(�0; j)] (3)

is the angular cross-correlation kernel, parameterized by the

unknown parameter vectors  i and  j . The superscripts, H,

and �, represent the Hermitian transpose and the complex

conjugation, respectively.

For completely uncorrelated sources, the angular cross-

correlation kernel is simpli�ed to

pij(�; �
0; i;  j) = p(�; �0; i)�ij ; (4)

where �ij is the Kronecker delta. In the rest of the paper we

assume that the sources are uncorrelated. Note that this is

not a restrictive assumption. If the sources are correlated,

they can be treated as a single source with a new angular

cross-correlation kernel which is the addition of the angular

cross-correlation kernel of the sources.

The angular cross-correlation kernel pi(�; �
0; i) can be

simpli�ed for two extreme cases. If the signals arriving from

di�erent rays are uncorrelated, the angular cross-correlation

kernel can be shown as

p(�; �0; i) = p(�; i)�(� � �
0); (5)

where �(�) is the Dirac delta function. Since this model

can be applied to scattering media, we call this the Scatter

Distributed (SD) signal. . On the other hand, if the signal

rays at di�erent angles are coherent, the kernel is separable

and it can be written as

p(�; �0; ) =

qX
i=1

�igi(�; i)g
H

i
(�0; i); (6)

where �i is a scalar value representing the power of the i-

th source observed at the reference point of the array, and

gi(�; i) is a complex deterministic angular signal density

de�ned in the interval [��
2

�

2
] and normalized according to

Z �

2

��

2

g(�; i)d� = 1: (7)

For a point source scenario, the angular signal density

g(�; ), is replaced by �(� � �0). A signal with the angular

correlation kernel (6), is called the Coherently Distributed

(CD) signal.

In the following section we propose a localization tech-

nique for CD and SD signals. Note that in practice an inter-

mediate situationmight occur that corresponds to a partially

correlated signal where the rays of signal which are arriving

from di�erent angles are partially correlated. We will show

that the partially correlated signal can also be detected and

localized using the same method as the SD signal.

3. Localization

Assume that the observation space can be decomposed into

the signal and the noise subspaces and the noise eigenvectors

of Rx are shown by En. For distributed sources we propose

the following criterion. The parameter vector is found from

 ̂ = argmax
 

1

kaH (:)Enk
2

k

(8)

where

ksk
2

k
=

Z �

2

��

2

Z �

2

��

2

s(�)p(�; �0 ; )s�(�0)d�d�0: (9)

It is seen that this criterion is similar in form to the spatial

spectrum of the MUSIC algorithm with the di�erence that

it uses a weighted norm. In an expanded form the criterion

is represented by

 ̂ = argmax
 

1R �

2

��

2

R �

2

��

2

aH(�)Enp(�; �0; )EHn a(�
0)d�d�0

:

(10)

We call this method the Distributed Signal Parameter Esti-

mator (DSPE).

For the CD sources, the rays of arriving waves at di�erent

angles are delayed and ampli�ed version of the same sig-

nal. In such a case the signal subspace is spanned by the

eigenvectors of the correlation matrix corresponding to the

q largest eigenvalues. The localization criterion (10) for the

CD sources with the angular signal density g(�; ), is repre-

sented as

 ̂ = argmax
 

1

hH( )EnEHn h( )
(11)

where

h( ) =

Z �

2

��

2

a(�)g(�; )d�: (12)



The criterion (11) can be simply written as

 ̂ = argmax
 

1

khH( )Enk2
(13)

which is similar in form to the spatial spectrum of the MU-

SIC algorithm. The di�erence is that the array manifold vec-

tor for the distributed source is the integral of the product

of the location vector, a(�), and the angular signal density.

For the SD sources, the noise subspace is null and the al-

gorithms which are based on the signal and noise subspace

decompositions cannot be applied. However, for the spe-

cial case of uniform distribution we show that with proper

choice of the signal and noise subspaces it is possible to use

the DSPE algorithm. In the sequel, we will de�ne an e�ec-

tive dimension for the signal subspace. Although the whole

observation space is occupied by the signal components, it

is possible to show that most of the energy of the signal

is concentrated in a few eigenvalues. The number of these

eigenvalues is denoted as the e�ective dimension of the signal

subspace which can be used in the localization algorithm.

We present a lemma to �nd the cross-correlation function

at a linear continuous array. For a continuous array, the

signal is observed at all the points in the interval [�L

2

L

2
]

where L is the entire array length.

