
s _- __ l!tiB 
ELSEVIER 

SPEECH 
COMMUNICATION 

Speech Communication 17 (1995) 39-57 

Auditory distortion measure for speech coder evaluation 
- Hidden Markovian approach *2** 

Aloknath De * ,a,b, Peter Kabal a,b 

a Department of Electrical Engineering, McGill University, 3480 University Street, Mont&al, Canada H3A 2A7 
b INRS-T&kommunications, Universite’ du Quibec, 16 Place du Commerce, Verdun, Canada H3E IH6 

Received 27 September 1994; revised 6 April 1995 

Abstract 

This article introduces a methodology for quantifying the distortion introduced by a low or medium bit-rate 
speech coder. Since the perceptual acuity of a human being determines the precision with which speech data must 
be processed, the speech signal is transformed onto a perceptual-domain (PD). This is done using Lyon’s cochlear 
(auditory) model whose output provides the probability-of-firing information in the neural channels at different clock 
times. In our present approach, we use a hidden Markov model to describe the basic firing/non-firing process 
operative in the auditory pathway. We consider a two-state fully-connected model of order one for each neural 
channel; the two states of the model correspond to the firing and non-firing events. Assuming that the models are 
stationary over a fixed duration, the model parameters are determined from the PD observations corresponding to 
the original signal. Then, the PD representations of the coded speech are passed through the respective models and 
the corresponding likelihood probabilities are calculated. These probability scores are used to define a cochleur 

hidden Markoviun (CHM) distortion measure. This methodology considers the temporal ordering in the neural firing 
patterns. The CHM measure which utilizes the contextual information present in the firing pattern shows robustness 
against coder delays. 

Zusammenfassung 

In diesem Artikel wird eine Methodologie zur Quantifizierung der Signalverzerrung vorgestellt, die durch einem 
mit geringer oder mittlerer Bitrate arbeitenden Sprachkoder hervorgerufen wird. Da die menschliche 
Wahrnehmungssch&fe die PrIzision bestimmt, mit der Sprachdaten verarbeitet werden miissen, wurde das 
Sprachsignal unter Verwendung des GehGrschneckenmodells von Lyons in den Perzeptionsbereich (PD) tibertragen. 
Dieses Model1 liefert die Informationen zu der Abfeuerwahrscheinlichkeit in den Nervenbahnen zu verschiedenen 
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Zeitpunkten. In dem hiesigen Ansatz wird ein Hidden Markov Model1 benutzt, urn den grundlegenden Prozess von 
Abfeuern/Nicht-Abfeuern zu beschreiben, der sich im GehBrgang abspielt. Wir gehen fiir jede Nervenbahn von 
einem Model1 erster Ordnung mit zwei vollverbundenen Zustlnden aus, die den Ereignissen von Abfeuern und 
Nicht-Abfeuern entsprechen. Davon ausgehend, dal3 die Modelle iiber einen bestimmten Zeitraum stationHr sind, 
werden die Modellparameter durch die PD-Beobachtungen an dem Originalsignal determiniert. Dann werden die 
PD Reprgsentationen der kodierten Sprache dem jeweiligen Model1 zugefihrt, und die entsprechenden gberein- 
stimmungswahrscheinlichkeiten berechnet. Diese Wahrscheinlichkeitsquoten werden dazu benutzt, eine Verzer- 
rungsmessung mit dem Hidden Markov Model1 der Gehiirschnecke (CHM) zu definieren. Diese Methodologie 
beriicksichtigt die zeitliche Anordnung der Abfeuermuster der Nerven. Die CHM-Messungen, die die kontextuelle 
Information aus den Abfeuermustern benutzen, zeigen sich robust gegen die Verzdgerungen des Koders. 

R&urn6 

Cet article prCsente une mtthodologie pour quantifier la distorsion apportCe par un codeur de parole 2 bas ou 
moyen dCbit. Puisque c’est 1’acuitC perceptive de l’&tre humain qui fixe la prtcision avec laquelle on doit traiter le 
signal de parole, celui-ci est transform6 en une representation perceptive; on utilise pour cela le modble cochlCaire 
(auditif) de Lyon, dont les sorties reprksentent la probabilitk d’excitation des fibres nerveuses ?I un instant donnC. 
Nous utilisons dans ce travail un mod&le de Markov cachC pour modtliser le processus ClCmentaire d’excitation/non 
excitation optratoire dans le systkme auditif. Un modMe d’ordre un, & deux 6tats et complbtement connect6 est 
associt g chaque canal neuronal; les deux Ctats du modkle reprisentent les CvCnements d’excitation et de 
non-excitation. En supposant les modkles stationnaires sur une durCe fixe, leurs paramtttres sont calcults g partir des 
repr&entations perceptives du signal original. Ensuite, les reprCsentations perceptives de la parole codCe passent B 
travers les modkles correspondants et les probabilitCs associCes sont calculCes. Ces scores permettent de dCfinir une 
mesure de distorsion 2 partir d’une “cochlCe markovienne each? (CHM). Cette mCthode prend en compte la 
succession temporelle des profils de l’excitation neuronale. La mesure CHM, qui prend en compte l’information 
contextuelle prCsente dans le profil d’excitation, est robuste vis & vis du dClai de codage. 

Keywords: Auditory (cochlear) model; Neural firing mechanism; Hidden Markov model; Coded speech quality; 
Distortion measure 

1. Introduction 

Distortion measures play a vital role in evaluating the speech quality of coded signal synthesized by a 
medium or low bit-rate speech coder. Since a human being is the final information processor in speech 
communication, it is important to consider the major perceptual factors while devising the measure. In 
our work, both the original speech and its coded version are transformed from the time-domain to a 
perceptual-domain (PD). This is done using Lyon’s cochlear model which considers the temporal as well 
as the spectral masking effects. The PD representation at the cochlear model output provides the 
probability-of-firing information of the neural channels at different clock times. 

