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Abstract 
In this paper, we introduce a new technique for wide- 

band array processing. The new algorithm is based on the 
total least-square approach. The total least-square method 
is an alternative to the least-square method and uses the 
fact that the errors can exist both in the focusing location 
matrix and the estimated location matrix at the frequency 
bin. To prevent the focusing loss, we use a unitary a p  
proach for focusing. The new method does not require sin- 
gular value decomposition. The computational complexity 
for the new technique is significantly lower than that for 
the similar methods which use singular value decomposi- 
tion. The simulation results show that the new algorithm 
has a smaller resolution signal-twnoise ratio than the coher- 
ent signal-subspace method. The bias in the estimation of 
the directions-of-arrival is also smaller for the new method 
than that for the coherent signal-subspace method. 

1. Introduction 
Recent literature in array processing show a growing inter- 
est in the analysis of wideband signals [I] [2] [3]. Wide- 
band array processing arises in many applications such as 
passive sonar, microphone array for teleconferencing and 
spread spectrum. Several approaches have been taken in 
the literature to process wideband signals. Some methods 
sample the frequency spectrum to create narrowband sig- 
nals. In these methods, the output of the sensors are s e p  
arated into nonoverlapping snapshots. In each snapshot a 
DFT algorithm is used to sample the spectrum in the fre- 
quency domain. At each frequency bin a narrowband signal 
is formed which has the same directions-of-arrival (DOAs) 
of the wideband sources. In the coherent signal-subspace 
method (CSM) [I] the correlation matrices at different fre- 
quency bins are combined to form a universal correlation 
matrix. This universal correlation matrix is a sufficient 
statistic for the observation vectors [4]. Then, a high res- 
olution algorithm, such as MUSIC, is applied to estimate 
the DOAs. In CSM, the combination of the narrowband 
samples is done through transformation of the observation 
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vectors. This is called focusing. The focusing operator is a 
matrix that transforms the location matrix of the array at 
a sampling frequency to the location matrix at the focusing 
frequency. It has been shown that the CSM algorithm can 
resolve coherent sources. 

An improved version of the CSM is also reported in the 
literature that uses unitary focusing matrices [2]. The uni- 
tary transformation does not create a focusing loss. The 
unitary focusing matrices are determined based on a least- 
square (LS) minimization between the transformed location 
matrix at each frequency bin and the focusing location ma- 
trix. 

In this paper, we introduce a total least-square (TLS) 
formulation of the coherent signal subspace techniques. The 
TLS is known to provide unbiased solution where both the 
model and the observations are noisy; a property which does 
not hold for the least square solution [S]. 

2. Coherent wideband processing 
Suppose q wideband sources are arriving at an array of p 
sensors from the distinct angles B,, i = 1,. . . , q, made with 
the broadside of the array. The output of the sensors are 
observed in T seconds and decomposed into N snapshots 
of A T  duration such that N A T  = T. A J-point FFT 
algorithm is used in each snapshot to sample the spectrum 
of the signals. The observation vector at the output of the 
sensors at the frequency bin wj is given by 

where x(wj), s(wj) and n(wj) are the Fourier transforms of 
the observation, signal and noise vectors, and A(w,,B) = 
[a(wj, 91) . . . a(wj, B,)] is the p x q location matrix. It is 
assumed that A(wj, 8) is full rank. In other words, for each 
wj the steering vectors a(wj, 8,) are linearly independent. 

Temporal samples of the signals and noise are consid- 
ered to be independent circular-Gaussian distributed. It is 
further assumed that the noise is spatially white. A non- 
white case can also be handled with the proposed method 
as long as the spatial correlation of the noise is known but 
for a scalar multiplier. The correlation matrices of the sig- 
nal and noise at the j-th frequency bin are represented by 
S(wj)and a2(wj)I, respectively. For a large AT, samples of 
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the observation vector a t  different frequency bins are uncor- 
related and the correlation matrix of the array at  the j-th 
frequency bin can be written as 

where the superscript H represents the Hermitian trans- 
pose. For simplicity of notation we suppress the frequency 
variable and show the frequency dependence only by the 
subscript j. The universal correlation matrix in the CSM 
algorithm can be shown as 

where Tj is the j-th focusing matrix. 
In [2] a unitary version of the CSM algorithm is intro- 

duced which is based on choosing T, to 

where A0 is the focusing location matrix of the array and 
11.11 is the Frobenius norm of a matrix. The matrix TI 
that solves (4) is the focusing matrix of the unitary CSM 
algorithm. Multiplication of TI by Aj transforms the signal 
subspace a t  the j-th frequency bin into the focusing signal 
subspace. I t  has been shown that the unitary CSM does 
not create focusing loss [2]. The focusing loss is defined as 
the ratio of the signal-to-noise ratio after focusing to the 
signal-to-noise ratio before focusing. 

