
Efficient Algorithms for Fixed-Rate Entropy-Coded Vector
Quantization

A. K. Khandani*, P. Kabaltst and E. Duboist

'Dept. of Elec. and Comp. Eng., University of Waterloo, Waterloo, Ont., N2L 3G1
tINR~-Telecommunications, 16 Place du Commerce, Verdun, PQ., H3E 1H6

IMc~i l l University, 3480 University, Montreal, PQ., H3A 2A7

Abstmct: In quantization of any source with a nonuniform prob-
ability density function, the entropy coding of the quantizer out-
put can result in a substantial decrease in bit rate. A straight-
forward entropy coding scheme presents us with the problem of
the variable data rate. A solution in a space of dimensionality
N is to select a subset of elements in the N-fold cartesian prod-
uct of a scalar quantizer and represent them with code-words of
the same length. A reasonable rule is to select the N-fold sym-
bols of the highest probability. For a memoryless source, this is
equivalent to selecting the N-fold symbols with the lowest addi-
tive self-information. The search/addressing of this scheme can no
longer be achieved independently along the one-dimensional sub-
spaces. In the case of a memoryless source, the selected subset
has a high degree of structure which can be used to substantially
decrease the complexity. In this work, a dynamic programming
approach is used to exploit this structure. We build our recursive
structure required for the dynamic programming in a hierarchy
of stages. This results in several benefits over the conventional
trellis-based approaches. Using this structure, we develop efficient
rules (based on aggregating the states) to substantially reduce
the search/addressing complexities while keeping the degradation
negligible.

1 Introduction

Consider the problem of quantizing a source with a nonuni-
form probability density function. If the dimensionality of
the quantizer is not high enough, the entropy coding of the
output can result in a substantial decrease in bit rate. A
straight-forward entropy coding method presents us with the
problem of variable data rate. Also, if the bit rate per quan-
tizer symbol is restricted to be an integer, we are potentially
subject to wasting up to one bit of data rate per quantizer
output. A solution in a space of dimensionality N is to code
the N-fold cartesian product of a scalar quantizer. To avoid
having a variable data rate, one can select a subset of the
N-fold symbols and represent them with code-words of the
same length.

In such a block-based source coding scheme, as some of
the elements in the N-fold cartesian product space are not al-
lowed, the search for the quantizer output and also the corre-
sponding addressing/reconstnlction processes can no longer
be achieved independently along the one-dimensional (one-

D) subspaces. The basic idea is to select the subset of points
in such a way that these processes can be simplified.

One class of schemes are based on using a subset of points
from a lattice (quantization lattice) bounded within the
Voronoi region around the origin of another lattice (shaping
lattice) [I]. In this case, the selected subset forms a group
under vector addition modulo the shaping lattice.

Another class of schemes are based on selecting the N-
fold symbols with the lowest additive self-information. This
approach is traditionally denoted as the geometrical source
coding [2], [3]. In this case, the selected subset has a high
degree of symmetry which can be used to substantially re-
duce the complexity. A method for reducing the complexity
of such a quantizer based on using a state diagram (with
the states corresponding to the length of the code-words)
is introduced by Laroia and Farvardin in [4]. Subsequently,
Balamesh and Neuhoff in [5], introduce some complementary
techniques t o further reduce the complexity. In the present
work, we introduce some more advanced techniques showing
improvement with respect t o the schemes of [4], [5].

- -

We discuss a dynamic programming approach. The key
point is to use the additive property of the self-information,
in conjunction with the additive property of the distortion
measure, to decompose the searchladdressing into the lower
dimensional subspaces. This decomposition avoids the expo-
nential growth of the complexity. The core of the scheme, as
in any problem of dynamic programming, is a recursive rela-
tionship. We build our recursive structure in a hierarchy of
stages where each stage involves the cartesian product of two
lower dimensional subspaces. This results in several benefits
over the conventional trellis-based approach used in [4], [5].
By effectively quantizing the state space, we obtain subop-
timum methods with low complexity and negligible perfor-
mance degradation.