Lemma 1: For an SD source uniformly distributed in

the interval [�0 ��; �0 +�], and a noise-free environment,

the spatial cross-correlation function at the two observation

points, z and z0, is given by

E[x(z)x(z0)] =
1

�
e
j
2�

�
(z�z

0

) sin �0sinc[
2

�
(z � z

0)� cos �0]:

(14)

To �nd the e�ective dimension of the signal subspace we

need the eigenvalue analysis of (14) which can be performed

by solving

Z L

2

�

L

2

1

�
e
j
2�

�
(z�z

0

) sin �0sinc[
2

�
(z � z

0)� cos �0]

�n(z
0)dz0 = �n�n(z): (15)

The eigenvalues of (15) are the radial prolate spheroidal func-

tions [3]

�n =
L

�
[R

(1)

0n
(c; 1)]2 (16)

where c is a parameter de�ned by

c = ��
L

�
cos �0: (17)

For a uniform linear array with half the wavelength spacing

between sensors, (17) can be written as

c =
�

2
�(p� 1) cos �0: (18)

In many practical applications the extension width is usu-

ally small (less than a few degrees). For 2� < �=30, the

parameter vector c is bounded by

c <
�
2

120
p: (19)

For a �xed c the radial prolate spheroidal function de-

creases exponentially with n. From tables of the prolate

spheroidal functions [4] it can be seen that for c � 4, about
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Fig. 1 The probability of resolution for the conventional

MUSIC and the DSPE versus SNR.

95 percent of the energy is concentrated in the �rst dce eigen-

values where dce indicates the smallest integer number larger

than c. Thus it is seen that the e�ective number of eigen-

values is bounded and the dimension of the signal subspace

depends on the parameter, c. From (18), the parameter c is

proportional to �(p� 1) which is proportional to the prod-

uct of the extension width and the observation time across

the array.

Once the signal subspace dimension is determined, the

DSPE algorithm can be used to localize the sources. It

should be noted that in practice the exact value of �(p� 1)

is not required. If the maximum extension width is known,

the upper bound of c can be used to estimate the subspace

dimensionality. An easier way is to simply choose the promi-

nent eigenvalues of the correlation matrix regardless of the

number of signals.

For partially correlated distributed signals, the signal sub-

space dimension is between 1 and dce. With choosing an up-

per bound for the signal subspace dimensionality, the DSPE

algorithm still can be used for the partially correlated dis-

tribution.

4. Simulation results

We investigate a con�guration with two equipower uncor-

related distributed narrowband sources arriving at a linear

array of 20 sensors. The spacing between adjacent sensors

is equal to half the wavelength at the operating frequency.

It is assumed that the sources are coherently distributed in

space with the angular correlation Butterworth kernel

p(�; i) =
K

2

i

1 + ( ���i
�i

)2
(20)

which is a practical choice [5]. In this equation Ki is a

normalization factor, �i is the central angle of arrival, and

�i is the 3-dB extension width for the i-th source. The

central angles of arrival for the two signi�cantly overlapped

sources are 10 and 13 degrees with the 3-dB extension widths

1 and 2 degrees, respectively.

A Monte-Carlo simulation of 50 independent runs with 50

collected snapshots for each trial was performed for di�er-

ent signal-to-noise ratios. The resolution performance of the

conventional MUSIC and the DSPE are compared in Fig. 1.

For high probability of resolution the resolution threshold for
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Fig. 2 The bias of estimation versus SNR for the source

at 10 degrees.
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Fig. 3 The standard deviation versus SNR for the source

at 10 degrees.

DSPE is about 15 dB lower than the conventional MUSIC

algorithm.

For the same con�guration we found the bias and the stan-

dard deviation of the MUSIC and the DSPE algorithms. The

estimation bias for the central DOA of the source at 10 de-

grees is shown in Fig. 2. A similar result has been found

for the source at 13 degrees. It is seen that the estimated

DOA is biased in the conventional MUSIC algorithm. The

bias cannot be decreased appreciably by increasing the SNR.

The DSPE algorithm provides an almost unbiased estimate

of the DOA. Moreover, the bias can be reduced by increas-

ing the SNR. The standard deviation of the estimators is

compared in Fig. 3. It is seen that the DSPE algorithm is

more robust.

For the SD signal scenario we examined a con�guration

with two uniformly distributed sources arriving at an ar-

ray of 20 sensors from 8 and 15 degrees with the extension

widths 2 and 3 degrees, respectively. The signal-to-noise ra-

tio is 30 dB and 200 snapshots are observed. From (19) the

parameter c is smaller than 1.6 for a single source with 3

degree extension. Thus the e�ective dimension of the signal

subspace is equal to 4. The eigenvalues of the sample cor-

relation matrix for this scenario are shown in Fig. 4. It is

seen that the �rst 4 eigenvalues are prominent. The PSDE

algorithm is run for this example with 16 noise eigenvec-

tors. The spectrum is illustrated in Fig. 5. The two distinct

peaks estimate the location of the signals at 7.92 and 15.04

degrees with the extension widths of 1.86 and 3.10 degrees,
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Fig. 4 The eigenvalues of a con�guration with two SD sig-

nals.
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respectively.
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