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Computing the Weight Distribution of a Set of Points 
Obtained by Scaling, Shifting, and Truncating a Lattice 

Amir K. Khandani, Associute Member, IEEE, Peter Kabal, 
Member, IEEE, and Eric Dubois, Senior Member, IEEE 

Abstract- A method is developed to compute the weight distribution of 
a set of points obtained from a lattice. The lattice is scaled (with possibly 
nonequal factors) along different dimensions, is shifted to an arbitrary 
point, and its lower dimensional subspaces are truncated within given 
shaping regions. Each branch in the lattice trellis diagram is labeled by the 
weight distribution of the corresponding coset incorporating the effects 
of scaling, shifting, and truncation. The weight distribution is obtained 
by multiplying the weight distribution of the serial branches and then 
adding the result over parallel paths. 

Index Terms-Weight distribution, trellis structure of lattices, squaring 
and cubic constructions, shaping, vector quantization. 

Consider a discrete set of points S. A shaping region can be used to 
select a finite subset of S having a desirable property for the specific 
application in hand. For example: i) in geometrical source coding, 
a subset of the source space with the highest probability is selected 
[I]-[3], and ii) in constellation shaping, a subset of the channel space 
with the least energy is selected [4]. 

In dealing with problems of this type over a set S, it is usually 
useful to know how many points of S are located at a given distance 
from the origin. This is determined by the weight distribution of S 
which is defined as [5]  

where t l (u )  is the distance from the origin of point u and -I-(.(.) is 
the number of points at a given distance .r from the origin. We are 
concerned with distance measures having the additivity property. This 
means that for an 11-tuple u = ( t r ~ .  111.. . . . (I,,- I ), we have 

The given examples are based on the absolute distance and the 
square distance which for a given scalar 11 are equal to 111 1 and 112, 
respectively. 

A real 11-D (TI-dimensional) lattice A,, is a discrete set of 11-D 
vectors in R" which form a group. A sublattice A, ,  of a lattice A,, is 
a subset of the elements of A,, that is itself a lattice. This is denoted 
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by A,, /A,', . A lattice A,, is called an integer lattice if it is a sublattice 
of Z" where Z denotes the set of the integers. A sublattice A:, 
induces a partition of A,, into equivalence classes modulo A:, . The 
order of this partition is denoted as IA,>/A.:, I. The lattice A,, is the 
union of In,, /A:, I cosets of A:. 

In a novel approach, Forney in [6] expresses a lattice partition 
A,, /A,:, in terms of a tree with one initial node and IA,, /A,:, I final 
nodes. Then. a lattice is expressed in terms of a trellis diagram 
obtained by connecting two such trees at their final nodes. Each stage 
of such a trellis corresponds to a subspace of a given dimensionality. 
Different paths in the trellis correspond to different cosets of a given 
sublattice. An important class of lattices based on the squaring and 
cubic constructions is well suited to this type of representation.' The 
squaring construction based on the lattice partition A,, /A: is defined 
as the union I7 of all pairs (s, . S.L ) where s 1  and s 2  belong to the same 
coset of A:? in A,, . This construction is denoted by I -  = IA,, /A;, 1 2 .  

We consider integer lattices that are scaled with (possibly) nonequal 
factors along different dimensions. Such a scaling preserves the group 
property of the lattice. Scaling is achieved such that the spacing 
between lattice points along the ith dimension is equal to (1,. Such a 
lattice can be used for channel coding over a nonflat channel 171. A 
shifted version of a lattice A,, is obtained by shifting A,, to a given 
1)-D point a .  This shifting preserves the group property of the lattice 
if and only if a E A,, . 

111. COMPUTATION OF THE WEIGHT DISTRIBUTION 

The basic idea behind the computational method proposed in 
this correspondence is as follows: Consider two sets of points of 
dimensionalities T I , ,  112 and their Cartesian product which is a set of 
dimensionality 11 = ir + 1 1 ~ .  Let _I,, (.I.) denote the cardinality of the 
5et of the 1,-D points at a given distance .r from the origin. Using the 
additivity property of the distance measure, we obtain 

where the summation is computed over all the pairs (.] .I .  .ra) satis- 
fying .r = .r l  + .r2. Considering this property, and also the additivity 
property of the distance, we conclude that the weight distribution of 
the Cartesian product of two sets is equal to the product of their 
weight distributions. 

