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Shaping of Multidimensional Signal Constellations 
Using a Lookup Table 

A. K. Khandani and P. Kabal 

Abstract-This paper describes a lookup table for the addressing of an 
optimally shaped constellation. The method is based on partitioning the 
subconstellations into shaping macro-shells of integer bit rate and 
increasing average energy. The macro-shells do not need to have an 
equal number of points. A lookup table is used to select a subset of the 
partitions in the cartesian product space. By devising appropriate parti- 
tioning / merging rules, we obtain suboptimum schemes of very low 
addressing complexity and small performance degradation. The perfor- 
mance is computed using the weight distribution of an optimally shaped 
constellation. 

Index Terms-Lookup table, integer bit rate, nonuniform merging, 
prefix code. 

Consider the problem of transmitting the output of a source 
composed of M equiprobable symbols over a channel. The 
channel provides us with a given number of dimensions, say N, 
per signaling interval. For instance in quadrature modulated 
systems, a block of N/2 symbols forms an N-D (N-dimensional) 
space. To achieve the transmission, we select M points over the 
channel space. Each of the source symbols is represented by one 
of these points. This collection of points is called a signal 
constellation. 
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CER, is ratio of the number of points used per two dimensions to 

the minimum necessary number of points per two dimensions [I]. 
2~ddressing is the mapping of the data bits to the constellation points. 
3~ third factor is the increase in PAR (peak-to-average-power-ratio), 

which is uniquely determined by y,, CER, and structure of the 2-D 
subconstellations [I]. Due to this dependence, we concentrate on the y,, 
CER, relationship. 

In shaping, one tries to reduce the average energy of a signal 
constellation for a given number of points from a given packing. 
The price to be paid for the reduction in the average energy 
(measured by the shaping gain, y,) involves: i) an increase in the 
factor CER,,' (constellation-expansion-ratio), and ii) an increase 
in the addressing c ~ m ~ l e x i t ~ . ~ ~ '  Addressing is often the most 
difficult task associated with the shaping of a high-dimensional 
constellation. For example, for 2-D subconstellations composed 
of 256 points in a 32-D space, a direct addressing scheme using a 
lookup table requires a block of memory with about 2128 mem- 
ory locations (with each location having a word length of 128 b). 
In the present work, we introduce suboptimum methods to 
reduce this memory size to about 0.8 k bytes per 32-D while the 
degradation in performance is negligible. 

A. Previous Work 

Conway and Sloane in [2] introduced the idea of Voronoi 
constellations based on using the Voronoi region of a lattice A, 
as the shaping region. In the work of Wei [3] shaping is a side 
effect of the method employed to transmit a nonintegral number 
of bits per two dimensions. The addressing of this method is 
achieved by a lookup table. Forney and Wei generalize this 
method in [I]. Voronoi constellations are further considered by 
Forney in [4]. In [5],  Calderbank and Ozarow introduce a shap- 
ing method that is directly achieved on the 2-D subconstella- 
tions. In this method, the 2-D subconstellations are partitioned 
into equal sized subregions of increasing average energy. A 
shaping code is then used to specify the sequence of the subre- 
gions. The shaping code is designed so that the lower energy 
subregions are used more frequently. The idea of trellis shaping 
is introduced in [6]. This idea is based on using an infinite-di- 
mensional Voronoi region determined by a convolutional code 
to shape the constellation. Lang and Longstaff in [7] use an 
addressing scheme that is based on decomposing the space into 
lower dimensional subspaces via generating function techniques. 

In [8], Kschischang and Pasupathy discuss a shaping method 
that is based on using the 2-D points with nonequal probability. 
In [9], Livingston discusses a shaping method in which the 2-D 
subspaces are partitioned into circular shells of increasing size. 
In this method, the 2-D shells are used with equal probability 
inducing a nonuniform distribution on the 2-D points. In a 
continuation to [5] and [9], Calderbank and Klimesh in [lo] use a 
balanced binary code to select the sequence of the 2-D circular 
shells. This scheme results in a fixed rate per signaling interval. 

In [I l l ,  [14], some practical addressing schemes to achieve or 
approximate points on the optimum tradeoff curves are given. A 
comparison of the performance of these methods is available in 
section VI of this manuscript. The addressing scheme of Lang 
and Longstaff is further discussed and generalized by Kschis- 
chang and Pasupathy in [12] (also refer to [13]). 

In comparing different schemes, we need to compute y, accu- 
rately. Previous methods [Ill, [12], [15] (also refer to [13]) are 
based on a continuous approximation. To perform an exact 
computation, we need the corresponding weight distribution. 