2 Basic Structure

Consider a memoryless source and a scalar quantizer com-
posed of M partitions. In the N-fold cartesian product of
this quantizer, we obtain M ~ , N-D partitions. The final
vector quantizer is selected as a subset of the N-D partitions
composed of T elements. Each partition is represented by a
code-word composed of [log, TI bits. The N-D reconstruc-

Proc. IEEE Int. Conf. Commun. (New Orleans, LA), pp. 240-244, May 1994

tion vectors are denoted as r,, i = 0 , . . . , T - 1. For a given
source vector x , the quantization rule (decoding) is to find
the reconstruction vector r, which has the minimum square
distance to x, addressing is to produce the index i when r,
is selected, and reconstruction is to reproduce r, from the
index i.

Assume that the induced self-information and the ex-
pected value of the symbols mapped to the j'th one-D parti-
tion are equal to c j and r j , respectively. The self-information
associated with a one-D point is considered as a cost associ-
ated with that point. The selection rule for the N-D symbols
is to keep the points with the lowest overall additive cost.
The N-D reconstruction vectors are obtained by concatenat-
ing the corresponding one-D reconstruction levels, namely
rj's. The search operation is formulated as:

Minimize ~ E i ~ (z , - T ~ ~) ~
Subject to: c E ~ ~ cj, 5 Cmax

The immediate approach to solving (1) is to perform an ex-
haustive search.

For the addressing/reconstruction, we need a one-to-one
mapping between the set of the code-words and the set of
the integer numbers 0, . . . , T - 1 such that the mapping (ad-
dressing) and its inverse (reconstruction) can be easily imple-
mented. The immediate approach to obtain such a mapping
is to use a look-up table.

In a high dimensional space, as the number of the symbols
is usually quite high, one can not make use of the immedi-
ate approaches based on exhaustive search and lookup table.
The main idea is to use the high degree of structure, which is
mainly due to the symmetry of the problem in (I) , to reduce
the complexity of the involved operations.

3 Recursive merging of shells

If FN(c) denotes the set of N-D points of cost c (shell of cost
c), we have the following recursive relationship:

where @ denotes the cartesian product, N = Nl + N2, and
the union is computed over all the pairs (cl, c2) satisfying
cl + c2 = c. We refer to each cartesian product element in (2)
as a cluster. We are specially interested in the case that
Nl = N2 = N/2.

For a given input vector x , by decoding of a shell we mean
the process of finding the element of the shell which has the
minimum distance to x . Using (2), we can decode a shell
recursively. To do this, x is split into two parts x l and
x2 of lengths Nl and N2. Assume that the nearest vectors
of F N ~ (c ~) / F N ~ (c z) to xl /x2 are equal to jll/jl2 with the
minimum distances dlld2. The nearest vector of FN,(cl) @

FNa (c2) to x is equal to (iil,jl2) with the minimum distance
dl + d2. The minimum distance of a shell is equal to the
smallest of the minimum distances of its clusters.

For Nl = N2 = N/2, if we know the minimum distance and
the nearest vector for all the shells of the N/2-D subspaces,
we can decode all the N-D shells. The lower is the number
of shells in the N/2-D subspaces, the simpler will be the
decoding process.

One can also use the recursive structure of the shells to de-
velop an algorithmic addressing/reconstruction procedures.
The basic idea is that the addressing within each cluster can
be achieved independently along its lower dimensional shells.
This results in the same decomposition principle as proposed
for the first time in [6] and elaborated in [7], [8]. To com-
plete the recursion, it remains to select a single cluster within
a shell. This is achieved by arranging the clusters within a
shell in a preselected order and assuming that the points in a
higher order cluster have a larger label. Based on this order-
ing, a cluster is selected according to the range of the index
and the corresponding residue with respect to the start of
the range is used for the addressing within the cluster.

The procedure of recursive addressing becomes specially
simple if all the cardinalities are restricted to be an integral
power of two (integral bit rate). The key point behind the
simplicity is as follows: Consider two sets of cardinalities 2t1
and 2t2 . The cartesian product of these sets is composed
of 2t l+ta elements. To address an element of the cartesian
product, the input bit stream composed of t l + t 2 bits is
split into two parts of lengths t l and t2. Each part is sub-
sequently used to select a point within one of the two sets.
In other words, the address of a composite symbol can be
easily obtained by concatenating the addresses of its con-
stituents lower dimensional elements. The effect of merging
is reflected through some additional bits which are stored in
a block of memory.

