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Abstract: This paper describes a lookup table for the 
addressing of an optimally shaped constellation. The 
method is based on partitioning the subconstellations 
into shaping macro-shells of integer bit rate and increas- 
ing average energy. A lookup table is used to select a 
subset of the partitions in the Cartesian product space. 
By devising appropriate partitioning/merging rules, we 
obtain suboptimum schemes of very low addressing com- 
plexity and small performance degradation. The perfor- 
mance is computed using weight distribution of an opti- 
mally shaped constellation. 

1 Introduction 

In shaping, one tries to reduce the average energy of a 
signal constellation for a given number of points from 
a given packing. The price to be paid for the reduc- 
tion in the average energy (measured by the shaping 
gain, 7,) involves: (i) an increase in the factor CERS2, 
(Constellation-Expansion-Ratio), and (ii) an increase in 
the addressing complerity3,'. Addressing is often the 
most difficult task associated with the shaping of a high- 
dimensional constellation. For example, for 2-D subcon- 
stellations composed of 256 points in a 32-D space, a 
direct addressing scheme using a lookup table requires 
a Mock of memory with about 2lZa memory locations 
(with each location having a word length of 128 bits). 
In the present work, we introduce suboptimum methods 
to reduce this memory size to about 0.8 kilo-bytes per 
32-D while the degradation in performance is negligible. 
P~eviour work: Conway and Sloane in [2] introduced 
the idea of Voronoi constellations based on using the 
Voronoi region of a lattice A, as the shaping region. 
In the work of Wei [3] shaping is a side effect of the 
method employed to transmit 8 nonintegrd number of 

'CER. k ratio of the number of points used per two dimensions 
to the minimumnecessary number of points per two dimensions [I]. 

'Addressing is the mappiug of the data bits to the constellation 
points. 

'A third factor is the in-e in PAR (Pesk-to-Average-power- 
Ratio) which is uniquely determined by 7,, CER, and structure 
of the 2-D subconstellations [I]. Due to this dependence, we con- 

centrate on the 7,. CER. relatiomhip. 

bits per two dimensions. The addressing of this method 
is achieved by a lookup table. Forney and Wei gener- 
alize this method in [I]. Voronoi constellations are fur- 
ther considered by Forney in [4]. In [5], Calderbank and 
Ozarow introduce a shaping method which is directly 
achieved on the 2-D subconstellations. In this method, 
the 2-D subconstellations are partitioned into equal sized 
subregions of increasing average energy. A shaping code 
is then used to specify the sequence of the subregions. 
The shaping code is designed so that the lower energy 
subregions are used more frequently. The idea of trel- 
lis shaping is introduced in [6]. This idea is based on 
using an infinite-dimensional Voronoi region determined 
by a convolutional code to shape the constellation. Lang 
and Longstaff in [7] use an addressing scheme which is 
based on decomposing the space into lower-dimensional 
subspaces via generating function techniques. 

In [a], Kschischang and Pasupathy discuss a shaping 
method which is based on using the 2-D points with 
nonequal probability. In [9], Livingston discusses a s h a p  
ing method in which the 2-D subspaces are partitioned 
into circular shells of increasing size. In this method, 
the 2-D shells are used with equal probability inducing 
a nonuniform distribution on the 2-D points. In a con- 
tinuation to [5] and [9], Calderbank and Klimesh in [lo] 
use a balanced binary code to select the sequence of the 
2-D circular shells. This scheme results in a fixed rate 
per signaling interval. 

In our previous work [Ill, some practical addressing 
schemes to achieve or approximate points on the opti- 
mum tradeoff curves are given. The addressing scheme 
of Lang and Longstaff is further discussed by Kschis- 
chang and Pasupathy in [12] (also refer to [13]). Laroia, 
Farvardin and Tretter in [14] apply ideas from a type of 
structured vector quantier to constellation addressing. 

In comparing different schemes, we need to compute 
y, accurately. Previous methods [15], [Il l ,  [12] (also r e  
fer to [13]) are based on a continuous approximation. TO 
perform an exact computation, we need the correspond- 
ing weight distribution. 
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2 Weight distribution of an opti- 
mally shaped constellat ion 

The weight distribution of a set of points A with respect 
to a given center is defined as: 

where Ilulll is the norm of the vector associated with 
point u and CA(v) is the number of points of A with 
norm V .  