The weight distribution of a set of points A with respect to a 
given center is defined as 

= C q 1 1 " i i 2  = CC,,( , .)qL' (1) 
u t  .A 1 '  
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Fig. 1. Trade-off between CER, and y, using K macro-shells in the 
N/2-D subspaces, N = 32. Case I corresponds to macro-shells with a 
fixed number of points and case I1 corresponds to macro-shells with a 
fixed number of energy shells. 

where llu112 is the norm of the vector associated with point u and 
C,,(L') is the number of points of A with norm c. 

The baseline constellation of cardinality M, denoted as B,(M), 
is defined as the set of M points of the least energy from the 
2-D half integer grids, z2 + (1/2),. An optimally shaped, N-D 
constellation is a subset of points of (B,(M)}", n = N/2, of the 
least energy, where { )" denotes the n-fold cartesian product. 
We have 

@{/l,(M,,i'(q) = [@B2(M,(9)1" (2) 

It can be shown that the energy shells of Z N  + (1/2IN are of 
values 2i + N/4, i = 0, I;.., where i is used as the index of the 
corresponding shell. If B, is composed of K energy shells, we 
obtain n(K - 1) + 1 shells of values 2i + N/4, i = O;.., n( K - 
1) for {B,(M)Jn. In {B,(M))", unlike Z N  + (1/2IN, shells of 
indexes K I i I n(K - 1) are partially included and shells with 
indexes i > n(K - 1) are completely discarded. 

Define C,?(,,(i) as the cardinality of the i ' th shell of B,(M). 
Using 2, we obtain 

C{Bz(M,,tl(i) = D ~ ~ I { D F T L [ C ~ , ( M ) ( ~ ) I } "  (3) 

where L = n ( K  - 1 )  + 1 and DFT,, DFY' are the L-point 
discrete Fourier transform and its inverse. Note that C,,(,,(i) is 
padded out with zeros. 

Consider a B,(M) set composed of K energy shells. In an 
N = 2n-D space, cartesian product of the 2-D shells results in 
K n  shaping clusters which aggregate into L = n(K - 1) + 1 I 
K" shells. A known method to decrease the addressing complex- 
ity is based on merging the adjacent 2-D shells into a small 
number of energy layers (macro-shells) [5].  The merging of shells 
in [I 1, [14] is achieved gradually in a hierarchy of stages achieved 
on the 2-fold cartesian product of the lower dimensional sub- 
spaces. In [I l l ,  to simplify the addressing, the cardinalities of the 
macro-shells are restricted to be an integral power of two. In 
this case, using macro-shells of equal cardinality results in a 
especially simple scheme. We first explain this approach and 
then show how one can improve upon it. 

Consider an N = 2"-D constellation. We recursively merge 

 he N-D half integer grid, zN + (1/2IN, is the collection of the N-D 
points with components belonging to the set ( - x ,  . . . , -3/2, 
-1/2,1/2,3/2 ,..., +%I. 

energy shells. There are 2k,  macro-shells of equal cardinality in 
the N, = 2'" dimensional subspaces, i = O;.., u - 2. In the 
twofold cartesian product of the 4 - D  subspaces, we obtain 2 " ~  
clusters of equal cardinality. These clusters are arranged in the 
order of increasing average energy. Then, 2kcpk,+1, i = 0 , ,  ... u - 
3, subsequent clusters are merged into a higher stage (2Ni = 

N,, ,-D) macro-shell. The final constellation is obtained by dis- 
carding the N-D clusters with the highest average energy. To  
achieve the addressing, we need a set of lookup tables to store 
the components of each macro-shell. The i'th addressing stage, 
i = 0 , ... , u - 3, requires a lookup table with 22k1 memory lo- 
cations each with 2k, bits. The last stage requires 22krr-'-r5 
memory locations each with 2k, ,_,  bits, where r ,  = 

(N/2)log2(CER,)  and CER, is restricted to have values such 
that r, is an integer. 

In our experience, for a fixed set of k, values, i = O;.., u - 3, 
the order in which they are used has almost no effect on the 
overall performance. Considering that the memory size is a 
symmetrical function of these values, it is appropriate to select 
them equal to each other. If they are selected to be unequal (to 
provide a specific trade-off between complexity and perfor- 
mance), there is a small benefit of using the larger values in the 
later stages of the hierarchy. 