In (De, 1993a; De and Kabal, 1994), we have introduced and studied a cochlear discrimination 
information (CDI) measure which exploits the perceptual events at the auditory periphery. This measure 
compares the neural-firing information corresponding to an original speech and its coded version in a 
cross-entropic sense. In essence, the CD1 measure computes the amount of new information (the 
increase in neural source entropy) associated with the coded signal when the neural source entropy 
associated with the original speech is known or vice-versa. We have investigated several variants of the 
CD1 measure applying the Rknyi-Shannon entropy and symmetric/asymmetric divergence measures. 
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This article proposes another perceptual distortion measure, namely the cochlear hidden Markovian 
(CHM) measure (De, 1993a, 1993b). The basic firing/non-firing process operative in an auditory 
pathway is simulated by a hidden Markov model (HMM). Since the conversion process of the PD 
representation to the firing/non-firing is not exactly known, we characterize the firing events by HMMs 
where the order of occurrence of observations and correlations among adjacent observations are 
modeled suitably. A two-state (one each for firing and non-firing events) fully-connected HMM is 
associated with each of the neural channels. All the HMMs are trained (i.e., various parameters of the 
HMMs are derived) with the pertinent PD observation vectors corresponding to the original speech 
segment. Then, for the same segment, the PD observations from the coded speech are matched (i.e., the 
likelihood probabilities are computed) against the derived HMMs. 

The CD1 measure compares the PD observations directly, whereas the CHM measure is a parametric 
nonlinear model-based measure. Although the CD1 measure has conformed strongly to the informal 
subjective test results in terms of ranking coded speech signals, it has been found to be not very robust 
against time misalignments between the original and the coded signal. Therefore, before applying the 
CD1 measure, it may be important to estimate and remove time-delay between the original and the 
coded speech signals. The CHM measure which has considered the temporal ordering in the firing 
pattern has shown a robustness against the coder delays. An explicit removal of the coder delays is not 
necessary for small delays. 

This paper is organized as follows. Section 2 describes the auditory representation of speech signals 
and characterizes the hidden Markovian signal model. Section 3 provides some relevant background 
materials. Section 4 introduces a method to compute distortion for speech coders and also suggests 
briefly some other alternative approaches. Section 5 considers some practical aspects related to the 
evaluation of speech coders by the CHM measure. Section 6 provides the experimental results for speech 
coder evaluation. 

2. Hidden Markovian neural model 

This section describes how a speech signal is mapped onto a perceptual-domain; and also character- 
izes the neural firing process by a hidden Markov model. 

2. I. Auditory representation of speech signal 

In the proposed distortion measure, several details of the auditory processing are considered. We have 
used Lyon’s cochlear model, as shown in Fig. 1, for representing the speech signal onto a PD. The 
outer-and-middle ear filter is modeled by a simple high-pass filter. The bandpass characteristics of the 
basilar membrane in the inner ear (cochlea) are simulated by sixty-four combinations of second-order 
notch filters and resonators. The activities of the inner hair cells are mimicked by the half-wave 
rectification process, while those of the outer hair cells are imitated by the automatic gain control stages. 
The neurons are attached to the hair cells at different places along the cochlear partition and they ‘fire’ 
(i.e., generate all-or-none electrical spikes) based on the gain-controlled signals as sensed by the 
corresponding hair-cells. 

Unlike many other models, Lyon’s auditory model considers the temporal as well as the spectral 
masking effects. The normalized cochlear model output provides the probability-of-firing information in 
the neural channels at different clock times. Here, the normalization is done with respect to the 
maximum possible output value of the four cascaded AGC blocks and the clock time is chosen to be the 
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Fig. 1. Block diagram of Lyon’s cochlear model (‘HWR’ stands for the half-wave rectifier and ‘AGC’ stands for the automatic gain 
controller). 

same as the sampling time, i.e., 125 us. A detailed description of the model is given in (De and Kabal, 
1994; Slaney, 1988). 

2.2. Characterization of hidden Markov model 

The cochlear model output is a sequence of K-dimensional vectors (in our work, K = 64 correspond- 
ing to sixty-four characteristic neural channels) with one vector for each clock time t. The elements in 
each of the K-dimensional observation vectors represent the probability-of-firing information. Based on 
this PD representation of a speech signal, what are transmitted through neural channels to the brain are 
series of all-or-none electrical spikes (firings). However, the exact conversion process of the PD 
representation to the firing/non-firing representation is not yet known. We attempt here to capture the 
underlying firing/non-firing event in each channel with discrete-time series analysis. 

One such analysis technique involves using a hidden Markov model for modeling the observation 
sequence. The time-varying observation process is considered as a concatenation of many short-time 
segments of a fixed duration. However, it is expected that the properties of the process change neither 
synchronously with every analysis duration nor abruptly from each unit to the next one. The development 
of an efficient optimization technique (Baum and Petrie, 1966) to estimate the model parameters so as to 
match the observed signal patterns has culminated in the theory of HMM-based signal representation. 
The success of this hidden Markov modeling technique has been proven by its application in ecology 
(e.g., (Baum and Egom, 1967)), text analysis (e.g., (Cave and Neuwirth, 1980)), coding theory (e.g., 
(Chang and Hancock, 1966)) and speech recognition (e.g., (Jelinek, 1976)). 

An HMM is a doubly embedded stochastic model with an underlying process that is not directly 
observable (it is hidden), but can be observed through another set of stochastic processes that produce 
the sequence of observations. In other words, the states of an HMM are hidden and the observation is a 
probabilistic function of the states. The order of occurrence of observations and the correlations among 
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Fig. 2. A two-state fully-connected hidden Markov model (S, and S, denote the non-firing and firing states, x-” and T, are the 

initial state probabilities, aij gives the state transition probability from a state S, to a state S,, b,(O) and b,(O) are the observation 

probability density functions for the state SO and S,. respectively). 

adjacent observations are suitably modeled by stochastic dependencies among the hidden states of an 
HMM. In the following, we characterize an HMM for our problem by selecting the model type, the 
number of hidden states and all the parameters associated with the model. 

