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Abstract: In quantisation of any source with a nonuniform probability density 
function, the entropy coding of the quantizer output can result in a substantial decrease 
in bit rate. A straight-forward entropy coding scheme presents us with the problem of 
the variable data rate. A solution in a space of dimensionality N is to select a subset of 
elements in the N-fold cartesian product of a scalar quantiaer and represent them with 
codcworda of the same length. A reasonable rule is to select the N-fold symbols of the 
highest For a memoryless source, this is equivalent to selecting the N-fold 
symbols with the lowest additiveself-information. The search/addressingof this scheme 
can no longer be achieved independently along the oncdimensional subspaces. In the 
case of a memoryless source, the selected subset has a high degree of structure which can 
be used to substantially decrease the complexity. In this work, a dynamic prog&nmbq 
approach is used to exploit this structure. We build our recursive structure required for 
the dynamic programming in a hierarchy of stages. This results in several benefits over 
the conventional trellis-based approaches. Using this structure, we develop efficient 
rules (based on aggregating the states) to substantially reduce the search/addredsing 
complexities while keeping the degradation negligible. 

1 Introduction 

Consider the problem of quantizing a source with a nonuniform probability den- 
sity function. If the dimensionality of the quantizer is not high enough, the 
entropy coding of the output can result in a substantial decrease in bit rate. A 
straight-forward entropy coding method presents us with the problem of variable 
d a t a  rate. Also, if the bit rate per quantizer symbol is restricted t o  be an integer, 
we are potentially subject t o  wasting u p  t o  one bit of da ta  rate per quantizer 
output. A solution in a space of dimensionality N is t o  code the N-fold carte- 
sian product of a scalar quantizer. To avoid having a variable da ta  rate, one can 
select a subset of the N-fold symbols and  represent them with code-words of the 
same length. 
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In such a block-based source coding scheme, as some of the elements in the 
N-fold cartesian product space are not allowed, the seamh for the quantiser 
output and also the corresponding addressing/reconstmction processes can no 
longer be achieved independently along the onedimensional (one-D) subspaces. 
The basic idea is to select the subset of points in such a way that these processes 
can be simplified. 

One class of schemes are based on using a subset of points from a lattice 
(quantization lattice) bounded within the Voronoi region around the origin of 
another lattice (shaping lattice) [I]. In this case, the selected subset forms a 
group under vector addition modulo the shaping lattice. 

Another class of schemes are based on selecting the N-fold symbols with the 
lowest additive self-information. This approach is traditionally denoted as the 
geometrical source coding [2], [3]. In this case, the selected subset has a high 
degree of symmetry which can be used to substantially reduce the complexity. 
A method for reducing the complexity of such a quantizer based on using a state 
diagram (with the states corresponding to the length of the code-words) is in- 
troduced by Laroia and Farvardin in [4]. Subsequently, Balamesh and Neuhoff 
in [5], introduce some complementary techniques to further reduce the complex- 
ity. In the present work, we introduce some more advanced techniques showing 
improvement with respect to the schemes of [4], [S]. 

We discuss a dynamic programming approach. The key point is to use the 
additive property of the self-information, in conjunction with the additive p rop  
erty of the distortion measure, to decompose the search/addressing into the 
lower dimensional subspaces. This decomposition avoids the exponential growth 
of the complexity. The core of the scheme, as in any problem of dynamic pro- 
gramming, is a recursive relationship. We build our recursive structure in a 
hierarchy of stages where each stage involves the cartesian product of two lower 
dimensional subspaces. This results in several benefits over the conventional 
trellis-based approach used in [4], [5]. By effectively quantizing the state space, 
we obtain suboptimum methods with low complexity and negligible performance 
degradation. 

2 Basic Structure 

Consider a memoryless source and a scalar quantizer composed of M partitions. 
In the N-fold cartesian product of this quantizer, we obtain MN,  N-D partitions. 
The final vector quantizer is selected as a subset of the N-D partitions composed 
of T elements. Each partition is represented by a codeword composed of peg, T ]  
bits. The N-D reconstruction vectors are denoted as r,, i = 0,. . . , T - 1. For a 
given source vector x,  the quantization rule (decoding) is to find the reconstruc- 
tion vector r; which has the minimum square distance to x, addressing is to 
produce the index i when r; is selected, and reconstruction is to reproduce ri 
from the index i. 