To determine the focusing matrix Tj from (4), it is as- 
sumed that  the matrices Aj and Ao are known. In practice, 
an ordinary beamformer is applied to estimate the DOAs of 
the sources. If the distance between the sources is smaller 
than the beamwidth of the beamformer, the spatial spec- 
trum will display a single peak in the vicinity of the actual 
sources. The location of the detected peak serves as a pre- 
estimated DOA for focusing. In practice, a few more fo- 
cusing angles are added in the vicinity of the pre-estimated 
DOA [2]. The focusing angles are used to determine the 
p x Q location matrices Ao and Aj where Q is the number 
of the focusing DOAs. 

3. The TLS algorithm 
In this section, we derive a total least-square coherent 
signal-subspace method for wideband array processing. The 
least-square problem (4) can be rearranged as 

where E o  is a perturbation matrix. The constraints in this 
minimization problem show that the location matrix Ao is 
perturbed such that A, can be transformed onto it using a 
unitary matrix. The minimization (5) guarantees that the 

perturbation matrix has the smallest Frobenius norm. The 
following lemma proves that the perturbation matrix Eo is 
in the same subspace as the location matrix Ao. Thus the 
perturbation matrix needs to be searched for only in the 
subspace spanned by the columns of Ao. 

Lemma 1. The perturbation matrix Eo which minimizes 
(5) and the location matriz & in ( 5 )  span the same sub- 
space. 

The proofs for the lemmas and the theorems of this paper 
can be found in [6]. 

In a total least-square approach, both A. and A, are 
perturbed. The total least-square formulation is given by 

where Fo and F, are the perturbation matrices. Note that 
(6) is slightly different from the classical total least-square 
formulation. In the classical total least-square approach 
the system of equations is over-determined and i t  is as- 
sumed that in an unperturbed case, a consistent solution 
exists for the over-determined set of equations. However, 
the first constraint of (6) indicates an under-determined set 
of equations with a unitary solution matrix. Furthermore, 
no unitary TI can solve A0 = T,A, unless A0 and A, have 
the same set of singular values and right singular vectors. 
Also for the classical total least-squares problem, a unitary 
constraint produces the same results as the least-squares 
formulation [7]. 

Theorem 1. The perturbation matrices in the total least- 
square approach are in the same subspaces as the location 
matrices. In other words, Fo and A. span the same sub- 
space, and similarly F, and A, span the same subspace. 

Theorem 2. Assume that the polar decomposition of the 
p x 4 matrices Ao and Aj are shown by WoQo and WJQj, 
where Wo and Wj are p x Q matrices with orthogonal 
columns, and Qo and Qj are 4 x Q Hermitian positive- 
definite matrices. Then, the perturbation matrices 

satisfy (6) with the transformation matriz TI given by  

where Uo and U ,  are any orthonormal matrices with the 
first 4 columns equal to Wo and W,. 

If the number of focusing angles is smaller than the num- 
ber of sensors, the rank of A0 and A, is not equal to p and 
the unitary solution (9) is not unique. However, for DOA 
estimation, it suffices to multiply those singular vectors of 
A0 and A, that correspond to the nonzero singular values. 



In such a case, TI is not unitary, but it has 4 nonzero sin- 
gular values equal to 1. Thus, the constraint T ~ T ,  = I 
can be substituted with ai(T3) = 1, for i = 1 ,..., 4, and 
~ i ( T j )  = 0, for i = 4 + 1,. . . ,p, where a;(Tj) is the i-th 
singular value of TI. In such a case the solution to T h e  
rem 2 is given by T, = WOW: where Wo and W, are the 
unitary matrices in the polar decomposition of A. and Aj .  
Thus, the focusing matrix (9) can be written as 

Since & is full column rank, the positive-definite matri- 
ces Qo and Qj  are uniquely determined by ( A ~ ~ & ) *  and 
(A~A,):. Thus, (12) is the same as 

Theorem 3. The perturbation errom in the least-square 
and the total least-square approaches are related b y  

with equality in the left hand side when wj is equal to wo. 

This theorem indicates that the total least-square a p  
proach has a smaller error than the least-square method. 
Furthermore, the left inequality is tight specially in a neigh- 
borhood of the focusing frequency. 

The computational complexity of the new method is due 
to square root computation and inversion of Q x Q matri- 
ces A ~ A O  and A ~ A ] .  It is important to note that the 
TLS algorithm does not require a singular value decompo- 
sition. In contrast to the TLS algorithm, the CSM needs a 
singular value decomposition of p x p matrices. Usually 4 
is much smaller than p the number of sensors. And hence 
the computational complexity for the TLS formulation is 
significantly lower than that for the CSM algorithm. 

