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Using (Al) in (6) yields 

Thus, 

A 

with  probability 1 convergence,  since limndm R(17) = R. 
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Alternative Proofs for "On Unique 
Localization of Constrained-Signal  Sources" 

S.  Valaee  and P. Kabal 

theorems in "On Unique Localization of Constrained-Signal Sources'' by 
Abstracl-In this correspondence, we provide simple proofs for the 

SI. Wax. The approach is based on  the topological dimension of a set. All  

matrices that  can have  nonunique solutions form the ambiguity set. The 
the possible observation matrices  form !he legitimate set. The observation 

components of the legitimate and ambiguity set are  random matrices. We 
find the conditions under which the dimensionality of the ambiguity set 
is smaller  than the dimensionality of the legitimate set. In  such a  case, 
the probability of the ambiguity set is zero and with probability one,  a 
unique solution can be  found for the localization problem. 

I. INTRODUCTION 
In [ I ] ,  Wax showed  that  when  the  signals  are  constrained to certain 

loci  in  the  complex  plane,  the  number of uniquely  resolvable  signals 
is  larger  than  the  number of sensors. He considered  two  classes of 
constraints,  and  for  each  class,  he  found  the  conditions  under  which 
almost  surely  a  unique  solution  for  the  localization  problem  can be 
found. Here, we  give  alternative  and  simple  proofs  to  the  theorems 
in [l].  The  same approach  is  also  used to find a sufficient  condition 
for unique  localization of unconstrained  signals [21. 

Assume  that an  array  of p sensors  receives  the  wavefield of p 
sources in N consecutive  snapshots.  The  sources  can  be  partially or 
fully  correlated.  In  a  noise-free  environment,  the p X -Y observation 
matrix X can  be  shown  as 

X = A(8)S (1 1 

where A(B) = [a( 81). . . . .a(@,)] is the p x q location  matrix.  and S 
is the q x N source  signal  matrix.  Uniqueness  can  be  stated  as "Given 
the  observation  matrix X, a unique  vector 0 can  be  found  that  satisties 
(1 )  for any  source  signal matrix S." The following  constraints  have 
been imposed on the  array  location  vectors: 

A l )  The  array  manifold {a(@) : 8 E < I } .  where I 1  is the  tield 

A2) Any p distinct  steering  vectors  from  the  array  manifold  are 

The  source  signal  matrix  can be expressed as S = ( S I ,  S 2 ] ,  where 
S I  and S2 are q x 17 and q x ( S  - 7) matrices  with  being  the  rank 
of S. Similar  to [I], we  can  show  that  the  uniqueness  problem  needs 
only  to  be  considered  for  the  observation  matrix X1 = A(H)S;. In 
the  sequel.  we  assume  that  the  dimensionality of X and S are  equal to 
p x 7) and q x 7, respectively. In this  paper,  two  kinds of constraints 
are  considered for the  signals.  These  constraints  will  be  discussed 
separately in the  following  sections.  In  Section 111, we provide  a 
simpler  proof for the  sufficient  condition  for  unique  localization of 
unconstrained  signals [ 2 ] .  
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11. REAL CONSTRAINTS 
Assume that  the  signals  are  constrained  to  the  loci [ l ]  

f k ( S k ( t r ) * X ( k i ’ ) = O .  k =  1, . . . . q  (2) 

where 
~ g j t , )  signal of the  kth  source  at  time  instant t ,  
f k  smooth  map  from the  complex  plane to the  real  line 
Xp) vector of parameters  with p ,  real  unknowns. 
Theorem I: L e t  8 be fixed,  and  let S be  a q x q random matrix 

drawn  from  the  set of all  rank-q  matrices  having  elements  constrained 
by ( 2 )  and  jointly  distributed  according to some  absolutely  continuous 
distribution. A general  array  satisfying A l )  and  A2) can  then almost 
always,  with  the  exception of a  set of signals of measure  zero, 
uniquely  localize q sources,  provided  that 

Proofi The  location matrix A(0)  is  uniquely  defined by the 
parameter  vector 8. Thus,  the  number of free  parameters to describe 
A( 8) is q. The  source  signal matrix S, is a q x q-dimensional  complex 
matrix,  In  general,  a q x 9 complex  matrix  is  described by 2qq real 
parameters.  Since the  signals  are  constrained  by (2), the  number of 
free  parameters is reduced by the number  of  constraints 41). However, 
each  constraint  adds / I  new  unknowns.  Thus,  the total number of free 
parameters of S is  equal  to ( 2 q 9  - q q  + qp). 

The p x 7 matrices X, which  satisfy  (1)  and (21, form  the 
“legitimate  set,”  which  is  denoted by G ,  The  legitimate set is a  subset 
of  the  subspace of p x 7-dimensional  complex  matrices.  Since 0 
and S can be chosen  independently  in ( I ) ,  the  dimensionality of the 
legitimate  set is equal to ( q  + qq + qp).  