In general, we are looking for efficient, recursive merging 
rules that result in macro-shells of integer bit rate. Using 
macro-shells of equal cardinality (uniform merging), as discussed 
in [ l l ] ,  is not the best merging rule as is explained in the next 
section. 

IV. UNIFORM VERSUS NONUNIFORM MERGING OF CLUSTERS 

Consider the two-fold cartesian product of a { B 2 ( ~ ) I N / % e t .  
Each of the two {B2)N/"~ partitioned into K macro-shells. 
Consider two merging rules. In case I, macro-shells contain a 
iixed number of points in the order of increasing energy. In case 
11, macro-shells contain a fixed number of energy shells. In both 
cases, in the two-fold cartesian product space, we obtain K' 
clusters. A subset of these clusters of the lowest average energy 
is selected. Computation of the performance is based on 3. The 
final result is shown in Fig. 1, which shows the trade-off between 
CER, and y,. It is seen that using macro-shells with a fixed 
number of energy shells (case 11) results in a better perfor- 
mance. This phenomenon can be justified by considering the 
hardening effect. Fig. 2 shows the density of points in the energy 
shells of ( ~ ~ ( 2 5 6 ) ) ~ ~ ~ .  It is seen that the points concentrate in a 
thin energy layer of the space. It should be mentioned that 
neither of these two merging rules are optimum (in the sense of 
providing the best trade-off for a given value of K ) .  The perfor- 
mance of a given merging rule also depends on the specific 
tradeoff point. 

Another consideration is the result of the following fact: 
discarding the clusters of higher energy induces a nonuniform 
probability distribution on the lower dimensional subspaces such 
that the clusters of lower energy are used more frequently. This 
fact is in favor of using a higher resolution in the areas of lower 
energy. This observation, in conjunction with the hardening 
effect, suggest decreasing the resolution rather quickly up to 
regions around the concentration layer and then change it in a 
slower pace. 

In the following, we discuss a practical method for the nonuni- 
form merging of clusters into macro-shells of integer bit rate. 

V. MERGING OF CLUSTERS USING A BINARY TREE 

Assume that there are 2k  macro-shells of equal cardinality at 
a given stage of our hierarchy. In the two-fold cartesian product 
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TABLE I 
PERFORMANCE AND COMPLEXI~Y OF THE NONUNIFORM MERGIXG RULE, y, dB / MEMORY-Slzt (IN BYTES OF 8 b), 

FOR N = 32, ( k o ,  k, ,  k , ,  I )  = ( 4 , 4 , 7 , 3 ) ,  NUMBER OF DIFFERENT els A N D  s = I 

I CER. = 1.1 I CER. =1.2 ( CER. = 1.3 I CER, =1.4 
I 0.67 dBl1.63 k 1 0.84 dB11.47 k 1 0.93 dB11.30 k 1 0.98 dBI1.14 k 

TABLE I1 
PERFORMANCE AND COMPLEX~TY OF THE NONUNIFORM MERGING RUI t ,  y, dB / M L M O R Y - ~ ~ ~ ~  (I\  BYTE^ OF 8 b ) ,  

FOR N = 32, (k,,, k l ,  k 2 ,  1)  = ( 4 , 4 , 7 , 3 ) ,  NUMBER OF D ~ F F E R F N ~  /'S AND S = 2 

TABLE 111 
PERFORMANCE AND COMPLEXITY OF T H E  NONUN~FORM MERGING RULE, y, dB / MLMORY-SIZE (ih BYI-ES OF 8 b ) ,  

FOR N = 32, ( k o ,  k l ,  k Z ,  I )  = ( 4 , 4 , 7 , 3 ) ,  NUMBER OF D~FFLRENT /'s A N D  S = 3 
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Fig. 2. Density of points of ( ~ ~ ( 2 5 6 ) ) ~ ' ~  as a function of energy or energy per dimension, N = 8,16,32,64,128. 

TABLE IV 
PERFORMANCE AND COMPLEXITY OF THE NONUNIFORM MERGING RULE, 

N = 32, (k,, k, ,  k,, 1) = (4,4,7,3). THE OPTIMUM VALUES 
OF y, ARE WRITTEN IN PARENTHES~S 

CER, 7, (dB)/Memory (Byte) 
1.1 0.73(0.73)dB/0.77k 
1.2 0.88 (0.91) dB / 0.88 k 
1.3 0.95 (1.00) dB / 0.72 k 
1.4 0.99 (1.05) dB / 0.84 k 

TABLE V 
PERFORMANCE AND COMPLEXITY OF THE UNIFORM MERGING RULE, (METHOD OF [I l l ) ,  y5 ~B/MEMORY-SIZE 

(IN BYTES OF 8 BITS), FOR N = 32 A N D  DIFFERENT VALUES OF (kO,  k,, k 2 ,  k3) .  