4 Hierarchical dynamic program-
ming

Dynamic programming is a multi-stage optimization proce-
dure based on an inductive principle. It makes use of a recur-
sive relationship to decompose a complicated problem into a
sequence of easier subproblems. In the following, we intro-
duce our approach to dynamic programming. As the schemes
of [4] and [5] are also based on a dynamic programming, we
have focused our explanation on a comparison between the
methods.

The core of the idea in the schemes of [4], [5] is to use a
state diagram with the transitions corresponding to one-D
symbols. This results in a trellis composed of N stages. The
states s and s + c in two successive stages are connected by a
link corresponding to the one-D symbol(s) of cost c. Conse-
quently, the states in the n th stage, n = 1, . . . , N , represent
the accumulative cost over the set of the first n dimensions.
The links connecting two successive stages are labeled by
the corresponding distortions. Then, the viterbi algorithm
is used to find the path of the minimum overall distortion
through the trellis.

The straight-forward approach is to assign an independent

state to each possible value of cost a t a given stage. Let
K denote the number of the distinct values of cost along a
dimension. Number of distinct values of cost in N dimensions
can be as large as:

The general term in (3) represents the total number of N-
tuples where the one-D symbol with the ith value of cost has
occurred for n; times. If two different combinations in (3) re-
sult in the same value of the additive cost, the corresponding
states merge together. This is denoted as a natural merge.

Even for a moderate value of K , the number of distinct
states in N-D (after the natural merge) can be impracti-
cally large. The solution is to synthetically aggregate dis-
tinct states into a smaller number. This is denoted as the
state-space quantization and is the key point to the effective-
ness of any dynamic programming approach. In [4], the self-
information associated with the one-D symbols are rounded
to rational numbers with a common denominator. In [5], to
reduce the complexity with respect to [4], these are rounded
to integer numbers.

Unlike [4] and [5] which are based on a component-by-
component analysis, we use a hierarchy of stages where each
stage involves the cartesian product of lower-dimensional
subspaces. This approach is specially effective when the
space dimensionality is equal to N = 2u. In this case, the
hierarchy is composed of u stages where the ith stage,
i = 0, . . . , u - 1, is based on the (pair-wise) cartesian prod-
uct of the 2i-D subspaces (there are 2u-' identical pairs of
cartesian product in the ith stage). All our following discus-
sions are based on this structure.

The immediate benefit of this approach is the possibility
of using a parallel processing system. Another benefit is
that this structure can be easily combined with the state
diagram of a lattice (used to decode the lattice [9]). This
provides a means to easily use the scheme in conjunction
with a quantization lattice. More importantly, as we will
see later, this approach provides the basis for an effective
state-space quantization rule.

4.1 State-space quantization, aggregation
of states

As already mentioned, a straight-forward approach results in
a large number of distinct states (shells). The major ques-
tion is how we can aggregate the shells into macro-shells
while keeping the degradation negligible. Obviously, after
aggregation, the points of the macro-shells are no more of
the same cost (each macro-shell has a range of costs). Based
on our hierarchy in an N = 2U-D space, we consider the fol-
lowing recursive structure.
Recursive aggregation rule: The macro-shells in 2'-D sub-
spaces are composed of the union of the elements in the
cartesian product of the 2'-'-D macro-shells.

In devising a specific rule, we should keep the following
three implicit objectives in mind:

As truncation is achieved by discarding some of the
macro-shells, while the objective is to discard a given
number of points of the highest cost, we should try to
minimize the overlap between the range of the costs of
different macro-shells.

The number of the macro-shells should be as small as
possible. This suggests that we should try to put an
equal number of points in different macro-shells. As
we will see later, in the case that the macro-shells have
an equal number of points, the addressing is also much
simpler than the general case.

Aggregation rule should be compatible with our recur-
sive structure mentioned earlier.

Concerning the first objective of this list, the best ap-
proach is to partition the dynamic range of the cost into
nonoverlapping segments. Then, each macro-shell is consid-
ered as the set of elements with the cost in one of these
subranges. By appropriately selecting the subranges, one
can even put an equal number of points in each macro-shell
and satisfy the second objective. This sounds excellent, how-
ever, unfortunately, no recursive structure is known for this
type of aggregation. As we will see later, by partitioning
the space into macro-shells of increasing average cost, it is
possible to remain compatible with our recursive structure.
In the following, we propose two rules for the state-space
quantization which partially fulfill the aforementioned ob-
jectives. In the first method, the aggregation is limited to
the one-D subspaces. This is based on a similar approach as
used for the first time in the context of constellation shaping
in [lo]. In the second method this is achieved sequentially
in different stages of our hierarchy. As we will see later, the
second method is specially effective and results in a simple
addressing procedure.