We consider K numbers of independent two-state (N = 2) fully-connected models, as shown in Fig. 2, 
where either state is reachable from the other one. Although in many applications, the states do not have 
a physical meaning; here a state S, corresponds to a non-firing event whereas a state S, corresponds to a 
firing event. The initial state distribution (i.e., at t = 1) is given as rr = {ri I i EN) with 

n-i=P[ql=Sj] for in&” and c ‘I?~= 1, (1) 
iE_N 

where .N = (0, 1) and a state reached at any clock time t is denoted by qt. 

The HMM considered is of order one and hence the transition from one state to the next one occurs 
according to a transition probability distribution which depends only on the previous state. If we define 
an integer set Y = 11, 2,. . . , T - 1) then the state transition probability distribution A = {aij I i, j E J”] is 
given by 

aij=P[q,+,=SjIqr=Si] for i, jENand t~7, 

where every aij coefficient (i.e., a,,, aol, a,,, ali) is positive, and Cj,,u,j = 1 for i EM. 

(2) 

Now, we consider any one of the neural channels for which the observation is represented by 
0 = o,o, . . ’ 0,. To avoid significant degradation due to any quantization process, we treat the PD 
representation to be continuous-valued and accordingly consider an HMM with continuous probability 
density functions. However, the use of a continuous pdf requires some restrictions on its form so as to 
facilitate reestimation of the pdf parameters (e.g., mean, variance) in a consistent manner. The pdf for 
each of the two states is maintained fixed regardless of when and how the state is reached. The most 
general representation of the pdf, for which a reestimation procedure exists (Baum and Petrie, 19661, is 
used here. Each state S, is characterized by a continuous mixture pdf bj(x) of the form 

b,(x) = C cjmbj,(x) for j EN, 
md’, 

(3) 

where AL = 11, 2,. . . , Ll with L the number of components in the mixture and bj,(.) is any log-concave 
(Baum and Petrie, 1966) or elliptically symmetric (Liporace, 1984) density. The rationale behind choosing 
a mixture pdf and selecting the component pdf bj,(e) to be log-concave or elliptically symmetric is 
discussed later. In our present study, bj,(.) is assumed to be a beta density function and can be written 
as 
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where d,, and fjm are the parameters associated with the density function. The beta pdf of (4) is 
suitable as the observations are continuous-valued between 0 and 1. Appendix A shows that the beta 
density function satisfies the log-concavity condition. 

The observations probability density function B is denoted as B = {bj(X) 1 j EN), where bj(x)dx is 
the probability of observing a value 0, in state Sj at clock time t. A coefficient cjm is the m-th 
component mixture gain in state Sj and the set {cjm I j E Jcr, m CC&~} satisfies the stochastic constraint 

m$~jm=l forjENwithcj,>OforjEJlrandmE.&~, 
L 

(5) 

so that 

/ 
m bj(x) dx = 1, jE_N. 
--m (6) 

3. Preliminaries 

In Section 2, an HMM has been defined by describing the complete parameter set of the model. The 
model is represented as A = (a, A, B), where rr is the state probability vector, A is the state transition 
probability matrix and B is a set of two (N = 2) continuous mixture pdfs, each with L mixtures. In this 
section, we provide some preliminaries required for computing the degree of distortion (similarity) of a 
coded speech with reference to its original version. A forward and a backward likelihood variables and 
an auxiliary function are defined below. 

3.1. Forward and backward likelihood variables 

Let us extend the integer set 7 to .7+ as Y+= Y+ IT). Following Baum and Petrie (19661, a 
forward likelihood variable a,(i) is then defined as 

at(i) =P(O,O, *-. O,,q,=SiIA) for iEJt/ and t~9+, (7) 

which gives the probability of observing the partial sequence O,O, . * . 0, (until time t) and reaching the 
state Si at clock time t given an HMM A. Likewise, a backward likelihood variable p,(j) is defined as 

P,(j) =P(O,+lO,+z .*a 0, I qt = S,,A) for j E _N and t E 7, (8) 

Fig. 3. A two-state trellis diagram (S,, and S, denote the non-firing and firing states). 
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which gives the probability of observing the partial sequence Of+,O1+z * . . Or (from t + 1 to the end) 
given state Sj at time t and a model A. 

The forward likelihood variable a,(i) is initialized as the joint probability of being in state Si at t = 1 
and an initial observation 0,, i.e., 

~yr(1’) =ribi(Ol), i EN. (9) 

With the help of the trellis diagram shown in Fig. 3, an iterative procedure is followed to compute the 
other forward likelihood variables from the initial one. Since a,(i) is the probability of the joint event 
that O,O, . . * 0, are observed and the state Si is reached at clock time t, the product cu,(i)aij becomes 
the probability of the joint event that O,O, . . . 0, are observed and the state Sj is reached at t + 1 
through the state Si at t. Summation of this product over the possible two states Si (for i EN) at time t 
yields the probability of reaching state Sj at t + 1 with the corresponding partial observation sequence up 
to time t. Multiplication of the summed quantity by bj(Ot+r), the probability of observing O,,, at state 
Sj results in the forward likelihood variable ~y~+r J ( 3 for time t + 1. This evaluation procedure can be 
expressed by the following recurrence equation: 

In a similar manner, let us now consider the backward variable p,(i). An initialization process 
arbitrary defines 

P,(j) = 1, j EJtr. (11) 

Then, p,(i) is calculated recursively as follows: 

P,(i) = j~~aijb,(o,+,)p,+,O, t E y, i EJE/. (12) 

For a given model A, /3,(i) is the probability of observing the particular partial sequence from time t + 1 
to the end when it is known that the state Sj is reached at time 1. To compute this, it is evident from the 
trellis diagram of Fig. 3 that we need to consider both the states S, and S, at time t + 1 accounting for 
the possible transitions from Si to Sj, the observation O,,, in state Sj and also the partial observation 
sequence 0r+20r+3 . . . Or (being in state Sj at time t + 1). 