Assume that the induced self-information and the expected value of the sym- 

bols mapped to the j'th oneD partition are equal to c, and r,, respectively. The 
self-information associated with a one-D point is considered as a cost associated 
with that point. The selection rule for the N-D symbols is to keep the points 
with the lowest overall additive cost. The N-D reconstruction vectors are ob- 
tained by concatenating the corresponding one-D reconstruction levels, namely 
rjls. The search operation is formulated as: 

Minimize (z; - T ~ ~ ) ~  
Subject to: C j i  5 CmU 

The immediate approach to solving (1) is to perform an exhaustive search. 
For the addressing/reconstruction, we need a one-to-one mapping between 

the set of the codewords and the set of the integer numbers 0,. . . , T - 1 such 
that the mapping (addressing) and its inverse (reconstruction) can be easily 
implemented. The immediate approach to obtain such a mapping is to use a 
look-up table. 

In a high dimensional space, as the number of the symbols is usudy quite 
high, one can not make use of the immediate approaches based on exhaustive 
search and lookup table. The main idea is to use the high degree of struc- 
ture, which is mainly due to the symmetry of the problem in (I),  to reduce the 
complexity of the involved operations. 

3 Recursive merging of shells 
If FN(CI) denotes the set of N-D points of cost C (shell of cost C), we have the 
following recursive relationship: 

where @ denotes the cartesian product, N = Nl + Na, and the union is computed 
over all the pairs (Cl, Cz) satisfying Cl + Ca = C. We refer to each cartesian 
product element in (2) as a cluster. We are specially interested in the case that 
Nl = N a =  N/2. 

For a given input vector x ,  by decoding of a shell we mean the process of 
finding the element of the shell which has the minimum distance to x. Using 
(2), we can decode a shell recursively. To do this, x is split into two parts x l  and 
xa of lengths Nl and Na. Assume that the nearest vectors of FNl(Cl)/F~,(Ca) 
to xl/xa are equal to f l /Pa with the minimum distances dl/d2. The nearest 
vector of FNl (Cl) 8 FN, (Ca) to x is equal to (f 1, f a )  with the minimum distance 
dl + da. The minimum distance of a shell is equal to the smallest of the minimum 
distances of its clusters. 

For Nl = Na = N/2, if we know the minimum distance and the nearest vector 
for all the shells of the N/2-D subspaces, we can decode all the N-D shells. The 
lower is the number of shells in the N/2-D subspaces, the simpler will be the 
decoding process. 



One can also use the recursive structure of the shells to develop an algorithmic 
addressing/reconstruction procedures. The basic idea is that the addressing 
within each cluster can be achieved independently along its lower dimensional 
shells. This results in the same decomposition principle as proposed for the first 
time in [6] and elaborated in [?I, [8]. To complete the recursion, it remains to 
select a single cluster within a shell. Thii is achieved by arranging the clusters 
within a shell in a preselected order and assuming that the points in a higher 
order cluster have a larger label. Based on this ordering, a cluster is selected 
according to the range of the index and the corresponding residue with respect 
to the start of the range is used for the addressing within the cluster. 

The procedure of recursive addressing becomes specially simple if all the 
cardinalities are restricted to be an integral power of two (integral bit rate). The 
key point behind the simplicity h as follows: Consider two sets of cardinalities 
2'1 and 2'2. The cartesian product of these sets is composed of 2'1 +'a  elements. 
To address an element of the cartesian product, the input bit stream composed of 
cl + ca bits is split into two parts of lengths cl and ca. Each part is subsequently 
used to  select a point within one of the two sets. In other words, the address 
of a composite symbol can be easily obtained by concatenating the addresses of 
its constituents lower dimensional elements. The effect of merging is reflected 
through some additional bits which are stored in a block of memory. 

4 Hierarchical dynamic programming 

Dynamic programming is a multi-stage optimization procedure based on an in- 
ductive principle. It makes use of a recursive relationship to decompose a com- 
plicated problem into a sequence of easier subproblems. In the following, we 
introduce our approach to dynamic programming. As the schemes of [4] and [5] 
are also based on a dynamic programming, we have focused our explanation on 
a comparison between the methods. 

The core of the idea in the schemes of [4], [5] is to use a state diagram with the 
transitions corresponding to one-D symbols. This results in a trellis composed 
of N stages. The states 8 and 8 + c in two successive stages are connected by a 
link corresponding to the one-D symbol(s) of cost c. Consequently, the states in 
the nth stage, n = 1,. . . , N, represent the accumulative cost over the set of the 
first n dimensions. The links connecting two successive stages are labeled by the 
corresponding distortions. Then, the viterbi algorithm is used to find the path 
of the minimum overall distortion through the trellis. 

