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Abstract 

The pitch filter in a low bit-rate CELP speech coder has a strong impact on the quality of the reconstructed 
speech. In this paper we propose a pseudo-multi-tap pitch filter with fewer degrees of freedom than the number of 
prediction coefficients, but which gives a higher pitch prediction gain and a more appropriate frequency response 
than a conventional one-tap pitch filter. First, we present an analysis model for the pseudo-multi-tap pitch 
prediction filter. Then, we introduce a pseudo-multi-tap pitch prediction filter with a fractional pitch lag. The 
prediction gain of the pseudo-multi-tap pitch filter is compared to that of conventional one-tap and three-tap pitch 
filters with integer and non-integer pitch lags. A switching configuration is also studied. This filter switches modes 
depending on the prediction gain. The stability of a pseudo-multi-tap pitch synthesis filter in a CELP coder is 
considered. We propose a stabilization method with a relaxed stability test. This relaxed test gives better results than 
a strict stability test. Finally, we have incorporated the pseudo-multi-tap pitch filter into a 4.8 kb i t / s  CELP speech 
coder. Both the objective SNR and subjective quality are better than for a conventional one-tap pitch filter. 

Zusammenfassung 

Das Sprachgrundfrequenzfilter in einem CELP-Sprachcoder mit geringer Bitrate iibt einen starken Einflul3 auf 
die rekonstruierte Sprache aus. In diesem Artikel schlagen wir ein pseudo-multi-tap (pseudo Polykoeffizienten) 
Sprachgrundfrequenzfilter mit einem geringeren Freiheitsgrad als der Anzahl der Pr/idiktionskoeffizienten entspricht 
vor, das aber einen h6heren Langzeitpr/idiktionsgewinn und eine passendere Frequenzantwort aufweist, als ein 
herkfmmliches Pr/idiktionsfilter mit einem einzigen Koeffizienten. Wir stellen ein Analysemodel ftir das pseudo- 
multi-tap Sprachgrundfrequenzfilter vor, mit einer im Vergleich zur Grundfrequenz sehr kleinen Schrittweiten- 
codierung. Der  Pr/idiktionsgewinn des pseudo-multi-tap Sprachgrundfrequenzfilters wird mit dem von 
herk6mmlichen Einkoeffizienten- und Dreikoeffizientenfiltern verglichen; die Schrittweiten sind in Bezug auf die 
Sprachgrundfrequenz sowohl ganzzahlig als auch nicht ganzzahlig codiert. Es wird die wechselweise Verwendung 
beider Modi in Abh~ingigkeit vom Pr~idiktionsgewinn untersucht. Die Stabilit~it des pseudo-multi-tap Synthesefilters 
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in einem CELP-Coder wird mit in Betracht gezogen. Wir schlagen eine Stabilisierungsmethode mit vermindertem 
Stabilit~itstest vor. Diese liefert bessere Resultate als der strenge Stabilit~itstest. Schliel31ich haben wir diese 
pseudo-multi-tap Sprachgrundfrequenzfilter in einem 4.8 kbit/s CELP-Sprachcoder eingebaut. Sowohl objektive 
SNR als auch subjektive Qualit~itsbeurteilung sind besser als in einem herk6mmlichen Einkoeffizienten- 
Langzeitpriidiktionsfilter. 

Resum~ 

Le filtre ~ long-terme d'un codeur de parole CELP ~ bas-d4bit a une influence notable sur la qualit4 de la parole 
reconstruite. Dans cet article, nous proposons un pseudo-filtre de pr6diction ~ long terme ~ plusieurs coefficients qui 
poss~de moins de degr6s de libert4 que le nombre de coefficients de pr4diction, mais donne un meilleur gain en 
pr4diction ~ long-terme et une meilleure r6ponse en fr6quence qu'un filtre de pr6diction conventionnel ~ un seul 
coefficient. Nous proposons d'abord un pseudo-filtre de pr6diction ~ long-terme ~ plusieurs coefficients ~ d6codage 
fractionnel par rapport ~ la frfquence fondamentale. Le gain de pr6diction de ce filtre est compar6 ~ celui des filtres 
classiques ~ un seul coefficient et ~t trois coefficients, avec des d6calages entiers et fractionnaires. Nous d4crivons 
aussi une configuration autorisant leur commutation, celle-ci 6tant command4e par le gain de pr4diction. La stabilit4 
du filtre lors de la phase de synth~se est 4tudi4e pour un codeur CELP: nous d4crivons une m&hode de stabilisation 
comprenant un test de stabilit4 affaiblie. Elle donne de meilleurs r6sultats qu'un test de stabilit6 stricte. Pour finir, 
nous avons incorpor6 notre pseudo-filtre de pr6diction ~ long terme ~ plusieurs coefficients dans un codeur CELP 
4.8 kbit/s. Tant le rapport objectif signal ~ bruit que la qualit6 subjective ont 6t6 am61ior6s par rapport ~ ceux 
mesur6s avec un filtre de pr6diction ~ long terme conventionnel ~ un seul coefficient. 

Key words: Speech coding; Pitch filter; Prediction gain; Fractional pitch lag; Stability 

1. Introduction 

A pitch filter cascaded with a formant filter is widely employed in many low bit-rate code-excited 
linear prediction (CELP) speech coders (Schroeder and Atal, 1989; Iyengar and Kabal, 1991; Campbell 
et al., 1990; Ramachandran and Kabal, 1989). In many cases, a one-tap pitch filter with integer or 
non-integer pitch lags is used. A three-tap pitch prediction filter provides a higher prediction gain than a 
one-tap pitch prediction filter. However, additional bits are required to adequately code the pitch filter 
coefficients. 