3.2, Auxiliary function 

In order to estimate the HMM parameters, we should maximize P(0 ( A). However, in practice, an 
indirect approach is adopted and an auxiliary function related to P(0 I A) is maximized. Following the 
concept of the Kullback-Leibler statistic, an auxiliary function F(A, A’) of two models A and A’, for a 
given observation vector 0, can be defined (Juang, 1985) as 

F(A, A’) = c c P(O, Q, MIA) log P(O, Q, MIA’), 
Q&/V-T M&K: 

(13) 

with Q=q,q2 ---qT, M=m,m, **. mT, qk ~Jlr and mk E_JZ?~ for k E 37 In the following, we show 
that if F(A, A’) > F(A, A), then P(0 I A) 3 P(0 1 A). The primary advantage of this technique lies in its 
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ability to decouple all the parameter estimation equations. 

P(0 I A) log 
P(Olh’) 

P(OI A> 

=P(OlA) log c c P(O, Q, MIX) 

QEJ@ ME”rL’ P(OIA) 

=P(OtA)log c c P(O, Q, M 1 A) P(O, Q, M IX) 

Q&VT M&U; P(OIA) P(O, Q, MIA) 

>P(OIA) c c 
P(O, Q, Ml A) P(O, Q, Ml X) 

Q&NT M&H; P@(A) log f’(O, Q, MIA) 

= [F(A, A’) -F(A, A)] >O, (14) 
with strict inequality except when P(0, Q, M I A> = P(0, Q, M 1 A’). In the above, the fact that log x is 
strictly concave for x > 0 (since d2/dx2 (log X) = -K2 < 0) has been used. The first inequality is the 
well-known Jensen’s inequality whereas the second one is true by hypothesis. 

If the current model is defined as A = (a, A, B) and a reestimated model is A’ = CT’, A’, B’), then 
either the initial model A defines a critical point of the likelihood function (in that case A’ =A), or the 
model A’ is better than the model A in a sense that the observation sequence 0 is more likely to have 
been generated by A’. A positive value of the auxiliary function implies that the newly estimated model is 
better than the old one. From (14), we observe that when the auxiliary function reaches a critical point, 
P(0 I A> also reaches its local maximum. The model parameters corresponding to this point give the best 
possible estimate of the HMM parameters. 

4. Distortion measure methodology 

An original speech segment and its coded version are passed through the cochlear model to obtain the 
PD representations. For each of these segments, the PD observations are sequences of 64-dimensional 
vectors corresponding to sixty-four characteristic neural channels. A hidden Markov model is associated 
with each of the channels and the parameters are estimated from the PD observation sequence produced 
by the original speech segment. In a sense, all the sixty-four HMMs are trained with the pertinent 
observation vectors corresponding to the original speech segment. Then, for the same speech segment, 
the observations from all the coded speech signals are matched against the derived HMMs to compute 
the relative coder distortions. Now we describe the exact procedures for the model parameter estimation 
as well as the likelihood computation. 

4.1. Parameter estimation 

There is no optimal way of estimating the model parameters from any finite-length observation 
sequence. Since the closed-form maximum likelihood is not possible, the HMM parameters are 
(rejestimated iteratively starting from an initial estimate. To solve this problem, Baum-Welch reestima- 
tion algorithm (Baum, 1972) is used here. An application of this algorithm is equivalent to solving a 
mathematical optimization problem for obtaining the maximum likelihood estimates of the HMM 
parameters. The scheme for estimating the HMM parameters is based on the maximization of the 
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probability of the observation sequence given a model. This algorithm is quite powerful as it ensures a 
monotonic increase in the likelihood with the successive iterations of the algorithm (Baum and Petrie, 
1966). 

Let us now consider the calculation of P(0 I A), the probability of the observation sequence 0 given 
the model A. Assuming the statistical independence of observations, for every given state sequence 

Q=qlqz *. . qT, the probability of observing 0 can be written as PC0 I Q, A), where 

P(O I Q, A> =&G’dh@d *. * k#W. (15) 

The probability of the occurrence of such a state sequence Q is given as 

p(Q IA) = rq,aq1qpqzq3 . . * aqT_lqT. (16) 

Using (15) and (16), P(0 1 A> can be computed as 

P(OlA) = c P(OlQ, A)P(QlA). 
QG.NT 

(17) 

The global density function of (17) with the state density defined by (3) can be rewritten as 

(18) 

assuming the parameter aqflT+ 1 = 1. The direct computation of PC0 1 A) as given by (18) involves 
enumerating every possible state sequence of length T. Instead, we exploit the trellis structure and use 
(10) and (12) for the forward and the backward likelihood parameters. In order to describe the procedure 
for an iterative update of the HMM parameters, we define a set of transition likelihood variables 

L$,(i, dli, j=N, tE9-1 as 

5,(i, j> =P(O, qt=Si, qt+l=SjlA), (19) 

which gives the probability of observing the particular sequence 0, and being in the state Si at time t and 
the state S, at time t + 1 given the model. From the trellis diagram of Fig. 3, it can be noted that [,(i, j) 
can be written as 

S,(i, j) = C ~,(j>aijCjmbj,(o,+,)p,+,(i). (20) 

m-fL 

We note the following relationships among the three likelihood variables as defined in (lo), (12) and (19): 
1. A product of the forward and the backward likelihood variables for any clock time t is shown, using 

(3) and (12), equal to the sum of the transition likelihood variable e,(i, j) over the index j. 