The baseline constellation of cardinality M I  denoted 
8~ B1(M), is defined as the set of M points of the least 
energy from the 2-D half integer grid, Z1 + (1/2)l. An 
optimally shaped, N-D constellation is a subset of points 
of {B1(M))", n =  N/2, of the least energy. We have, 

It can be shown that the energy shells of Z N  + ( 1 1 2 ) ~  
are of values 2i + N/4, i = 0,1,. . ., where i is used as 
the index of the corresponding shell. If B2 is com- 
posed of K energy shells, we obtain n(K - 1) + 1 shells 
of values 2i + N/4, i = 0,. . . , n(K - 1) for {B2(M)}". 
In {B1(M)}", unlike zN + ( 1 1 2 ) ~ ~  shells of indices 
K 5 i < n(K - 1) are partially included and shells with 
indices i > n(K - 1) are completely discarded. 

Define CBJ(M)(i) as the cardinality of the i'th shell of 
B2(M). Using Eq. 2, we obtain: 

where L = n(K - 1) + 1 and DFTL, DFTL' are the L- 
point discrete Fourier transform and its inverse. Note 
that CBapq(i)  is padded out with zeros. 

3 Recursive merging of energy 
shells 

Consider a B1(M) set composed of K energy shells. 
In an N = 2n-D space, cartesian product of the 2-D 
shells results in Kn shaping dusters which aggregate into 
L = n(K - 1) + 1 < Kn shells. A known method to de- 
crease the addressing complexity is based on merging the 
adjacent 2-D shells into a small number of energy layers 
(macreshells) [5]. Motivated by the sequential nature of 
shell aggregation, the merging of shells in [ l l ]  (also re- 
fer to [14]) is achieved gradually in a hierarchy of stages 
achieved on the 2-fold cartesian product of the lower di- 
mensional subspaces. In [ll], to simplify the addressing, 
the cardinalities of the macro-shells are restricted to be 
an integral power of two. In this case, using macro-shells 
of equal cardinality results in a especially simple scheme. 
We first explain this approach and then show how one 
can improve upon it. 

Consider an N = 2"-D constellation. We recursively 
merge energy shells. There are 2'. macro-shells of 

equal cardinality in the N; = 2'+' dimensional subspaces, 
i = 0, . . . , u - 2. In the two-fold cartesian product of the 
Ni-D subspaces, we obtain 2lh' clusters of equal cardi- 
nality. These clusters are arranged in the order of in- 
creasing average energy. Then, 2k4-ki+1, i = 0,. . . , u - 3, 
subsequent dusten are merged into a higher stage 
(2Ni= N,+I-D) macro-shell. The final constellation is 
obtained by discarding the N-D clusters with the highest 
average energy. TO achieve the addressing, we need a set 
of lookup tables to store the components of each macro- 
shell. The i'th addressing stage, i = 0, . . . , u - 3; requires 
a lookup table with 21ki memory locations each with 2ki 
bits. The last stage requkes 21ku-' -'* memory loca- 
tions each with 2k-2 bits where T ,  = ( N / 2 )  log2(CER,) 
and CER, is restricted to have values such that r ,  is an 
integer. 

In our experience, for a fixed set of k, values, 
i = 0, . . . , u - 3, the order in which they are used has al- 
most no effect on the overall performance. Consideriig 
that the memory size is a symmetrical function of these 
values, it is appropriate to select them equal to each 
other. If they are selected to be nonequal (to provide a 
specific tradeoff between complexity and performance), 
there is a small benefit of using the larger values in the 
later stages of the hierarchy. 

In general, we are looking for efficient, recursive merg- 
ing rules which result in macro-shells of integer bit rate. 
Using macro-shells of equal cardinality (uniform merg- 
ing) is not the best merging rule as is explained in the 
next section. 

4 Uniform versus nonuniform 
merging of clusters 

Consider the 2-fold cartesian product of a {B2(M))N14 
set. Each of the two {B21N14 is partitioned into K 
macro-shells. Consider two merging rules. In Case I, 
macro-shells contain a iixed number of points in the or- 
der of increasing energy. In Case 11, macro-shells contain 
a fixed number of energy shells. In both cases, in the 2- 
fold cartesian product space, we obtain KZ clusters. A 
subset of these dusters of the lowest average energy is 
selected. Computation of the performance is based on 
Eq. 3. The final result is shown in Fig. 1 which shows 
the tradeoff between CER, and 7,. It is seen that us- 
ing macro-shells with a f i e d  number of energy shells 
(Case 11) results in a better performance. This phe- 
nomenon can be justified by considering the hardening 
effect. It should be mentioned that neither of these two 
merging rules are optimum (in the sense of providing the 
best tradeoff for a given value of K). The performance of 
a given merging rule also depends on the specific trade- 
off point. Figure 2 showsthe density of points in the 
energy shells of { ~ ~ ( 2 5 6 ) ) ~ / = .  It  is seen that the points 
concentrate in a thin energy layer of the space. 