The objective of our study is to develop a more efficient way to represent a multi-tap pitch filter in a 
low rate speech coder. There  are two kinds of pitch filters. The pitch filter at the analysis stage of a 
speech coder is a non-recursive pitch prediction filter. The pitch filter used at the synthesis stage of a 
speech coder is the inverse filter to the pitch prediction filter, i.e., a recursive filter. The placements of 
the pitch prediction filter and the pitch synthesis filter are shown in Fig. 1. In practice, if an 
analysis-by-synthesis procedure is used, the synthesis filter is included in a closed loop search. 

The frequency response of a one-tap pitch synthesis filter shows a constant envelope (see Fig. 2). The 
search for pseudo-multi-tap pitch filters was motivated by the observation that the spectrum of a 
conventional three-tap pitch filter often shows a diminishing envelope with increasing frequency in some 
voiced segments (see Fig. 3). This corresponds to a large center coefficient and smaller side coefficients. 
Such a frequency response adds more pitch structure at low frequencies than at high frequencies. 
Consider the case of an integer lag, one-tap pitch filter. Suppose that the true pitch lag is in-between 
integer values. The frequency response of an integer lag filter will be up to 90 degree out of phase at the 
half-sampling frequency. At low frequencies such fractional lag errors do not affect the spectral fit. One 
effect of a shaped envelope such as provided by a multi-tap pitch filter, is that the effect of mismatches 
at high frequencies can be deemphasized. It should, however, be noted that the multi-tap pitch filter can 
also exhibit other spectral envelope (see Figs. 11-13 later). 
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Fig. 1. Block diagram of a pitch filter cascaded with a formant filter F(z): (a) pitch prediction filter, (b) pitch synthesis filter. 

One view of three-tap pitch filters is that they can interpolate between integer lags. This has led to the 
development of fractional pitch filters where the interpolation is explicit (Kroon and Atal, 1991). 
Additional bits are needed to code the resulting higher resolution pitch lags. However, such one-tap 
fractional-pitch filters still have a constant envelope frequency response. Fractional-lag filters solve the 
interpolation problem without addressing the spectral envelope issue. 

0 

-12 

- 1 6  

-200 ] OlO0 20~00 30100 4000 
Frequency Hz 

Fig. 2. Frequency response of a one-tap pitch synthesis filter. 
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Fig. 3. Frequency response of a three-tap pitch synthesis filter with coefficients (0.27, 0.52, - 0.06). 

The stability of a pitch synthesis filter is another important issue in a CELP coder. Since the pitch 
synthesis filter is recursive and is usually determined by a covariance method, it can result in an unstable 
pitch filter. In practice, unstable pitch filters can greatly degrade the reconstructed speech quality. This 
problem along with several stabilization methods has been studied in (Ramachandran and Kabal, 1987) 
by analyzing the original speech. However, the pitch filter parameters are determined by an analysis-by- 
synthesis search procedure in a CELP coder. Although the effect of the noise enhancement in an 
unstable pitch filter is taken into account in a closed-loop search algorithm, unstable pitch filters can still 
impair speech quality. 

We analyze the effect of stability of the pseudo-multi-tap pitch filter. Then, we present stabilization 
methods for pseudo-multi-tap pitch filters to improve the speech coder quality. 

In this paper, we first focus on a general analysis model for the pseudo-multi-tap pitch prediction 
filter. Then, we describe the pseudo-multi-tap pitch filter with a fractional pitch lag. The pitch prediction 
gains of the pseudo-multi-tap pitch filters are compared to conventional one-tap and three-tap pitch 
predictors with integer or non-integer pitch lags. A switching configuration is also explored. The 
frequency response of the pseudo-multi-tap pitch filter is examined and the stability of such filters is 
considered. A stabilization procedure with a relaxed stability check is proposed. Finally, we present the 
performance of a 4.8 kbit /s  CELP coder with different filter configurations of pseudo-multi-tap pitch 
filters. 

2. A pseudo-multi-tap pitch prediction filter 

A pseudo-multi-tap pitch filter is an n-tap pitch prediction filter which has fewer than n degrees of 
freedom. We illustrate a pseudo-multi-tap filter with a three-tap example. Let a traditional three-tap 
pitch prediction filter have three non-zero coefficients at lags M - 1, M, M + 1, with M representing the 
pitch lag. Let the three non-zero coefficients of the three-tap pitch filter be/3_1,/30 and/3+1. This gives 
three degrees of freedom. We can restrict this filter to two degrees of freedom, while maintaining a 
symmetrical set of coefficients, by assigning 

/3_1 = /3+1 = "y, / 3 0 = / 3 .  ( 1 )  
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Fig. 4. Analysis model for a pseudo-multi-tap predictor. 

Both/3 and 3' can be chosen to give the best performance. We can further restrict the pseudo-multi-tap 
filter to one degree of freedom by letting 3' = a/3 with a fixed value of a. The notation for pseudo-multi- 
tap filters are nTmDF,  meaning n taps, m degrees of freedom. Thus, a conventional three-tap filter is 
3T3DF (/3-1, /3o and /3+1 variable). The pseudo-three-tap filters are 3T2DF (3' and /3 variable) and 
3TIDF (a  fixed,/3 variable). 