We make use of the lattice trellis diagram in our computation. 
Each branch in the diagram is labeled by the weight distribution of 
the corresponding coset incorporating the effects of scaling, shifting, 
and truncation. The key point is that if two branches are connected 
through a given state, then their weight distributions multiply. Note 
that a cascade of branches counts for the Cartesian product of the 
subsets corresponding to those branches. We also note that the parallel 
paths in the trellis count for the union of the their respective subsets 
and the corresponding weight distributions add together. Based on 
these observations, we conclude that the final weight distribution is 
obtained by multiplying the weight distribution of the serial branches 
and then adding the result over parallel paths. This results in a partial 
weight distribution for the intermediate states in the trellis which 
act as a multiplicative factor in the weight distribution of the paths 
coming out of that state. In the following, this idea is explained by 
the use of two examples based on lattices obtained from the squaring 
construction. 

IEEE Log Number 9413763. I The Barnes-Wall lattices Dq. ER.  . . . are based on the squaring construc- 
tion and the Leech lattice A24 is based on the the cubic construction. 
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Fig. I 

Fig. 2 

The squaring construction 

%Z2 = IZ/2z1= 

the Dq lattice. E, 0 stands for even, odd and the subscript denotes the index 

do - 
Eo 00 

dl - 

E3 0 3  

1-D truncated subsets for the example baaed on the Dq lattice. 

(c) 

of the space dimension. 

Fig. 3. The squaring construction for the Ex lattice. Subsets A, B. C. D are obtained from the partition z 2 / 2 z 2 ,  shifted to the point (112, 1 / 2 ) ,  and 
truncated within a circle. The corresponding weight distributions are with respect to the square distance. 

A. Example for the D3 Lattice, Absolute Distance 

The lattice D4 is obtained by applying the squaring construction to 
the lattice partition ~ ~ / E Z % h e r e  E denotes the rotational operator 
[6]. The corresponding trellis diagram is shown in Fig. l(a) where 
RZ%nd R Z 2  + (1 .0 )  denote the cosets of 8Z2 in 2 ' .  The lattice 
R Z 2 ,  which is the set of 2-tuples with both components either even or 
odd, is obtained by applying the squaring construction to the lattice 
partition 2 / 2 2 ,  Fig. l(b) shows the corresponding trellis diagram 
where 2 2  (set of even numbers) and 2 Z +  1 (set of odd numbers) 
denote the cosets of 2 2  in 2. The final trellis diagram of D.1 is 
shown in Fig. I(c). 

Assume that the projection of the final I -D set into its 1-D 
subspaces are the truncated subsets shown in Fig. 2. The functions 

ITL,. IlE., , I = 0.1.2 .3 ,  denote the we~ght  distribution of the cor- 
responding odd, even subsets w ~ t h  respect to the absolute distance. 
Uslng the trellis diagram of D3 glven in Fig. I(c), the final weight 
d~strlbution 1s computed as 

This weight distribution has application in the vector quantization 
of an independent Laplacian source with nonequal values of power 
along different dimensions [8]. 
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B. Example for the Ex Luttice. Square Distance 

The lattice Ex is obtained by applying the squaring construction 
to the lattice partition D, / 'RD,  [6]. This is shown in Fig. 3. The 
2-D subsets are selected from the half-integer grid truncated within 
a circle. This truncation is in accordance with the structure of an 
optimally shaped constellation 191. Using the trellis diagram, the 
weight distribution with respect to the square distance is computed as 

Without truncation, weight distribution of the subsets -4. B. C'. D 
would be equal to 

where & ( q )  is one of the Jacobi theta functions [ 5 ] .  This results in 
the following weight distribution: 

IV. SUMMARY 

A method to compute the weight distribution of a set of points 
obtained by scaling, shifting, and truncation of a lattice is presented. 
Computation is based on using the lattice trellis diagram. The 
proposed method is quite general and can be w e d  in conjunction 
with different types of distance measures having additivity property 
and any lattice which is constructed using a trellis diagram. 
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