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Block-based Eigensystem of the 1 $ D and 1 - D' 
Partial Response Channels 

A. K. Khandani and P. Kabal 

Abstract-We find analytical expressions for the block-based input 
and output eigenvectors and eigenvalues of the systems with responses 
1 D and 1 - 0'. The input eigenvectors form an orthonormal basis 
which is the optimum modulator for a channel with that transfer 
function. The output eigenvectors form an orthonormal basis with the 
same spectral nulls as the corresponding system. This basis can be used 
to produce line codes with spectral nulls. The eigenvectors are sinusoids. 
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Fig. 1. Block diagram of the transmission system. M C 

This reduces the computational complexity by allowing for fast trans- 
(b) 

form algorithms to perform the modulation for a block of data. Fig. 2. (a) Block diagram of the line coder. (b) An equivalent form 
for (a). 

Index Terms-Block-based eigensystem, partial response channels. 

I.. INTRODUCTION 

We consider the problem of finding the input and the output 
eigenvectors and the eigenvalues of the block-based 1 -t D and 
1 - D2 systems. For an M x N-dimensional matrix C, the input 
eigenvectors mk, k E [0, N - 11, are the eigenvectors of C'C 
with the eigenvalues +:. The output eigenvectors A,, k E [0, M 
- 11, are the eigenvectors of CC'. Assuming M > N, CC' has N 
nonzero eigenvalues equal to the same 6:'s and M,, = M - N 
eigenvalues equal to zero. We have 

emk  = +kmk? 

Cfmk = &mk. (1) 

Since C'C and CC' are both symmetric, the input and the 
outpu: eigenvectors form an orthonormal basis denoted by M 
and M, respectively. In the following, we discuss two applica- 
tions for the eigenvectors of the matrix C. 

The first application involves signaling over a channel with the 
transfer matrix C. The block diagram of the transmission system 
under consideration is shown in Fig. 1. We use a discrete-time 
model and block-based processing. The block length is equal to 
N. Each block invokes M = N + M, channel uses, where M, is 
the memory length of the channel. M, zeros are transmitted 
between successive blocks; as a result, each block starts with 
zero initial conditions. Modulator matrix M is the basis for the 
given constellation at the channel input. The additive noise is 
white Gaussian with zero mean and unit variance. The demodu- 
lator matrix D is selected such that DCM = I, where I is the 
N X N identity matrix. This results in a unity gain N-dimen- 
sional channel with additive Gaussian noise whose autocorrela- 
tion matrix is DD'. We assume that the decisions along different 
dimensions of the channel are made independently. In this case, 
the effective noise along the kth dimension, k = O;.., N - 1, is 
a Gaussian random process with power u:, where u: is the kth 
diagonal element of the matrix DD'. 

It can be shown that the input eigenvectors of C are the 
optimum modulating basis at the channel input [I]. This basis 
minimizes the product of the noise powers along different di- 
mensions. In this case, for a given total rate and given minimum 
distance-to-noise ratio at the demodulator output, the volume of 
the signal space and, consequently, the required energy at the 
channel input, are minimized. 

The second application involves line coding. The output eigen- 
vectors of a system C form an orthonormal basis with the same 
spectral nulls as the system. This basis can be used to produce 
line codes with spectral nulls. Fig. 2(a) shows the block diagram 
of such aAline coder. Considering (I), multiplication (modula- 
tion) by M can be achieved using the system shown in Fig. 2(b), 
where @ - I  is a diagonal matrix with the diagonal elements 
I/+,. As we will see later, for the systems under consideration, 
modulation by M can be achieved using an even discrete sine 
transform algorithm. This reduces the computational complexity 
of a realization based on Fig. 2(b). 

The 1 - D, 1 + D, and 1 - D 2  systems have special impor- 
tance in partial response signaling [2]. The 1 - D system has a 
spectral null at zero frequency, 1 + D has a spectral null at the 
Nyquist frequency, and 1 - D 2  has spectral nulls at both zero 
and the Nyquist frequencies. Let the energy per channel use be 
normalized to 1. The 1 + D systems have an ( N  + 1) x N- 
dimensional transfer matrix with ith column, i = O;.., N - 1, 
equal to [(O)', &/2, + &/2,(0)~-"]'. The 1 - D2 system 
has an ( N  + 2) x N-dimensional transfer matrix with ith col- 
umn, i = O;.., N - 1, equal to [(0)',&/2,0, - & / 2 ,  
(0IN- -lit. 