An analysis model for calculating the prediction coefficients of the pseudo-multi-tap pitch predictor 
with a transversal implementation is shown in Fig. 4. The input signal x(n) is multiplied by a data 
window Wd(n) to give xw(n). The signal xw(n) is predicted from a set of its previous samples with lags of 
M -  1, M, M + 1. The prediction error is 

+1 

e(n) = x w ( n ) -  E /3ixw( n -  ( M + i ) ) ,  Xw(n ) •x(n)wd(n), (2) 
i = - 1  

where M is the pitch lag corresponding to the middle tap. The final step is to multiply the error signal by 
an error window We(n) to obtain a windowed error signal ew(n). The resulting summed squared 
prediction error is 

oo 

E2~  E 2 e~(n), e~(n)=e(n)w,(n). (3) 
n ~ - o o  

In our block-based analysis, we use a covariance analysis with wd(n) = 1 for all n and a rectangular 
error window we(n) = 1 for 0 ~< n ~< L - 1. The lag M is chosen as that which is optimal for a one-tap 
pitch predictor (Ramachandran and Kabal, 1989). For the case of 3T2DF, the coefficients /3 and 3' are 
computed by minimizing e 2. The minimization of e 2, setting partial derivatives of e 2 to zero, leads to a 
set of linear equations which can be written in matrix form, 

B 3' 

where 

A = ~ b ( M -  1, M -  1) + ~b(M+ 1, M +  1) + 2~b(M-  1, M +  1), 

B=cb(M-1, M)+qb(M,M+I), D=~b(M,M), (5) 

E = th(0, M - 1) + ~b(0, M + 1), F = ~b(0, M ) ,  
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and ~b(i, j )  is defined as 

¢ ( i , j ) =  E W 2 e ( n ) x w ( n - i ) x w ( n - j ) ,  
n ~ - o o  

Using this formulation, we obtain/3op t and 7opt, 

/3opt = ( A F - B E ) / / ( A D  - n 2 ) ,  '~opt = (DE - n F ) / / ( h O  - n 2 ) .  

For the 3T1DF case,/3 is 

a¢ (0 ,  M -  1) + 6(0,  M)  + a~b(0, M + 1) 

/3opt  = a2¢3 + ¢ ( M ,  M)  + 2a~b 2 ' 

where 

~b 3 - - - ¢ ( M -  1, M -  1) + 2 ~ b ( M -  1, M +  l) + ¢ ( M +  1, M +  1), 

~b2 = ¢ ( M -  1, M)  + ¢ ( M ,  M +  1). 

(6) 

(7) 

(8) 

(9) 

3. A fractional pseudo.multi.tap pitch prediction filter 

The use of a fractional pitch lag has proved to be an accurate and efficient means to characterize 
speech periodicity in low bit-rate speech coders. Fractional pitch lags can also be used in pseudo-multi-tap 
pitch prediction filters. A non-integer pitch lag can be expressed as an integer number of samples plus a 
fraction. Let the pitch resolution be 1/D. The fractional part of the pitch lag can be expressed as l /D,  
where l = 0, 1 . . . . .  D -  1 (0 ~< l / D <  0). The pseudo-multi-tap filter then acts on the interpolated 
samples, denoted by (t) x(t), xw (n - (M - 1)), w ~n - M), x~)(n - (M + 1)). The fractional delay is imple- 
mented using an interpolation filter. This filter delays the signal at the higher rate by an integer number 
of samples. The subsampled output of this filter is the desired fractionally delayed signal. Note that 
usually the filter coefficients are chosen to give x~)(n) = xw(n). 

A polyphase filter structure (Croehiere and Rabiner, 1983) can be used to obtain the interpolated 
samples. For each fractional phase l, the impulse response p(t)(n) of the polyphase filter is obtained by 
sub-sampling an appropriate interpolating filter. In our case, we use an interpolation filter which is a 
Hamming-windowed ideal low-pass filter, 

sin( ~ ( n - l /D) )  
p(t)( n) = Wh( n -- l /D)  , (10) 

'rr( n - l /D)  

where wh(n) is a Hamming window (centered at zero). 
We have chosen to have the same number of coefficients 2 I  for each of the polyphase component 

filters (! ~ 0). The resulting value which corresponds to the interpolated sample at n + l / D  is given by 
2 1 - 1  

x~)( n ) =  E P ( t ) ( k - I ) x w ( n - k ) ,  (11) 
k=O 

where 21 is the number of the coefficients of the polyphase filter. The delay of the causal interpolation 
filter at the original sampling rate is I. The prediction error for a (fractional) pitch lag of M - l / D  can 
be written as 

1 2 1 - 1  

e ( n ) = x w ( n  ) -  ~_~ ~_, f l i p ( O ( k - I ) x w ( n - ( M + i ) - k ) .  (12) 
i = - - 1  k = 0  
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For the fractional pitch case, the optimal pitch predictor parameters can be obtained by minimizing 
e 2, as in the previous section, but with the covariance function appropriately modified. The new 
covariance functions with fractional delays are 
For i 4= 0, 

oo 2 1 - 1  2 1 - 1  

~., ~_~ p ( l ) ( k - I ) x w ( n - i - k )  ~, p ( l ) ( k - I ) x ~ ( n - j - k ) ;  (13) 
n = - ~  k = O  k = O  

gb~t)( i, j) = 

For i = O, 

~bO)(O. j )  = 
oo 2 1 - 1  

Xw(n ) ~ p ( O ( k - I ) x w ( n - j - k ) .  (14) 
n= - ~  k = 0  

For each ~b(°(i, j)  and ~b~°(0, j), 1 ¢ 0, we have to convolve the impulse response of the polyphase 
filter and the weighted input samples to get the corresponding interpolated samples. In fact, each 
interpolated sample has to be manipulated many times to determine the best pitch lag M -  I/D and the 
optimal prediction coefficients. The computation load is reduced if we first calculate the interpolated 
samples (t) Xw (n), for 1 = 1 . . . . .  D - 1. Then, (13) and (14) become 

o o  o ~  

4a(O( i, J) E x~)( n (')( ., ,--,--w , = - i ) x w , n - j  ), th(t)(0, j )  = ~ x(O(nlr.(t)(n-j). (15) 
n ~ - ~  n ~ - ~  