(21) 
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2. Using (3), (10) and (12), it is shown that a sum of the product of the forward and the backward 
likelihood variables, i.e., a,(i) p,(i) over i is independent of the time index t. 

c ~,+,(M,+,(j> = C C C a~(i)aijCjmbjm(O*+l) P,+dj> 
j&N [ jEH iEJy mGIL 1 

= ENatCi) EM ,L aijcj,bj,(O,+l)p,+,(j) 
[. = j~Na,(i)j3,(i) forLt E 7. 

I 
3. Using (19) and applying (211, (22) and (11) subsequently, P(O I A) can be written as the sum of the 

terminal forward likelihood variables cu,(i> over i, i.e., 

(22) 

P(Ol A) = C C &(i, j) = C a,(i)/%(i) = C ar(i). (23) 
i&N j6N ic.N iEJy 

The logarithm of P(0, Q, M I A’), the square bracketed term in (181, can be written as 

log P(O, Q, Ml K) = log T& + c log abrqrtl + c log cbcrn, + c log b&Jot). (24) 
tEF+ tf?Ff fE9-+ 

It is seen that the HMM parameters +, A’ and B’ corresponding to the model A’ are segregated. 
Without any loss of generality, then the auxiliary function F(A, A’) of (13) can also be written in a 
separated form as 

F(A, A’) = c c P(O, Q, Wjlog r;,+ tE:+log &,+I 
Q&f’-T MczH: 

+ c 1% &?l, + c 1% b&,m,( 0,) * (25) 
IE.P tE9-+ 1 

Since F(A, A’) is considered as the basis for the maximum likelihood optimization procedure, separability 
of the individual auxiliary functions as given in Appendix B simplifies the (re)estimation procedure. 
Individual maximization of the first three summands subject to the constraints 

c 5rj= 1, 71;>Ofor jCN. (26) 
jE_N 

C aij = 1, aij&Ofor i, jE_N. (27) 
j6.N 

,C, ‘im= ‘7 cim a 0 for i EN, m E.AL. (28) 
I. 

respectively, is well known. Each of the individual auxiliary functions has the same form CjENuj log uj, 
which as a function of {uj I j EN) with the constraint Cj EN , u. = 1 and vi > 0 for j E Jf attains a global 
maximum at the single point uj = u~/&,~ 1 u. for j E Jtr. The initial probability ;ii can be reestimated as 

4i)Pl(i> 4>PlG> ei= c a,(i)pl(i) = c aT(i) for i EJf-7 (29) 
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which is the expected frequency in state Si at t = 1. Similarly, the reestimation formula for A results in a 
ratio of the expected number of transitions from state Si to state Sj to the expected number of 
transitions out of state Si, i.e., 

C+S,& j) C S,(i, j) 

‘ii = C ‘;’ C S,‘“)(i, j> = 

tc59-+ 

c %(i)Pt(i) ’ 

(30) 

teLT+ jE_N me& fE9-+ 

where ,$“)(i, j) is the probability of being in state Sj at time t + 1 and state Si at time t with the m-th 
mixture component accounting for O,, i.e., 

[l”)(i, j) = c,(i, j) 1 Cimbim(ot) 
C Cilbil(ot> ’ 

l&L 

(31) 

with b,,(O,> as given by (3). Zim is the ratio of the expected number of transitions out of state Si using 
the m-th mixture component to the expected number of total transitions out of state Si. Thus, for i EN 

and mEdL,weget 

C C SfYi, j) C C S,‘“)(i, j) 

The parameters set {di, I i EN, m E.H~) and {fj, ( i E.N, m ~4~) can be calculated from the following 
two equations: 

fm+l C C E,‘“)(i, j) log(O,) 

rFl (dim’+ r) = - tEg+ EM C [(“)(i j) ’ 
I 7 

tEF+ jEdV 

d,m+l 
- 1 

C C 5,‘“‘( i, j) lw( 1 - 0,) 
fey+ jcN 

(33) 

(34) 

where the parameters di, and fi, are assumed, for reducing computations, to take up integer values. 

4.2. Distortion computation 

We now discuss the CHM measure methodology. At first, we obtain the PD observation sequences 
from the original signal. For each of the sixty-four neural channels, we consider these PD observations 
for a frame of T consecutive clock times. An HMM is associated with each of such channels and the 
model parameters are determined starting from an initial estimate. Eqs. (29) to (341, derived based on 
the Baum-Welch algorithm, are used for estimating the model parameters. This technique iteratively 
chooses a ‘better’ model by maximizing P(O, I A,) where 0, is the n-th channel PD observation 
sequence for the original speech. After a reasonable number of iterations, the algorithm is terminated 
and the final model is denoted as A,, . (‘I Let the corresponding n-th channel PD observations for the coded 
speech be represented by 02’. Using (231, we compute P(Of$ I A’,)> for all the neural channels. This 
computation, in essence, evaluates the likelihood probability of the PD representation of the coded 
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signal against the models derived from the PD representation of the original speech. These probability 
scores are multiplied over all the channels. Upon taking logarithm and dividing by the number of 
channels (here, 641, we obtain a similarity measure for the frame. The CHM distortion measure, a 
negated version of the similarity measure, could be expressed as 

CHM = - -& f log P( 0:’ 1 A(;‘). 
n=l 

(35) 

The CHM measure for a speech utterance is computed by taking average of the CHM measures over all 
the speech frames. 

4.3. Alternative approaches 

Here, we suggest two other logical approaches for computing coder distortion although we have not 
carried out any test with them. 

4.3.1. State sequence approach 
One alternative method is to determine the ‘optimal’ state sequences associated with the PD 

observation sequences of an original speech as well as its coded version. An optimality criterion chooses 
the state q1 that is individually most likely by maximizing the expected number of correct individual 
states. The individually most likely state qt at time t is determined by computing 

qt= argmax[P(q,=SiIO, A)]. 