Another consideration is the result of the following 



h t :  Discarding the clusters of higher energy induces a 
nonuniform probability distribution on the lower dimen- 
sional subspaces such that the dusters of lower energy 
are used more frequently. This fact is in favor of using 
a higher resolution in the areas of lower energy. This 
observation, in coqjunction with the hardening effect, 
suggest decreasing the resolution rather quickly up to 
regions around the concentration layer and then change 
it in a slower pace. 

In the following, we discuss a practical method for 
the nonuniform merging of clusters into macro-shells of 
integer bit rate. 

5 Merging of clusters using a bi- 
8 

nary tree 

Assume that there are 2k macro-shells of equal cardi- 
nality a t  a given stage of our hierarchy. In the 2-fold 
cartesian product space, we obtain 21k clusters which 
are merged into 2' macro-shells of integer bit rate. De- 
fine 2 4  to be the fraction of the number of clusters in 
the ith macro-shell, i = 0, . . . ,2' - 1. The 4's satisfying xi 2-ti = 1. A simple argument shows that the 4's can 
be selected as the lengths of different paths in any bi- 
nary tree with 2' - 1 intermediate nodes (resulting in 2' 
final nodes). As the number of such trees is usually quite 
small, one can use an exhaustive search to find the best 
tree for a specific tradeoff between CER, and 7,. This 
configuration allows to use a set of pretir codes for the 
addressing of the macro-shells. The idea of using a p r e h  
coding scheme for the addressing is also discussed in a 
different context in [ll]. The approach presented here is 
much more efficient. 

This nonuniform merging rule is applied in the 
(u - 2)th stage (stage indexed by u - 3) of the hierar- 
chy. The corresponding merging rule for the (u - 1)th 
stage is as follows: If there are an integral power of two 
of successive macro-shells with equal cardinality, these 
are merged into a single, larger macro-shell. One can 
elso apply this rule successively several times. The num- 
ber of successive times is denoted by S. The performance 
and complexity of this approach is shown in Thble 1. We 
have also examined: (i) the case of S = 0, and (ii) apply- 
ing the nonuniform merging in the (u  - 1)'th stage. In 
both cases the results were inferior to those presented 
here. 

6 Numerical comparisons 

A four state trellis diagram of [6] achieves y, = 0.95 dB, 
CER, = 1.5. In [14], an example for N = 64 is given 
which needs 480 multiply-adds and a memory of 1.5 kilo- 
bytes to achieve a tradeoff point with CERa = 1.5 near 
to the optimum curve (the optimum y, for N = 64, 
CER, = 1.5 is equal to 1.21 dB). 

CER. 7. (dB)/Memory (Byte) 
1.1 0.73 (0.73) dB / 0.77 k 

Table 1: Performance and complexity of the nonuniform 
merging rule, N = 32, (ko, k ~ ,  k3,l) = (4,4,7,3). The o g  
timum values of y, are written in parenthesis. 

For a given CER,, by appropriately choosing the 
merging parameters, we achieve nearly all of the shaping 
gain possible using a small amount of memory (refer to 
Table 1). Computation of the optimum 7, is based on 
Eq. 3. 

7 Summary and conclusions 

We have presented efficient addressing schemes based on 
partitioning the subconstellations into nonuniform shap 
ing macro-shells of integer bit rate. The corresponding 
shaping performance is computed using the weight dis- 
tribution of an optimally shaped constellation. As an 
example of performance in a 32-D space, we use about 
0.8 kilo-bytes of memory to achieve tradeoff points very 
dose to the optimum performance. It seems that this is 
the simplest known method to achieve shaping gains in 
the order of 1.0 dB. Note that this method needs only a 
small number of table lookups and no arithmetic opera- 
tion is needed. 

Figure 1: Tradeoff between CER, and 7, using K macro- 
shells in the N/2-D subspaces, N = 32. Case I corre- 
sponds to macro-shells with a fixed number of points and 
Case I1 corresponds to macro-shells with a fixed number 
of energy shells. 



marw 

Figure 2: Density of points of {B1(256))Nl' as a function 
of energy or energy per dimension, N = 8,16,32,64,128. 
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