In order to identify the pitch lag M - l/D, we find the lag which minimizes the error for a one-tap 
pitch filter. We obtain the minimum square e r r o r  ( e2 )  ( M - I / D )  corresponding to the optimal prediction 
coefficient/3op t for the given delay M -  I/D. 

(e2)(M-t/D)= ~" We(n) 2 x~(n)  2 -  (¢( / ) (O 'M))  2 
n = - ~ (~b(O( M ,  M ) ) 2  (16)  

The minimum of (e2) (M-t/D) corresponds to the maximum of (~b°)(0, M))2/(fb°)(M, M)) 2 over the 
range of allowable pitch lags. 

4. Pitch predict ion gain 

The pitch prediction gain is used to compare the performance of the pseudo-multi-tap pitch filters to 
conventional one-tap and three-tap pitch filters. The predictor gain PG (expressed in dB) is the ratio of 
the energy at the input of the predictor to that of the prediction error, 

o o  

E 2 Xw(n) 
- - o o  

PGdB = 10 log n= e 2 (17) 

In all cases, the pitch prediction filters are applied to the residual produced by a forward-adaptive 
formant prediction filter with 10 taps, updated every 160 samples. The pitch filters themselves are 
updated every 20 samples. The lag value chosen is that which is best for a one-tap pitch filter. 

Table 1 shows the average pitch prediction gains for a number of configurations, all with integer pitch 
lags. The results are shown for a single sentence. Note that the performance of the 3T1DF configuration 
depends on the value of a chosen. The results shown in the table indicates that a = 0.125 is good for 
both male and female speech. The average gains are about 0.2 dB higher than a conventional one-tap 
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Table 1 
Pitch prediction gains in dB. The notation, n T m D F ,  means  n taps, m degrees of  freedom, integer lags. Note that a 3T1DF with 
t~ = 0 is in fact a 1T1DF filter 

Type a Prediction gain (dB) 

male female 

1T1DF 0.000 5.06 10.81 
3T1DF 0.125 5.24 11.06 
3T1DF 0.25 5.21 10.78 
3T1DF 0.375 5.06 10.35 
3T1DF 0.5 4.87 9.95 
3T2DF - -  5.62 11.48 
3T3DF - -  6.66 12.60 

pitch filter. The 3T2DF filter is about 0.6 dB better than a one-tap filter and the 3T3DF filter is about 
1.6 dB better than a one-tap filter. 

Next we compare the pseudo-three-tap pitch filter with a fractional pitch lag to one-tap and three-tap 
conventional pitch filters with a fractional pitch lag. The FIR interpolation filter is selected to have 
I--- 16 (16 samples from each side of the desired location are used for the interpolation). A number of 
different interpolation ratios (maximum 16) were used. The pitch prediction gain of a 3T1DF filter as a 
function of a for various interpolation ratios D is shown in Fig. 5. The pitch prediction gain for 3T1DF 
with a fractional pitch lag increases with the interpolation ratio as does that for the 1T1DF case. (The 
1T1DF case is the same as 3T1DF with a = 0.) However, the pitch prediction gain saturates when the 
interpolation ratio is larger than 8. 

3T30F, 0=2~ 4, 8, 16 
?1 

3T3OF't D= 1 

"0 

6 3TIll:" 

• I I I 

' °  ' o: ,  ' ' o : 3  ' o . ,  o . 5  
I 

0 . 2  

Fig. 5. Pitch prediction gains for pitch filters versus a for different values of  D, male speech. 
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Fig. 6. The pitch prediction gain of a 3T2DF pitch filter for different value of D, male and female speech. 
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Fig. 7. The histogram of the optimal ratio ao, t of 3T2DF. 
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We have also evaluated a conventional three-tap pitch filter 3T3DF with a fractional pitch lag. The 
3T3DF filter with an interpolation ratio of D = 2 gives an increased prediction gain of 0.41 dB for male 
speech. The 3T3DF filter with higher interpolation ratios D > 4 does not provide more pitch prediction 
gain. This is in contrast with a 1T1DF filter, where D -- 2 gives an increase in 0.89 dB. Further smaller 
increases occur for higher values of D, but with the performance levelling off below even the 3T3DF 
value for D = 1. One interpretation of these results is that the 3T3DF filter exploits the redundancy 
among three samples with three optimal prediction coefficients, while the 1T1DF with a fractional pitch 
lag is constrained to use fixed interpolation coefficients. 

The pitch prediction gain of 3T2DF filters is compared with 3T3DF and 1TIDF filters for different 
interpolation ratios in Fig. 6. The prediction gain for 3T2DF with a fractional pitch lag is close to that of 
the 3T3DF for both male and female speech. The 3T2DF filter performs better than the 3TIDF filter, 
since it always chooses an optimal a. But more interesting is that the 3T2DF filter with interpolation 
ratio at least 4, performs nearly as well as a 3T3DF filter with the same interpolation ratio. 