CER. = 1.1 CER. = 1.2 
0.86 dBl2.26 k 
0.87 dB17.67 k 
0.88 dB18.67 k 
0.88 dB132.9 k 
0.89 dBl9.67 k 
0.88 dBl33.9 k 
0.89 dBl9.00 k 
0.89 dBl14.4 k 
0.90 dBl38.7 k 
0.89 dB110.7 k 
0.89 dB134.9 k 
0.90 dBl15.4 k 
0.90 dB139.6 k 

CER. = 1.3 
0.91 dB11.17 k 

CER, = 1.4 
0.87 dBl0.88 k 
0.94 dB11.34 k 
0.97 dB12.34 k 
0.99 dB14.39 k 
0.98 dB13.34 k 
0.99 dB15.39 k 
0.94 dB17.63 k 
1.00 dB18.09 k 
1.02 dBflO.1 k 
1.00 dB14.34 k 
1.00 dBl6.40 k 
1.01 dB19.09 k 
1.02 d B 1 l l . l  k 

space, we obtain 22k clusters that are merged into 2' macro-shells exhaustive search to find the best tree for a specific trade-off 
of integer bit rate. Define 2-< to be the fraction of the number between CER, and 7,. This configuration allows to use a Set of 
of clusters in the ith macro-shell, i = O,..., 2' - 1. The /,'s prefix codes for the addressing of the macro-shells. The idea of 
satisfying Ci2-< = 1. A simple argument shows that the /,'s can using a prefix coding scheme for the addressing is also discussed 
be selected as the lengths of different paths in any binary tree in a different context in [ll]. The approach presented here is 
with 2' - 1 intermediate nodes (resulting in 2' final nodes). As much more efficient. 
the number of such trees is usually quite small, one can use an This nonuniform merging rule is applied in the ( u  - 21th 
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stage (stage indexed by u - 3) of the hierarchy. The correspond- 
ing merging rule for the (u - 1)th stage is as follows: if there are 
an integral power of two of successive macro-shells with equal 
cardinality, these are merged into a single, larger macro-shell. 
One can also apply this rule successively several times. The 
number of successive times is denoted by S. The performance 
and complexity of this approach is shown in Tables 1-111. These 
tables correspond to S = 1,2,3, and each table contains all the 
possible combinations of el's, i = O;.., 7. For example, the first 
row in each table means that: ( Y L ,  i = 0;..,7) = 

(7,7.6,5,4,3,2,1) and the second row means that: (YL ,  i = 

O;.., 7) = (6,6,5,4,3,2,2,2). The cases of special interest (good 
performance and low complexity) are underlined. 

We have also examined: i) the case of S = 0, and ii) applying 
the nonuniform merging in the ( u  - 1)'th stage. In both cases 
the results were inferior to those presented here. 

VI. NUMERICAL COMPARISONS 

A four state trellis diagram of [6] achieves y5 = 0.95 dB, 
CER, = 1.5. In [14], an example for N = 64 is given which 
needs 1440 multiply-adds (assuming a 16 bit processor) and a 
memory of 1.5 kilo-bytes to achieve a tradeoff point with y, = 

1.15 dB, CER, = 1.5 
For a given CER, by appropriately choosing the merging 

parameters, we achieve nearly all of the shaping gain possible 
using a small amount of memory (refer to Table IV). Computa- 
tion of the optimum y, is based on 3. 

Table IV can be compared to Table V, which shows the 
method applied when an equal number of points is used in the 
macro-shells at each stage (this becomes the method discussed 
in [I 11). The cases of special interest are underlined. The present 
schemes offer a reduction in complexity by a factor of 5 to 10. 

VII. SUMMARY AND CONCLUSIONS 

We have presented efficient addressing schemes based on 
partitioning the subconstellations into nonuniform shaping 
macro-shells of integer bit rate. The corresponding shaping 
performance is computed using the weight distribution of an 
optimally shaped constellation. As an example of performance in 
a 32-D space, we use about 0.8 k-bytes of memory to achieve 
trade-off points very close to the optimum performance. It 
seems that this is the simplest known method to achieve shaping 
gains in the order of 1.0 dB. Note that this method needs only a 
small number of table lookups and no arithmetic operation is 
needed. 
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