4. Simulation results 
In the first example, we consider a configuration with two 
wideband sources from the angles of arrival 10 and 14 de- 
grees in the far field of a uniform linear array of 8 sensors. 
The spacing between each two consecutive sensors is half 
the wavelength at the center frequency of the spectrum of 
the wideband signals. The sources have the same complex 
frequency spectrum which is flat over a 40 percent relative 
bandwidth. The output of each sensor is decomposed into 
100 snapshots of 32 samples each. An FFT algorithm is 
used in each snapshot to sample the spectrum of signals. A 
Monte-Carlo simulation is performed and the bias, the stan- 
dard deviation, and the resolution are averaged over 200 in- 
dependent runs. At each trial a delay-and-sum beamformer 
is used to estimate the DOAs. Then, two extra angles are 
added at 1 degree from the estimated DOA. This simula- 
tion was performed for different signal-to-noise ratios and 

the bias and the standard deviation are reported in Table 1 
and Table 2. 

We have $so compared the resolution of the CSM and 
the TLS methods. The resolution criterion is defined as the 
difference between the average of the spatial spectrum at 
the peak points in the MUSIC algorithm and the spatial 
spectrum in the valley. The result is shown in Fig. 1. 

To find the resolution threshold, we ran 100 independent 
trials for different SNRs. Number of times that each al- 
gorithm resolved the sources was counted to estimate the 
probabiity of resolution. The sources were assumed to be 
resolved when two peaks in the spatial spectrum of the MU- 
SIC algorithm were in the vicinity (within l o )  of the true 
DOA. Fig. 2 shows the probabiity of the resolution for the 
two methods. It is seen that the resolution threshold for 
the TLS algorithm is smaller than that for the CSM. 

To study the performance of the TLS algorithm for multi- 
group sources, we added two more sources at 33 and 37 
degrees and increased the number of sensors to 20. Ta- 
ble 3 presents the results of average bias for 100 indepen- 
dent runs. As it it seen, the CSM and the TLS algorithms 
have a similar performance. Fig. 3 depicts the MUSIC spa- 
tial spectrum for this example for -15 dB signal-to-noise 
ratio. For higher SNRs the two spectrum overlap. Note 
that the same performance as the unitary CSM has been 
achieved using the TLS algorithm with a smaller computa- 
tional complexity. 
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CSM TLS 
SNR 10 14 10 14 
0 -0.0358 0.0324 -0.0054 -0.0012 
10 0.0016 -0.0043 -0.0011 -0.0019 
20 0.0046 -0.0062 -0.0003 -0.0011 
30 0.0050 -0.0062 -0.0004 -0.0006 
40 0.0051 -0.0061 -0.0001 -0.0009 
50 0.0051 -0.0061 -0.0000 -0.0006 

Table 1 The average bias for 200 independent runs 
for a scenario with two closely separated sources a t  10 
and 14 degrees arriving a t  a uniform linear array of 8 
sensors using the TLS and CSM algorithms. 

CSM TLS 
SNR 10 14 10 14 
0 0.1211 0.1354 0.1202 0.1310 
10 0.0350 0.0392 0.0353 0.0386 
20 0.0124 0.0143 0.0125 0.0139 
30 0.0076 0.0090 0.0076 0.0084 
40 0.0070 0.0083 0.0066 0.0076 
50 0.0070 0.0083 0.0070 0.0077 

Table 2 The average standard deviation for 200 inde- 
pendent runs for a scenario with two closely separated 
sources at 10 and 14 degrees arriving a t  a uniform linear 
array of 8 sensors using the TLS and CSM algorithms. 

CSM 
SNR 10 14 33 37 
0 -0.0319 0.0417 -0.0340 0.0353 

TLS 
SNR 10 14 33 37 
0 -0.0381 0.0370 -0.0146 0.0422 
10 -0.0410 0.0357 -0.0159 0.0445 
20 -0.0400 0.0337 -0.0146 0.0430 
30 -0.0387 0.0346 -0.0149 0.0428 
40 -0.0400 0.0348 -0.0152 0.0437 
50 -0.0394 0.0320 -0.0146 0.0433 

Table 3 The average bias for 100 independent runs 
for a scenario with 4 closely separated sources a t  10, 14, 
33, and 37 degrees arriving a t  a uniform linear array of 
20 sensors using the TLS and CSM algorithms. 

Fig. 1 The resolution of the TLS and CSM methods 
for a scenario with two closely separated sources at 10 
and 14 degrees. 

Fig. 2 The probability of resolution for the TLS and 
CSM methods for a scenario with two closely separated 
sources a t  10 and 14 degrees. 

Fig. 3 The MUSIC spectrum for a scenario with 4 
equi-power wideband sources at 10, 14, 33, and 37 de- 
grees arriving a t  a uniform linear array of 20 sensors. 