The 3T2DF filter can be viewed as a special case of 3TIDF filter with an optimum aom. We obtain 
the optimum value of the Otop t from (7), 

]/opt DE - BF 
O~°pt = f lopt  = AF-BE" (18) 

The histogram of the aop t of the 3T2DF for a female speech is given in Fig. 7. It shows that the mean 
value of t~op t is 0.127 and the median value of a o p  t is 0.108. The corresponding values for the male 
speech during voiced segments are 0.131 and 0.110, respectively. These results justify the use of a equal 
to 0.125 as a reasonable choice for the 3TIDF filter. 

5. Switching configuration 

We have found that the pitch prediction gain of the 3T1DF pitch filter is higher than that of the 
1TIDF configuration by 1.5-2.0 dB in some speech frames, but in others it can in fact be slightly worse 
than 1TIDF. This suggests that it is possible to combine these two configurations, switching to the one 
which performs the best. 

2 The minimum mean square prediction error emi . can be obtained by substituting the optimum pitch 
prediction coefficient/30p t (8) into (3). 
For the 3T1DF case, 

E2min[3T1DF = ~ ( 0 ,  0 ) [ 1  - EN(M, a)] ,  

where 

[a¢(0 ,  M -  1) + ~b(0, M) + a¢(0 ,  M +  1)] 2 

EN(M, a) = [2a~b(M- 1, M) + ¢ ( M ,  M) + 2a~b(M, M +  1) + ~bs]~b(0, 0 ) '  (19) 

~bs=a2[~b(M+ 1, M +  1) + ¢ ( M -  1, M -  1) + 2~b(M- 1, M +  1)] 

For the 1T1DF case, as a special case of 3T1DF with a = 0, 

2 
Emin IITID F "~ ~b(0, 0 ) [ 1  - E N ( M ,  0)], 

Thus, if PG3TID F > PGtT1DF, 

EN(M, a) > EN(M, 0). 

 b(0, M)  2 
E N ( M ' O )  =  b(M, M) b(0, 0) " (20) 

(21) 
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Fig. 9. The pitch prediction gain of a 3T1DF and 1T1DF pitch filter. 
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Table 2 
Pitch prediction gains in dB. The two values in the second column indicate that a switches between these values 

Type a Prediction gain (dB) 

male female 

1TIDF 0, 0.0 5.06 10.81 
3T1DF 0, 0.125 5.35 11.22 
3T1DF 0, 0.25 5.46 11.25 
3T1DF 0, 0.375 5.47 11.20 
3T1DF 0, 0.5 5.44 11.18 

Most segments of a speech signal meet the condition (21). Therefore, the average PG3T1D F is higher 
than the PG1T1DF, as  shown in Table 1. However, there are some subframes which do not conform to the 
condition. Fig. 8 shows the normalized cross correlation EN(M , a) for a 3T1DF filter and EN(M, 0) for 
a 1T1DF filter in different subframes. Fig. 9 shows the pitch prediction gain for 3T1DF and 1T1DF 
filters. EN(M , a) is lower than EN(M, 0) in several subframes. Therefore, the pitch prediction gain 
PGaTID F of these corresponding subframes is lower than the PG1T1D F. 

In the switching configuration we select the pitch prediction filter, 3T1DF or 1TIDF, whichever has 
the higher pitch prediction. Table 2 and Fig. 10 show the results (3TIDFS, D = 1) of switching between 
a = 0 (the 1TIDF case), and another non-zero value. With switching, a = 0.250 is preferable to 
a = 0.125. Note that switching between a 's  uses one bit of information. This approach can also be 
considered to coarsely quantize the a parameter of a 3T2DF configuration. 

Fig. 10 shows the performance of the 3TIDF switching configuration. With switching and sufficiently 
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Fig. 10. The pitch prediction gain of a 3TIDF pitch filter with switching, male speech. 
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high interpolation ratio (more than 4), this configuration outperforms 3T3DF with D = 1. The cost of 
providing D = 4 for all pitch lags is 2 bits, while the cost of providing the two extra coefficients of a 
3T3DF filter is certainly more than 2 bits. We can also compare two other cases, 3T1DF with switching 
(D = 1) and 1T1DF with D = 2. The cost of providing switching and interpolation are each 1 bit, but the 
1T1DF with half sample lag resolution outperforms the switching case with no interpolation. However, as 
we allocate more bits to compare 3T1DF with switching and D = 2 with 1T1DF (D = 4), the perfor- 
mance is essentially the same. With another bit allocated (3TIDF with switching, D = 4 and 1T1DF with 
D = 8), the 3T1DF configuration pulls slightly ahead. 

6. Frequency response 

The frequency response of the pitch synthesis filter affects the reconstructed speech spectrum in a 
CELP coder. We compare the frequency response of pseudo-multi-tap synthesis filters 3T2DF and 
3T IDF  with conventional 1T1DF and 3T3DF filters. 

The frequency response of a 3T3DF pitch synthesis filter can be expressed as 

1 

H(ei° ' )  = 1 - / 3  1 e -j°J(M-1) - /30  e-Jo'M--/3+1 e-Jw(M+l) " (22) 

Then, the amplitude of frequency response of a 3T3DF pitch filter can be written as 

i n(eJ~,) I = 1 
~ / [ c o s ( o J M )  - / 3  0 - (J -i "[- J +l) COS(O))] 2 + [( /3+1 -- s i n ( w )  + sin(wM)] 2 

(23) 
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Fig. 11. Frequency  responses  of  a three- tap  pitch filter with coefficients ( - 0.14, 0.41, - 0.14). 
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Fig. 12. Frequency responses of a three-tap pitch filter with coefficients (0.31, 0.25, 0.20). 