A nonunique  solution  appears  for  the  localization  problem  if 

X = A(8)S = A(B‘)S’ (4) 

for  different 8 and 0‘ .  Let us define 

C = A(8)S - A(8’)S’. ( 5 )  

Note  that C is a p x 11 complex  matrix  and  can  be  uniquely  described 
by 2 ( q  + qq + 9/11 real  parameters. 

The  ”ambiguity  set” is defined  by  the p x 9 complex  matrices  that 
satisfy 

2) = (A(8)S : A(8)S - A(8’)S’ = 0. 
for 8,6’ E n, and S, S’ satisfying (2)). (6) 

The  constraints of the  ambiguity  set can be shown as 

c = 0. (7) 

In such  a  case,  the number  of  free  parameters will be  reduced by the 
number of constraints in (7). Since C is a  complex p x 1) matrix, the 
number of free  parameters  is  reduced  by 2prl. Thus,  the  number of 
free  parameters  to  describe (4) is  equal to 2 ( q  + qq + qp) - 2 p q .  For 
uniqueness.  this  number,  which is the  dimensionality of the  ambiguity 
set,  should  be  strictly  smaller  than  the  dimensionality of the  legitimate 
set.  Hence 

2(9. + Q9 + w )  - 2P9 < 4 + 97 + qP (8) 
which is the  same result  as 

In such  a  case, the  ambiguity  set  is  a  proper  subset of the  legitimate 
set.  Since  the  ambiguity  set is a  set of random matrices,  its  conditional 
probability  given  the  legitimate  set  is  zero.  Hence, if the  number of 
signals  satisfies (9) everywhere  except in a  set  with  probability  zero, 
a  unique  solution  for  the  localization  problem  exists. 

111. COMPLEX CONSTRAINTS 
In this  case,  the  signals  are  constrained to the  loci [ l ]  

g i ( s k ( t ; ) : X t ) ) = O ,  k =  1, . . . . q  (10) 

where g k  is a  smooth  map  from  the  complex  plane to itself,  and Ak’ 
is a  vector of parameters  with p real  unknowns. 

Theorem 2: Let 8 be  fixed,  and  let S be a q x q random matrix 
drawn  from the  set of all  rank-?  matrices  having  elements  constrained 
by (10) and  jointly  distributed  according to some absolutely  contin- 
uous distribution. A general  array  satisfying A l )  and A2) can  then 
almost  always,  with  the  exception of a  set of signals of measure  zero, 
uniquely  localizes q sources,  provided  that 

Proof: With  a  similar  argument,  the number of free parameters 
of X is y+qp. which is the  dimensionality of the  legitimate  set.  Here, 
the  constraint  functions  are  complex,  and  therefore,  the  number of 
free  parameters  of the  ambiguity  set is 2 ( q  + q p  ) - 2 p ~ .  This  number 
should  be  smaller  than  the  total number of free  parameters  of  the 
legitimate  set 

2 ( q  + q f i )  - 2P7l < 4 + qP.  (12) 

Thus, the number of uniquely  localizable  sources is bounded by 

If the number of signals  satisfies (13), a  unique  solution  for the 
localization  problem  exists  with  probability  one. 

IV. UNCONSTRAINED SIGNALS 
The  method of the  preceding  sections  can  also  be  used  to find 

the maximum  number of uniquely  localizable  unconstrained  signals. 
This  problem  has  been  discussed  in [2]. There, it has  been  proved  that 
with  probability  one  a  unique  solution  for  the  localization  problem 
can  be  found if 

2Q p .  

In the  present  section,  we  give  a  simpler  proof for this  condition. 
Similar to previous  sections,  we  define  the  legitimate  set by the  set 

of all observation  matrices  that  satisfy  (1).  Here, no constraints  are 
imposed on the  signal  matrix S. The  dimensionality of the  legitimate 
set is equal to the free  real  parameters  that  are  used  to  describe X. The 
signal  matrix S is  a q x 7 dimensional  and  can  be  uniquely  described 
by 249 real  parameters.  Since 8 and S can be  chosen  independently 
in (1).  the  dimensionality of the  legitimate  set is equal to q + 2q9. 

The  ambiguity set  is  defined by 

D = {A(O)S : A(8)S - A(8‘)S‘ = 0. for 8.8’ E a}. (15) 

With  a  similar  argument,  we  can  show  that  the  dimensionality of the 
ambiguity  set  is  equal to 2 ( q  + 2q7) - 2 p q .  With  probability one, a 
unique  solution  for  the  localization  problem  can  be  found if 

dim D < dim 8. (16) 

Using  the  dimensionality of D and 4 ,  this  condition  can  be  shown  as 

Thus, if 4 satisfies  (17),  almost  surely,  a  unique  solution  exists  for 
the  localization  problem. 
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Efficient  Scheduling and Instruction  Selection 
for Programmable  Digital  Signal  Processors 

Kin  H. Yu and Yu Hen Hu 

selection and scheduling for  Programmable Digital  Signal Processors, 
Abstract- We present an  efficient  method for optimized instruction 

Our approach  uses  artificial intelligence techniques to  yield code that 
is comparable to  that  of hand-written assembly codes by DSP experts. 
Several examples which demonstrate the feasibility of the approach, 
targeted  to the TMS32020150 architecture, are presented. 