The bracketed term, i.e., the probability of being in state Si at time t, given the observation sequence 0 
and the model A, is written for the forward-backward technique in terms of the variables t,(i, j) as 

qq,=s,w, A)= 
Cjs_&t(iy j) 

c_ 

rr.Ndi) * (37) 

The solution simply determines the most likely state at every instant without any regard to the probability 
of occurrence for sequence of states. A distortion measure could be defined based on calculating the 
Hamming distance between the estimated state sequences for the original and the coded speech signals. 
There is no unique way of selecting an optimality criterion and the approach may even be modified to 
maximize the expected number of correct paths of pairs of states (ql, qr+I) or triples of states 

(4t, 9 t+l, qr+& etc. 

4.3.2. Model distance approach 
Another alternative is to estimate a model A@’ from the PD observations of the coded speech frame 

exactly the way we have estimated the model A @) from the PD observation of the original speech frame. 
A model distance measure following the notion of discrimination information could be defined for 
comparing these pairs of HMMs (Juang, 1984). One such measure form is 

(38) 

This measure is non-symmetric and a symmetrized version could be used in practice. 
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5. Practical considerations 

A ‘good’ distortion measure should consider only the information relevant to perceptual events. 
However, the success of the measure also depends heavily on the accuracies of the implementation and 
the model description. Here, we discuss some practical aspects related to the evaluation of speech coders 
by the CHM measure. 

5.1. Computational issues 

The forward probability calculation is, in effect, based upon the trellis structure shown in Fig. 3. Since 
there are only two possible states at each time in the trellis, all the possible state sequences will remerge 
into one of these two nodes, regardless of the length of the observation sequence. At any time t, 
computation of a,(j) involves only two previous values of a,_,(i) because each of the two grid points is 
reached from the same two grid points at the previous time slot. For computing each Lyt(i> and p,(j), it 
requires on the order of N*T calculations, rather than 2TNT as required by the direct calculation. 

Another important issue is that computing the likelihood variables involves multiplication of many 
terms having values smaller than one. In a recursive procedure, each term of these variables starts to 
diminish towards zero exponentially and thus the number representation goes below the precision range 
of any machine. To circumvent this problem, the likelihood and other variables are multiplied by 
constants known as scaling coefficients (Levinson et al., 1983). The scaling procedure is not applied at 
every clock time, but once every few clock times. 

5.2. Initial estimates for HMM parameters 

Since a convergent reestimation procedure exists for the continuous mixture model considered here, it 
is theoretically possible to have arbitrary initial estimates for the HMM parameters obeying the 
stochastic constraints. The reestimation equations provide values for the HMM parameters correspond- 
ing to a local maximum of the likelihood function. The choice of ‘good’ initial estimates is thus important 
in making the convergence faster or ensuring the local maximum to be the global maximum of the 
likelihood function. In fact, some of the parameters may be very sensitive to the initial estimates 
(Rabiner et al., 1985a). 

5.3. Training data and iterations 

The PD observation sequence used for training the models has a finite length and this causes problem 
in determining the HMM parameters via reestimation method. An insufficient number of occurrences of 
different model events does not truly portray the real scenario and therefore we have to have sufficiently 
long training data. On the other hand, we want the model parameters to be fixed for a specific period 
and then vary depending on the new PD observations. Thus, the training data cannot be too long. It is 
emphasized that the Baum-Welch estimation algorithm needs several iterations before the convergence 
occurs. 

5.4. Mixture processes 

It is an usual practice to approximate a K-dimensional correlated random process by a mixture of few 
uncorrelated, K-dimensional random processes (Juang, 1985; Rabiner et al., 1985b). The number of 
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mixture components is heavily dependent on the degree of correlation. By assuming mixture uncorre- 
lated processes, we effectively reduce the number of parameters to be estimated and thus make the 
estimates more reliable. The trade-off is clearly between the increased error in the approximation 
process and the increased reliability in the estimation process. 

6. Experimental results 

Before providing with the objective measure results, we describe the set-up procedure for some of the 
experimental parameters. 

(i) We have trained and matched the HMMs with speech frames of 480 samples. For N = 2 and 
T = 480, only about 1920 computations were needed since the algorithm used was based on trellis 
structure. 

(ii) The scaling procedure was used not at every instant, but after every ten clock times. 
(iii) Although the length of the PD sequences over which the training and matching were done is 480, 

we overlapped each such frame with the previous frame by 50%. In other words, the observation 
window was shifted by 240 samples for dealing with each new model. This has allowed to have 
sufficiently long training data and also has facilitated the model parameters not to change 
drastically. 

(iv) In our experiment, we have chosen models with three mixture components (i.e., M = 3). This has 
appeared to be a reasonable choice for making trade-off between the accuracy of modeling the 
histogram and the number of parameters to be estimated. 

(v) Based on the psychoacoustic data, we have assumed the initial transition probability from a 
non-firing state to another non-firing state is 0.8 and that from a firing state to another firing state 
is 0.2. In accordance with this, the initial state probabilities were chosen to be 0.8 for non-firing 
state (S,) and 0.2 for firing state 0,). 

(vi> The initial estimates for the beta pdf parameters {d,,] and {f,,l were chosen in such a fashion that 
the corresponding mean values were 0.25,0.50 and 0.75 for i EN. The weighting factors {ci,} were 
all assumed to be equal (i.e., 0.33) initially. 

(vii) For any particular neural channel, the final estimate of the HMM parameters obtained for a 
speech frame was considered as the initial estimate of the parameters for the subsequent frame. 