Since the pitch period M is in the range of 20-147 (8 kHz sampling), we consider M >> 1. The terms 
of cos(toM) and sin(toM) produce the quasi-harmonic structure in the frequency response. The envelope 
of the frequency response depends mainly on the terms of (/3_x+/3+l)cos(to) and ( /3÷1-  
/3_l)sin(to). The term cos(to) is a monotonic decreasing function from 1 to - 1 for to --- (0, ~). The term 
( /3÷1- /3-1)  sin(to) reaches a maximum of ( /3+1- /3-1)  at to = rr/2. For a given pitch period M, the 
envelope depends on the values of /3_  t,/30,/3 + i. There are four possible envelopes: 
1. A decreasing monotonic shape, if /30>(/3_ 1 + / 3 + t ) > 0 ,  as shown in Fig. 3. The term (/3-1 + 

/3+1)cos(to) decreases monotonically. Thus, the envelope of I H(eJ°')l also decreases with to in (23). 
2. An increasing monotonic envelope, if (/3_ 1 +/3+1) < 0 and I/3-1 +/3+11 =/30, as shown in Fig. 11. 

Since the term (/3-1 +/3+1 )cos(to) increases monotonically, the envelope of I H(eJ'°)l increases in 
(23). 

3. Two resonances, if ( /3_1+/3+1)> /30>0  and I/3÷1-/3_11 >>0, as shown in Fig. 12. The term 
(/3 +1 - / 3 -1 )  sin(to) makes an important contribution in the middle region. Since this term vanishes at 
to = 0 and at to = rr, there is a valley in the middle region. 

4. A resonance in the middle, if /3-1 and /3+t have different signs, as shown in Fig. 13. The term 
(/3 +! - / 3 _  1)sin(to) makes more contribution than the term (/3 +1 -[- / 3 -  1 )cOS(to)" 
For the case of a 3T2DF filter, I H(ei~')l reduces to 

I H ( e  i°') [ = (24) 
 /[cos(tou) - / 3 -  2r cos(to)] + [sin(toM)] 

The amplitude of I H(ei°')l has two possible envelopes: a decreasing envelope if 3' has the same sign as 
/3; an increasing envelope if 3' has a large value with a different sign. 



Y. Qian et al. / Speech Communication 14 (1994) 339-358 353 

o 

10 

5 

C 

-5 

-1C 

-15 

-200 ' , 500 1000 1500 2000 4000 2 3 ~ 0  3 ~ 0  

Frequency Hz 

Fig. 13. Frequency responses of a three-tap pitch filter with coefficients ( -0 .25 ,  0.72, 0.32). 
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Fig. 14. Frequency response of a 3T1DF pitch synthesis filter with a = 0.25, male speech. 
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For the case of a 3T1DF filter, I H(eJ'°)l becomes 

1 
I n ( e  j°') I = (25) 

~/[cos(o~M) - /3(1 + 2a cos(oJ))] 2 + [sin(oJM)] 2 

The amplitude of I H(eJ'°)l of a 3T1DF filter has a decreasing envelope for positive a. The frequency 
response of the 3T1DF filter with a = 0.25 is shown in Fig. 14. This can be compared to Figs. 2 and 3. 
Let a = 0 in (25). Then, I H(eJ°') I becomes a constant envelope of a 1T1DF pitch filter, 

1 

I n ( e J ' )  [ = ~ 1 -  2/3 cos(oJM) +/32 (26) 

7. Stability 

In this section, we discuss the effect of an unstable pitch filter in a CELP coder. There are three 
procedures to determine the pitch filter parameters, the pitch lag M and the prediction coefficients {/3i}, 
i = 1, 2, 3: (1) Analyzing the original speech signal by solving a covariance matrix equation, as for a pitch 
prediction filter in Section 2 and in (Ramachandran and Kabal, 1987); (2) Jointly optimizing the 
excitation codebook index i, the codebook gain G, the pitch lag M and the {/3 i} by exhaustively searching 
for the weighted MMSE (minimum mean square error) between the original speech and the perceptually 
weighted reconstructed signal; (3) Optimizing the M and {/3 i} by sequentially searching for the MMSE or 
MSPE (modified minimum squared prediction error) (Kleijn et al., 1988). 

The third procedure above is often employed in practice and is termed an analysis-by-synthesis search, 
but can also be viewed as adding a pitch component from an adaptive codebook. For this sequential 
analysis-by-synthesis search procedure, we assume that the input of the pitch filter is zero. The output of 
the pitch filter depends on the output of the previous subframe. We find the optimum M and {/3 i} first. 
Then, we search for the optimum excitation codewords. 