4.2 Aggregation on a one-D basis, Macro-
shells of identical sum of the indices

The effect of natural merging of shells is specially pronounced
when the cost of the one-D shells is an affine function of their
indices (cost of the ith shell is equal to co + iA). This results
in a set of K N distinct shells in an N-D space where K is
the number of one-D shells.

Based on this observation, in our first method, the
one-D symbols are aggregated into K information macro-
shells with a fixed spacing (increment in the self-
information) A. The probabilities of the points in
the ith macro-shell satisfy 0 < - logz p _< co for i = 0 and
c o + (i - l) A < - l o g z p ~ c o + i A , for i = 1 , ..., K - 1 . Ob-
viously, some of the one-D macro-shells may remain empty.
The higher-dimensional macro-shells are considered as the
set of the symbols with a fixed sum of the indices. This re-
sults in a recursive structure. The final subset is selected as

the union of the N-D macro-shells with the sum of the indices
less than a given value L,,,. This results in min [2 ' ~ , L,,]
states in the ith stage of the hierarchy. This approximation
method can be considered as a more general formulation for
the schemes of [4] and [5] which are based on approximating
the costs on a one-D basis.

From the three objectives in the afore-mentioned list, this
method just fulfills the last one, namely the recursive struc-
ture. In the following, we introduce another method which
is more compatible with these objectives.

4.3 Aggregation on a sequential basis,
Macro-shells of increasing average costs
and identical cardinalities

In our second method, the quantization of the state-space is
based on a sequential aggregation of the macro-shells in the
2'-D subspaces, i = 0, . . . , u - 1. In other words, the state-
space quantization is achieved gradually a t different stages
of the hierarchy. The subspaces involved a t each stage of the
hierarchy are partitioned into a number of macro-shells of
increasing average costs and identical cardinalities. The key
point is to approximate the costs of all the points within a
given macro-shell by their average value.

Consider an N = 2"-dimensional space and assume that
there are K, = 2ki macro-shells in the N, = 2'-D subspaces,
i = 0,. . . , u - 1. In the cartesian product of two of the N,-D
subspaces, we obtain K,? clusters of equal volume. The clus-
ters are arranged in the order of increasing average costs. A
number equal to K,?/K,+l of subsequent clusters are aggre-
gated into a higher level (2Ni = N;+1-D) macro-shell. Then,
the whole process is repeated recursively. The final subset is
obtained by keeping some of the N-D clusters of the lowest
average cost.

Using macro-shells of integral, equal bit rate results in a
specially simple addressing scheme. This is discussed in the
following: Consider the case that the macro-shells in a given
stage of our hierarchy, say a t dimensionality N1, are com-
posed of 2tl elements. Also, assume that a higher level
macro-shell (dimensionality 2N1) is obtained by aggregating
2t2 clusters in the two-fold cartesian product of the set of
the N1-D macro-shells. The addressing of the 2N'-D macro-
shells requires 2tl + t 2 bits. The address of an 2N1-D element
is computed by concatenating the addresses of its constituent
components in the N1-D macro-shells and concatenating the
result with an additional t 2 bits which are selected as the
label of the corresponding cluster within the 2N1-D macro-
shell.

For addressing in an N = 2" dimensional space, all we need
is a set of u memory blocks to store the components of each
macro-shell in the cartesian product of the macro-shells of
the lower dimensional subspaces. The ith addressing stage,
i = 0 , . . . , u - 2, requires a lookup table with 2k; x 22k' bits.
The last stage requires 2ku-l x 22ku-1-Ta bits where T , de-
notes the redundancy associated with the selection of the fi-
nal N-fold symbols as a subset of the cartesian product space.
This is defined as the logarithm of the ratio of the employed

number of points per dimension to the minimum necessary
number of points per dimension. By using a relatively small
number of macro-shells in lower dimensional subspaces and
imposing an appropriate constraint on T , , one can provide a
tradeoff between performance and complexity.