(viii) While solving the simultaneous equations of (33) and (341, the idi,} and Ifi,) parameters were 
allowed to take up integral values between 1 and 40. Since the exact solution could not be found, 
we have determined the parameter values by choosing the best pair which minimizes the sum of the 
square errors. One more constraint imposed on the parameters was that the mean values (given by 
d,,/(di, +fim)> for three different mixture components have been kept confined to three different 
regions - one between 0 and l/3, the second between l/3 and 2/3, and the third between 2/3 
and 1. This also reduced the search for best solution by making some combinations of the 
parameter values to be invalid. 

(ix) For model parameter estimations, we have made 30 iterations for each frame of PD observations in 
any neural channel. 

In this work, we have followed two strategies for computing coder distortions. Let us now consider 
determining the model parameters for the n-th neural channel. In the first strategy, while training the 
model, we have used only the n-th channel PD observation sequence corresponding to the original 
speech. We call this strategy as CHM-SC (with single channel). Table 1 shows subjective and objective 
measure values for six coded signals with reference to the original speech utterance. We tabulate here 
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Table 1 

Subjective and objective measure values for six coded signals with reference to the corresponding original speech utterances (‘S’ 

gives the average subjective ranking scores and ‘H’ denotes the cochlear hidden Markov measure with single channel (CHM-SC)) 

Sentence Cl c2 c3 c4 c5 C6 

S H S H S H S H S H S H 

Ml 5.75 195 4.92 225 4.17 336 2.58 358 2.58 365 1.00 420 

M2 5.50 250 5.17 231 4.25 280 2.75 310 2.25 390 1.08 414 

Fl 5.67 209 5.00 263 4.25 300 2.33 389 2.58 371 1.17 430 

F2 5.67 220 5.00 276 3.91 347 2.67 378 2.50 312 1.25 398 

measure values for only four utterances. The CHM-SC measure was found to be not very satisfactory in 
ranking coded signals. 

It has been our understanding that the training data length was not sufficient in the CHM-SC strategy 
to make a reliable estimate for the model parameters. Therefore, we formulated a new strategy where 
three adjacent channels - the (n - l)-th, the n-th and the (n + l)-th channel PD observations - were 
used in alternate manners for training. This strategy has been termed the CHM-TC (with three 
channels). Table 2 provides subjective and CHM-TC measure values for all the twelve utterances given in 
Appendix C. 

For the CHM distortion measure values, we have computed the logarithm (natural) of the likelihood 
probability scores, negated them and averaged over all the channels and all the speech frames. In Tables 
1 and 2, the subjective ranking (6 for the best and 1 for the worst) are averaged over the rankings made 
by the twelve listeners. These scores are average ordinal numbers and not the absolute quality scores. 
For all the twelve utterances and six coders, the average ranking scores are mentioned in the first column 
(marked ‘S’). As an example, if a coded signal is given a score of ‘6’ by eight listeners, a score of ‘5’ by 
three listeners and a score of ‘4’ by one listener, the ‘S’ value becomes (6 X 8 + 5 X 3 + 4 X 1)/12 = 5.58. 
The second column (marked ‘H’> provides the CHM objective measure where a low value implies a 
better perceptual quality. 

We note that with utterance Ml, the C4, C5 coders and with utterance F5, the Cl, C2 coders were 
ranked same subjectively. The CHM-TC measure has found C4 coder for Ml and C2 coder for F5 to be 

Table 2 

Subjective and objective measure values for six coded signals with reference to the corresponding original speech utterances (‘S’ 

gives the average subjective ranking scores and ‘H’ denotes the cochlear hidden Markov measure with three channels (CHM-TC)) 

Sentence Cl c2 c3 c4 c5 C6 

Ml 

M2 

M3 
M4 

M5 

M6 

Fl 

F2 
F3 
F4 

F5 
F6 

S H S H S H S H S 

5.75 146 4.92 188 4.17 256 2.58 314 2.58 
5.50 161 5.17 179 4.25 238 2.75 287 2.25 

5.75 157 5.17 183 4.00 261 2.58 310 2.33 

5.00 196 5.67 152 4.25 230 2.50 326 2.58 

5.75 138 5.17 170 3.83 277 2.67 301 2.50 

5.58 163 5.25 186 3.83 265 2.75 292 2.42 
5.67 154 5.00 182 ‘4.25 244 2.33 326 2.58 

5.67 159 5.00 192 :3.91 270 2.67 296 2.50 

5.50 170 5.17 177 4.25 221 2.50 319 2.25 

5.41 169 5.25 174 4.17 238 2.75 281 2.17 

5.50 162 5.50 155 3.83 272 2.33 330 2.50 

5.67 156 4.83 202 4.08 263 3.08 322 2.17 

H 

320 
346 

304 

311 

335 
319 

307 

310 
352 
361 
304 

348 

S 

1.00 
1.08 

1.17 

1 .oo 

1.00 

1.17 

1.17 

1.25 
1.33 
1.25 
1.33 

1.17 

H 

408 

398 
401 

412 

421 

392 

416 
386 
381 
399 
373 

391 
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Fig. 4. Scatter plot showing subjective and objective measure values for six coded signals with reference to the corresponding 

original (twelve) speech utterances. 

slightly better than their counterparts. Other than these tie cases, the subjective and objective measures 
were not in conformance only for the C4, C5 with the utterance M3. The scatter plot of Fig. 4 
corresponding to the data of Table 2 shows that the subjective and objective scores, in general, agree 
with each other. 

Unlike most of the other distortion measures, the CHM measure performs quite well without an 
explicit time-alignment. Table 3 provides the SNR measure as well as the CHM measure with zero, one, 
two and three sample delays in the coded speech. The misaligned sample places are filled in with very 
small (approximately zero) values. It is observed that the SNR measure which is well-known for its 
sensitivity to delay error varies considerably with the coder delays. On the other hand, a small sample 
delay does not really affect the CHM measure value. 