There is a local (recursive) pitch synthesis filter in a CELP coder. The transfer function of the pitch 
synthesis filter can be expressed as 

1 
H(z)  1 - P ( z )  ' (27) 

where 

P(z)  = 
1 

E /3i Z-M+i,  (28) 
i = - 1  

The input of the pitch synthesis filter, ~(z) is the codeword from the excitation codebook. We can 
decompose the excitation codeword into two components: an ideal prediction residual (that would be 
obtained at the analysis stage, shown in Fig. 1) e(z), and a quantization noise output qn(z). 

d(z)  = e ( z )  +an(z), (29) 

where 

e (z )  = x ( z ) ( 1  - P ( z ) ) .  (30) 

The output of the pitch synthesis filter, $(z), is 

an(Z) 
~(z) 1 - e ( z )  x ( z ) +  ( 1 - P ( z ) ) "  (31) 
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For the first term of (31), the pitch prediction residual, stability is not a problem because of po le /ze ro  
cancellation in the analysis and synthesis stages. However, the quantization noise passes through only the 
pitch synthesis filter. If the pitch filter is not stable, this component leads to an increasing pitch filter 
output. For simplicity, we suppose the quantization noise to be an additive white noise. An unstable filter 
can result in a large increase of the output noise. In the sequential search procedure, the pitch filter 
parameters are chosen before the contribution of the stochastic codebook in CELP is considered. The 
stochastic contribution can drive the output of an unstable pitch filter to large values. This causes 
distortion of the reconstructed signal. The enhanced quantization noise can be further augmented in the 
following subframes, because the adaptive codebook is updated with the accumulated noise of an 
unstable pitch filter. The average SNR of a CELP coder for an adaptive codebook procedure with a 
conventional (unquantized pitch coefficient) 3T3DF pitch filter for one test sentence can fall to 3.89 dB, 
comparing to 9.0 dB for a 1T1DF filter. The waveform of the reconstructed speech with an adaptive 
codebook for a 3T3DF in several subframes of an unstable pitch filter is compared with the original 
speech signal (Fig. 15(a)) and is shown in Fig. 15(b). Fig. 15(c) gives the reconstructed waveform with a 
stabilized pitch filter 3T3DFbL 0 under a simple sufficient stable condition, as described in the sequel. 

A simplified stability test and four stabilization techniques have been proposed to efficiently tame an 
unstable pitch filter in (Ramachandran and Kabal, 1987). The simple sufficient stability conditions are 

I/31 < 1, 1TIDF,  

I/3_1[+1/301+1/3+11 < 1 ,  3T3DF. (32) 

Let a =/3 _ 1 + /3 + 1 and b =/3 _ ~ - /3  + r The sufficient stability conditions for a 3T3DF pitch filter are 
(Ramachandran and Kabal, 1987) 

(1) if l a l ~ > l b l ,  [/3_1[ + [/30 [ + [/3+1[ < 1. 
(33) 

(2) if [al < Ibl and 1/30L+lal < 1 ;  b2<~a or b 2 / 3 2 - ( 1 - b 2 ) ( b e - a 2 ) < O .  

The tight sufficient conditions reduce to the simple sufficient conditions (32) for both 3T1DF and 
3T2DF filters, since b = 0 and l a [ > 0. The 3T1DF pitch filter has a better stability performance than a 
conventional 3T3DF filter, since we constrain the side prediction coefficients /3_ 1 = /3 +1 t o  be a small 
proportion of the center coefficient/30. It is easier for the 3T1DF filter to meet the sufficient condition 
for the simplest stability test in (32), 

1 
I/3ol < l + 2 l a l  " (34) 

For a 3T2DF pitch filter with/3_ 1 = /3 + 1 = 3'' the simplest sufficient condition is 

213'1+1/301 < 1 .  

Since each of 1 3' I and [/301 is possibly larger than 1, the chance that the filter violates the sufficient 
condition is higher than that for a 3T1DF filter. 

A simple stabilization method by scaling the coefficients is used to stabilize the pitch synthesis filter. 
We scale down the pitch coefficients by multiplying a factor c, 

l/th 
c =  (I/3-11+1/301+1/3+11)' if(l/3-1l+l/3°l+l/3+ll)>Vth" (35) 

The threshold Vtn is an experimentally determined threshold. With Vth = 0% no stabilization is used. 
With Vth = 1, a strict stability condition is imposed. 

The pseudo-multi-tap pitch filters, 3T1DF and 3T2DF pitch filters were incorporated into an FS1016 
4.8 kbi t / s  CELP coder (Campbell et al., 1990). We employ three performance measures: the average 
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Fig. 15. (a) Original speech waveform. (b) Reconstructed waveforms with an unstable 3T3DF pitch filter. (c) Reconstructed 
waveforms with a stabilized 3T3DFbl.0 pitch filter. 

SNR, signal-to-noise ratio, the SEGSNR, segmental signal-to-noise ratio (average of log SNRs evaluated 
for 16 ms) segments and the SFG, the synthesis-filter-gain. We define the SFG as the ratio of the energy 
of the original speech signal and the energy of the error between the original speech signal and the 
reconstructed speech signal, using only the adaptive codebook excitation for the formant synthesis filter. 
A high value of the SFG indicates that the pitch filter is contributing a large part of the reconstructed 
signal, while the stochastic codebook is contributing a relatively small part. 