The input eigenvectors of the 1 - D system are equal to 

k ,  n = O;.., N - 1. (2) 
The corresponding eigenvalues are given by 

This can be verified by considering (2) as a periodic function 
with period N + 1. This function is zero at n = i (N + 1) - 1, 
Vi. This means that the signal itself provides zero initial condi- 
tions for the N-dimensional blocks. Consequently, the response 
of the system in each block is equal to its steady state. Note that 
in steady state, a sinusoid is the input eigenfunction of any 
linear system. 

To give a formal proof, we consider C'C as the transfer matrix 
of a linear time-invariant system with the transfer function 
H(D)  = OS(1 - D)(1 - D-I). This is the transform of 
c(n)* c(-n), where c(n) = {I/ &, - 1/ &} is the impulse re- 
sponse of the 1 - D system (power is normalized to 1) and * 
denotes the convolution. To have consistency with the block- 
based processing, we apply a causal input and truncate the 
output of positive time. In this case, if m(n) is an input eigen- 
vector and M(D) is its transform, we have 

H(D) [M(D)  - m(O)] + m(0)(1 - 0.5D) = +'M(D). (4) 
Calculating (4) at time zero results in 

Substituting H(D)  = OS(1 - D)(1 - D-') and (5) in (4) results 
in 

Eqs. (6) and (5) can be satisfied by the eigenvectors and eigen- 
values given in (2) and (3). Using (2) in (11, the output eigenvec- 

After this paper was accepted for publication, we became aware of the 
work of Honig et al. [4], which presents a result similar to (2). 
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tors of the 1 - D system are found as [ a  

n = O;.., N,  k = O;.., N - 1. (7) [41 

The input and output eigenvectors of the 1 + D system are 
obtained by multiplying (2) and (7) with (- 1)". The eigenvalues 
of the 1 + D system are the same as the 1 - D system given in 
(3). 

An N-dimensional 1 - channel, N even, can be consid- 
ered as two time-multiplexed N/2-dimensional 1 - D channels. 
Consequently, the eigenvalues are in pair equal to 

T(k + 1) 
4: = 1 - COS 

(N/2) + 1 ' 
k = O;.., (N/2) - 1. (8) 

The two eigenvectors corresponding to a pair of eigenvalues are 
of the general form a,mk(2n) + a2mk(2n + I), where a; + a; 
= 1 and mk(n) is the eigenvector of the 1 - D channel given in 
(2). 

The product of the nonzero eigenvalues of C is equal to 

where IC'CI is the determinant of C'C. This product is an 
important parameter of the systems based on C. For example, in 
the transmission system shown in Fig. (I), the volume of the 
Voronoi region around each constellation point at the channel 
input is proportional to (Ilk+,)-' and the required energy is 
proportional to ( n k  c$,)-~/~. 

For the 1 D channels, assuming IC'CI = 2-, x A ,  and 
expanding the determinant, we obtain AN = A N - ,  + 1. Solving 
this recursive equation with the initial value A, = 2 results in 
A, = N + 1. Consequently, for the 1 , D channels, we have 

For the 1 - D 2  channel, we have 

For all three channels, modulation with the input eigenvectors 
can be performed by using the even discrete sine transform. For 
modulation with the output eigenvectors, we can use the block 
diagram shown in Fig. (2). Using (7), modulation with the output 
eigenvectors can also be achieved using an N + 1-point even 
discrete cosine transform. In this case, samples of the modulat- 
ing vector are shifted by one sample and filled with zero. Ref. [3] 
shows how both the discrete sine transform and the discrete 
cosine transform can be efficiently calculated. 

The input and output eigenvectors and the eigenvalues of the 
1 + D and 1 - systems are calculated. The product of the 
nonzero eigenvalues are found in closed,form. In all cases, the 
multiplication by the input or output eigenvectors can be 
achieved by using fast transform algorithms. 
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