I. INTRODUCTION 

To fully  utilize  the  available  computing  power of the modem 
programmable  digital  signal  processor  (PDSP) [l] ,  software  designers 
must  face  the  difficult  task of programming in assembly  language. 
Although  high-level  language (HLL)  compilers  for PDSP's exist [2], 
most of them  are  based on technology  developed  with  general  purpose 
applications in mind.  Genin et al. [3] estimated  that  assembly  codes 
written by human DSP  experts  perform 5 to 50 times  faster  than 
those  obtained  from  conventional HLL compilers of just  a  few years 
ago.  Although  the  performance of current  optimizing  compilers  has 
improved  significantly, for real-time  DSP  applications with  stringent 
constraints  on  execution  time  and/or  code  size,  careful  manual  coding, 
typically  with  several  fine-tuning  iterations, is still the  only  effective 
approach. 

This  correspondence  deals  with  code  generation  for  PDSP's  with 
nonuniform  register  sets.  More  specifically,  we  focus on the  sub- 
problems of scheduling and instruction  selection. Other  issues  such 
as  the  handling of conditionals  and  branches,  the use of circular 
buffers  and  special  instructions are  under  study  and will be reported 
in the  future. In this  correspondence,  we  describe an approach in  
which  scheduling  and  instruction  selection  are  handled  concurrently, 
instead of in  separate  passes  as  often  implemented  in  conventional 
compilers. Our measure of efficiency is the  size  and  execution  time 
of  the  generated  assembly  code.  Many  embedded  applications  in  the 
DSP  area  depend  directly on the  efficiency of the  executable  code. 
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x = a + b - c ;  
y = (a t b) 4 d; 

a b 

(a) (b) 

Fig. 1. (a) A fragment of C code; (b) its DAG representation. Up and down 
arrows  represent fetch and write operations,  respectively. 

Such  applications  may  require  a  minimum  code  execution  speed  (for 
example,  a  certain  computation  must  be  finished  before  the  next  input 
data  arrive)  andfor  a  maximum  code  size  (for  example,  to fit  in 
the  limited  on-chip  memory of the  PDSP).  For  such  applications, 
longer  compilation time and  larger  memory  requirement  can still 
be more  attractive  than  manual  assembly  coding.  A  prototype  code 
generator  targeted  for  a  subset of the  TMS3202x/C5x  architecture 
and  instruction set has  been  implemented.  Experimental  results  reveal 
that our approach  can  yield  codes  that are  comparable  to  that of 
hand-written  assembly  codes by DSP  experts. 

11. PROBLEM FORMULATIOK 
An HLL program  can  be  represented by a  directed  acyclic  graph 

(DAG).  Fig. 1 depicts  a  fragment of C code  and  its  corresponding 
DAG. Nodes in the  DAG  represent  operations  to be performed  and 
arcs  indicate  the  data or control  dependency  among  those  operators. 
Similarly,  each  assembly  instruction  can  be  represented by a  DAG- 
like  pattern.  Each  pattern  specifies, among  other  information,  which 
registers it needs  to  read  from  and  what  state  flags it will  use  before 
execution  of  the  associated  instruction.  Each  pattern  also  specifies 
which  registers it will  write  to  and  what  state  flags it will  modify 
after  execution. We call the former pre-conditions and  the  latter post- 
conditions. In this  context, it is  easy to see  that  each  pattern can 
"cover"  part of the  program  DAG. 

Code  generation  can  be  described  as  determining  a  sequence of 
instructions and their  ordering,  with  compatible pre-conditions and 
post-conditions, from the  given  instruction  set  to  realize  all  the 
operations  specified  in  the  DAG,  subject to the DAG  data  dependency 
constraints. If each  instruction  also  carries an associated  cost,  optimal 
code  generation  can  be  defined  as  determining  the  minimum cost 
cover  for  the  program  DAG.  Unfortunately, it has  been  shown  that 
optimal  code  generation  is  NP-complete [4]. 

Two  important  subproblems of code  generation are scheduling and 
instruction  selection. For example,  the DAG in Fig. 1 indicates  that 
the "+" node  must be covered  before  either "-" or "*" nodes  can  be 
evaluated.  However,  there  are no constraints  on  the  covering  order 
of the  latter  two  nodes.  Determining  a  valid  evaluation  order  for 
all  nodes,  consistent  with  the  partial  order  specified by the  arcs, is 
known  as scheduling. 

Many PDSP's are  based  on  the CISC (complex  instruction  set 
computing)  concept,  characterized by a  nonorthogonal  set of complex 
instructions.  Consequently,  certain  parts of the DAG may be  cover- 
able by more  than  one  instruction.  Determining  a set of instructions 
that  can  completely  cover  the  program DAG, and  for  those  parts  that 
are  coverable by many  instructions,  determining  which  instruction  to 
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