Table 3 shows these performance measures for two male and two female test sentences. The test 
sentences in the experiments are as follows: Add the sum to the product of these three; Oak is strong and 
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Table 3 
SNR (dB) comparisons for different pitch synthesis filters in a CELP speech coder 

Type SNR (dB) SEGSNR (dB) SFG (dB) 

1T1DFb~ 7.80 7.77 5.52 
1T1DFbl.0 7.13 7.74 5.33 
1T1DFbH 7.85 7.80 5.29 
1T1DFbH 5 7.81 7.73 5.27 
1T1DFb2.0 7.99 7.88 5.27 
3T1DFb~ 6.77 7.89 5.66 
3T1DFbl.0 7.72 7.88 5.17 
3T1DFblA0 8.11 7.97 5.40 
3T1DFbl.I 5 8.26 8.02 5.42 
3T1DFb2.0 8.29 8.00 5.59 
3T2DFb~ 4.60 8.03 5.78 
3T2DFbL 0 6.89 7.19 4.85 
3T2DFbH 7.28 7.32 5.09 
3T2DFt, I.15 7.43 7.64 5.36 
3T2DFb2.0 8.30 8.18 5.68 
3T3DFt~ 3.89 8.27 5.98 
3T3DFbL 0 7.37 7.58 4.75 
3T3DFbL15 7.78 7.94 5.65 
3T3DFb2.0 8.61 8.32 5.91 

also gives shade. Each sentence lasts about three seconds. They were recorded with a 20 kHz sampling 
rate, 15-bit A / D  with Rockland filters set for a cutoff of 5.5 kHz (1 dB down at 5 kHz, 40 dB down at 10 
kHz). The files were obtained by digitally filtering the 20 kHz data and changing the sampling rate to 8 
kHz. For comparison, the performance for a conventional one-tap filter (1T1DF) and a conventional 
three-tap filter (3T3DF) are also included. The coefficients are unquantized and the pitch lags are 
integers, but stabilization as described above is applied. The stability threshold Vth is set to be 1.0, 1.10, 
1.15 and 2.0 for the comparisons. The threshold Vth is denoted in the subscript of the type of the pitch 
filter. For example, 1T1DFbl.0 and 3T1DFbl.15 employ thresholds of 1.0 and 1.15, respectively. The 
3T1DFb2.0 filter obtains an SNR increase of 1.16 dB, compared to a 1T1DFbl.0 filter. The 3T1DFb~ and 
1T1DFb~ configurations use Vth = ~. This means that the pitch filter is not stabilized. 

The results show that the stabilization can actually increase the performance for a particular pitch 
filter configuration. Moreover, a relaxed stability constraint is better  than a strict stability constraint. The 
reason is that the increasing pitch pulse amplitudes are needed to model a fast growing voicing onset. 
The SNR for 3T1DFb2.0 is higher than the 1T1DFbl.0 by 1.16 dB. The SNR difference between a 
3T1DFb2.0 filter and a conventional 3T3DFbg.0 filter is only 0.32 dB. The performance of a 3T1DFb2.0 
filter is close to a 3T3DFbz.0 filter. 

In addition to objective SNR measurements, we have ranked the subjective quality using informal 
listening tests. The  3T3DFb2.O configuration gives the best quality. The 3T1DFb2.0 filter offers more 
natural speech than a 1T1DFb2.0 filter. The  3T3DFb~ configuration is the worst, because of the stability 
problems. There  are annoying pops, dicks and a more dominant background noise for this case. The 
3T2DFb~ filter has the same problem as 3T3DFb~. Although 3T1DFb~ and 1T1DFb~ both have the 
stability problems, the resultant speech for the latter is not as contaminated as in the other cases. 

We have also applied quantization to the 3T1DF pitch filter coefficients. The quantization table is 
defined in the FS1016 CELP coder specification. Notice that the stabilization is in effect present, since 
the largest quantized value for I/321 is 1.991. Therefore,  the maximum sum of I/32 I(1 + 2 1 a I) = 2.53, 
because we select a = 0.135. With quantization, the SNR for the 3T1DFb2.0 configuration drops by only 
0.13 dB. 
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Finally, we have evaluated the SNR and SEGSNR for a 3T1DF pitch filter with fractional pitch lags 
and pitch quantizer, defined in the FS1016 CELP coder. Note that these fractional pitch lags are not 
uniformly spaced - small lags have higher resolution than large lags. The results show that the SNR and 
SEGSNR are higher than that of the standard FS1016 coder by 0.45 dB and 0.1 dB. An informal 
listening test shows that the improved CELP coder with 3T1DF pitch filter is slightly better than the 
original FS1016 CELP coder. 

8. Summary and discussion 

We have presented and analyzed two pseudo-multi-tap pitch prediction filter configurations, 3T2DF 
and 3T1DF. The pseudo-multi-tap pitch filters can be viewed as a shape/ga in  decomposition, with the 
3T1DF filter having only one shape and the switching 3T1DF filter having two shapes. This then reduces 
the multi-tap coding problem to a scalar quantization of the gain value. The prediction gain of 
pseudo-three-tap pitch prediction filter is higher than that of a one-tap pitch prediction filter. The 
frequency response is more desirable than a conventional one-tap and three-tap pitch synthesis filter 
because of the symmetrical and small side prediction coefficients. The pseudo-multi-tap pitch filter can 
also be used in the synthesis stage of a speech coder, with the optimal lag and coefficients determined 
using an analysis-by-synthesis approach. Stabilization, using a relaxed stability criterion, is applied by 
scaling the pitch filter coefficients. Coefficient scaling based on a relaxed sufficient constraint allows for 
weakly unstable pitch synthesis filters, which can track fast changing segments during an unvoiced to 
voiced onset. The pseudo-multi-tap pitch filter has fewer degrees of freedom than a traditional three-tap 
pitch filter, that is, fewer parameters need to be coded for transmission in a speech coding context. The 
performance of a US federal standard FS1016 4.8 kbi t / s  CELP coder with a pseudo-multi-tap pitch filter 
is bet ter  than that with a conventional one-tap pitch filter. 
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