The CHM measure involves much more computation than the CD1 measure presented in (De and 
Kabal, 1994). However, for speech coder evaluation, the distortion measure does not need to be 
computed in real time. At the cost of computational complexity, the primary two advantages accrued in 
the CHM measure methodology are that 6) ample provisions (selecting better initial estimates, carrying 
out more iterations, etc.) exist for its improvement and (ii> it attempts to take time correlations into 
account and is fairly robust against small time shifts. 

Table 3 
The SNR and the cochlear hidden Markovian - three channels (CHM-TC) measure values with zero, one, two and three sample 

delays for the coded signal ‘oakf8f and ‘oakf8k’ with reference to the original speech sentence 

Coded speech Measure Sample delays 

Zero One Two Three 

oakf8f SNR (w/o scaling [dB]) 8.724 7.391 5.619 5.117 

oakf8f CHM-TC 221 227 224 229 

oakf8k SNR (w/o scaling [dB]) 9.178 7.503 6.108 7.027 

oakf8k CHM-TC 319 321 326 323 
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7. Summary 

Determining a ‘good’ distortion measure for speech coding is an extremely difficult problem. At the 
same time, finding such a measure would surely have a significant impact on speech coding and coder 
evaluation procedures. We have tried to take a step towards the solution. In order to formulate a 
distortion measure for speech coder evaluation, we have used a physiological model for auditory 
processing and applied information-processing techniques from information theory. 

In this article, we have introduced a cochlear hidden Markovian (CHM) measure for computing coder 
distortion. The basics of neural firing events have been captured by simple hidden Markov models, where 
the occurrence of perceptual-domain observations and correlation among adjacent observations are 
modeled appropriately. A two-state (one each for firing and non-firing events), fully-connected HMM 
has been associated with each of the neural channels. 

For computing coder distortions, at first, all the HMMs are trained (i.e., the HMM parameters are 
estimated) with the PD observation derived from the original signal. The Baum-Welch reestimation 
technique has been applied to derive the HMM parameters iteratively starting from an initial estimate. 
The PD observations obtained from the coded speech are matched against these HMMs. A (negated) log 
likelihood probability score, averaged over all the speech frames and neural channels, acts as the CHM 
similarity (distortion) measure. This measure conforms substantially with subjective evaluation results 
and also exhibits robustness against time shifts. 

Appendix A. Log-concavity of beta pdf 

A beta density function is given as 

b(x) = 
r( d +f+ 2) 

T(d + l)r(f+ 1) 
Xd(l -X)f (A.11 

In this appendix, we prove that this function satisfies the log-concavity condition, i.e., the logarithm of 
the function is concave. Taking logarithm of (A.l), we get 

~(X)=log~(d+f+2)-log~(d+1)-log~(f+1)+dlogx+flog(l-x). (A.2) 
To show the log-concavity nature of (A.1.1, we need to show that 4(x> is concave w.r.t. X. Defining 
Yi = (1 - A), we write 

$(hx’+Ax”) -/@(x’) -A$+“) 

= dh log( Ax + xx”) +fA log( 1 - Ax’ - hx”) + d;i log( Ax’ + hx”) +fh log( 1 - Ax’ - ;ix”) 

- dh log x’ -fA log( 1 -x’) - cl;i log X” -_fh log( 1 -x”) 

=dA ,,g( Ax’;,*x”) +fA log( ‘-;“‘,‘x”) +dA log( Ax’;,ix”) +f;i log( ’ - :“,,““) 

=o (A.31 
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Since it has been shown that &(hx’ + hx”) z h$(x’) - h+(x”), the beta pdf 
log-concave. 

Appendix B. Baum-Welch reestimation procedure 

of (A-1) is proven to be 

In our work, an auxiliary function F(A, A’) is considered as the basis for the maximum Iikelihood 
optimization procedure. The Baum-Welch (re)estimation procedure is used for determining different 
model parameters. Separability of the individual auxiliary functions has made this procedure elegant and 
reduced the complexity. Here, we write the expressions for individual auxiliary functions. We can rewrite 
(25) as 

F(A, A’) =&(A, ~‘1 + ,tC,K,(‘, Ia:j}jeN) 

+ iFJ,c, F,(A, Kz) + c &,(A, {c:m)m~~.)> (B.1) 
L iEN 

where 

F,(A, p’) = c c P(O, Q, Mb) log T;,= C C P(o, 41 = Si, MI A) log T:, (B.2) 
~EMThfcz_Af~ iEN MMLT 

‘a,(‘, {a:j}jcM)= C C ‘(0, Q, MI’) C log a’q,q,+ls(4r_Si) 
QwVT MC%?; fEz7f 

= C C C P(o, qt=Si,qt+l=Sj, MIA) log a:j, (B-3) 
js.N tEY+ ME.,&; 

Fb(A, b:,) = C C f’(o, Qt MIA) C log b~,,l(Ot)6(4r_Si)6(m,-m) 
Q&N’ MC.,&; t‘E9-+ 

= C ‘(O, 4t=‘i> m, = m I A) log b;,( 0,) (B.4) 
tE9-+ 

and 

&,(A, h%m~~ ) = QFNT MzTf’(O, Q, M 1 A) C log Cb,m,s(qt - ‘i) 

= ,i ts; ;(O, qt = Si, m, ::;A) log c;,, (B-5) 
+ L 

where 6 in the above expressions is the Kronecker delta function. 

Appendix C. Test sentences 

The reference audio files were obtained by digitally filtering the speech and sampling it at a rate of 
8,000 Hz. The digital filter (255 tap FIR) applied was designed to be unity between 0 and 3,200 Hz. For 
the purpose of speech coder evaluation, the following test sentences (male and female voices) were used. 
1. Add the sum to the product of these three. 
2. Cats and dogs each hate the other. 
3. Oak is strong and also gives shade. 
4. Open the crate but don’t break the glass. 
5. The pipe began to rust while new. 
6. Thieves who rob friends deserve jai1. 
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