4.4 Comparison with other methods

Figures (I), (2) show the Signal-to-Noise-Ratio (SNR) ob-
tained by using our sequential aggregation rule in conjunc-
tion with an independent identically distributed (iid) Gaus-
sian source. Table (1) presents a comparison between our
method and the scheme of [4] in terms of performance and
complexity. It is difficult to have a fair comparison with the
scheme of [5] because in their case the space dimensionality
is usually quite high which results in a longer delay.

References

[I] M. V. Eyuboglu and G. D. Forney, "Lattice and
trellis quantization with lattice- and trellis- bounded
codebooks-high-rate theory for memoryless sources,"
IEEE Trans. Inform. Theory, vol. IT-39, pp. 46-59,
Jan. 1993.

[2] D. J. Sakrison, "A geometrical treatment of the source
encoding of a Gaussian random variable," IEEE Trans.
Inform. Theory, vol. IT-14, pp. 481-486, May 1968.

[3] T . R. Fischer, "Geometric source coding and vector
quantization," IEEE Trans. Inform. Theory, vol. IT-
35, pp. 137-145, January 1989.

[4] R. Laroia and N. Farvardin, "A structured fixed-rate
vector quantizer derived from variable-length scalar
quantizer-Part I: Memoryless sources," IEEE Trans.
Inform. Theory, vol. IT-39, pp. 851-867, May 1993.

[5] A. S. Balamesh and D. L. Neuhoff, "Block-constrained
methods of fixed-rate, entropy coded, scalar quanti-
zation," submitted to IEEE Trans. Inform. Theory,
Sept. 1992.

[6] G. R. Lang and F. M. Longstaff, "A leech lattice mo-
dem," IEEE J. Select. Areas Commun., vol. SAC-7,
pp. 968-973, Aug. 1989.

[7] A. K. Khandani and P. Kabal, "Shaping multi-
dimensional signal spaces-Part 11: shell-addressed
constellations," to appear in the IEEE Trans. In-
form. Theory, Nov. 1993.

[8] A. K. Khandani and P. Kabal, "An efficient block-
based addressing schemes for the nearly optimum shap-
ing of multi-dimensional signal spaces," submitted
to IEEE Trans. Inform. Theory, Aug. 1992, revised
Oct. 1993.

[9] G. D. Forney, @Coset codes-Part 11: Binary lattices
and related codes," IEEE Trans. Inform. Theory, vol.
IT-34, pp. 1152-1187, Sept. 1988.

[lo] A. R. Calderbank and L. H. Ozarow, "Nonequiproba-
ble signaling on the Gaussian channel," IEEE Trans.
Inform. Theory, vol. IT-36, pp. 726-740, July 1990.

Method N R Memory Computation SNR (dB)
SMS 16 1.5 1.25 k 54 (33) 7.43
L-F 16 1.5 7.9 k 670 7.47
SMS 16 2.5 2.5 k 220 (97) 12.91
L-F 16 2.5 21.0 k 2240 13.00
SMS 32 3.5 14.3 k 1060(290) 18.7
L-F 32 3.5 307 k 12500 18.8t

Table 1: Comparison between the method based on the se-
quential aggregation of shells (denoted by SMS) with the
scheme of [4] (denoted by L-F). The memory size is in byte
(8 bits) per N dimensions and the computational complexity
is the number of additions/comparisons per dimension. The
values inside parenthesis are the computational complexi-
ties of our method in the case of using a parallel processing
system. (The value denoted by t is obtained using interpo-
lation.).

SMS Method, M=8, N=16 -
Laroia & Farvardin, N=16 ----
Lloyd-Max

Bit per dimension

Bit per dimension

2 2

Figure 2: Quantization SNR for a Gaussian source, N = 32
(dimensionality), M = 8,16 (number of points per dimen-
sion) and (kl, k2, ks, k4, ks) = (3,5,6,7, lo), (4,6,7,7,10).

20

Figure 1: Quantization SNR for an iid Gaussian source,
N = 16 (dimensionality), M = 8 (number of points per di-
mension) and (kl, ka, k3, k4) = (3,5,6,10).

SMS Method. M=8,16, N=32 -
Loria & Farvardin, N=32 ---- - Loyd-Max

18 -

16 -

14 -

12 -