The straight-forward approach is to assign an independent state to each pos- 
sible value of cost at  a given stage. Let K denote the number of the distinct 
values of cost along a dimension. Number of distinct values of cost in N dimen- 
sions can be as large as: 

The general term in (3) represents the total number of N-tuples where the 
me-D symbol with the ith value of cost has occurred for n, times., If two 
Merent combiiations in (3) result in the same value of the additive cost, the 
corresponding states merge together. .This is denoted as a natural merge. 

Even for a moderate value of K, the number of distinct states in N-D (after 
the natural merge) can be impractically large. The solution is to synthetically 
aggregate distinct states into a smaller number. This is denoted as the state-space 
quantization and is the key point to the effectiveness of any dynamic program- 
ming approach. In [4], the self-information associated with the one-D symbols 
are rounded to rational numbers with a common denominator. In [5], to reduce 
the complexity with respect to [4], these are rounded to integer numbers. 

Unlike [4] and [5] which are based on a component-by-component analysis, 
we use a hierarchy of stages where each stage involves the cartesian product of 
lower-dimensional subspaces. This approach is specially effective when the space 
dimensionality is equal to N = 2". In this case, the hierarchy is composed of u 
stages where the ith stage, i = 0, . . . , u - 1, is based on the '(pair-wise) cartesian 
product of the 2'-D subspaces (there are 2"-' identical pairs of cartesian product 
in the ith stage). All our following discussions are based on this structure. 

The immediate benefit of this approach is the possibility of using a parallel 
processing system. Another benefit is that this structure can be easily combined 
with the state diagram of a lattice (used to decode the lattice [9]). This provides 
a means to easily use the scheme in conjunction with a quantieation.lattice. 
More importantly, as we will see later, this approach provides the basis for an 
effective state-space quantization rule. 

4.1 State-space quantization, aggregation of states 

As already mentioned, a straight-forward approach results in a large number 
of distinct states (shells). The major question is how we can aggregate the 
shells into macro-shells while keeping the degradation negligible. Obviously, 
after aggregation, the points of the macro-shells are no more of the same cost 
(each macro-shell has a range of costs). Based on our hierarchy in an N = 2"-D 
space, we consider the following recursive structure. 
Recursive aggregation rule: The macro-shells in 2'-D subspaces are composed of 
the union of the elements in the cartesian product of the 2 ' - ' - ~  maer+shells. 

In devising a specific rule, we should keep the following three implicit objec- 
tives in mind: 

1. As truncation is achieved by discarding some of the macro-shells, while 
the objective is to discard a given number of points of the highest cost, 
we should try to minimize the overlap between the range of the costs of 
different macro-shells. 

2. The number of the macro-shells should be as small as possible. This sug- 
gests that we should try to put an equal number of points in different 
macro-shells. As we will see later, in the case that the mameshells have 





difficult to have-a fair comparison with the scheme of [5] because in their case 
the space dimensionality is usually quite high which results in a longer delay. 
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Figure 1: Quantization SNR for an iid Gaussian source, N = 16 (dimensionality), 
M = 8 (number of points per dimension) and (kl, k2, ks, k4) = (3,5,6,10). 

Method N R Memory Computation SNR (dB) 
SMS 16 1.5 1.25 k 54 (33) 7.43 
L-F 16 1.5 7.9 k 670 7.47 
SMS 16 2.5 2.5 k 220 (97) 12.91 
L-F 16 2.5 21.0 k 2240 . 13.00 
SMS 32 3.6 14.3 k 1060(290) 18.7 
L-F 32 3.5 307 k 12500 . 18.8' 

Table 1: Comparison between the method based on the sequential aggregation of 
shells (denoted by SMS) with the scheme of [4] (denoted by L-F). The memory 
size is in byte (8 bits) per N dimensions and the computational complexity is the 
number of additions/comparisons per dimension. The values inside parenthesis 
are the computational complexities of our method in the ease of using a parallel 
processing system. (The value denoted by t is obtained using interpolation.). 
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Figure 2: Quantization SNR for a Gaussian source, N = 32 (dimensionality), 
M = 8,16 (number of points per dimension) and 
(klv kal ksr krl k ~ )  = (31 51 6171 lo), (41 61 71 71 10). 


