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Abstract-We introduce an efficient addressing scheme for the nearly 
optimum shaping of a multidimensional signal constellation. The 2-D 
(two-dirnensiond) subspaces are partitioned into A' energy shells of equal 
cardinality. The average energy of a 2-D shell can be closely approximated 
by a Pinear function of its index. In an N = 2n-D space, we obtain Kn 
shaping clusters of equal cardinality. Shaping is achieved by selecting 
T 5 Kn of the N-D clusters with the least sum of the 2-D indices. This 
results in a set of T integer n-tuples with the components in the range 
[O. K - 11 and the sum of the components being at most a given number 
L. The problem of addressing is to find a one-to-one mapping between 
the set of such n-tuples and the set of integers [0, T - 11 such that the 
mapping and its inverse can be easily implemented. In the proposed 
scheme, the N-D clusters are grouped into blocks of identical binary 
weight vectors. This results in a simple rule for the addressing of points 
within the blocks. The addressing of the blocks is based on some recursive 
relationship which allows us to decompose the problem into simpler parts. 
The overall scheme requires a modest amount of memory and has a small 
computational complexity. 

Index Terms-Optimum shaping, addressing decomposition, recursive 
addressing, binary weight vectors, shell mapping. 

I. INTRODUCTION 

A digital communication system is usually modeled as a discrete- 
time system. In the discrete model, the channel provides us with a 
given number of dimensions, say N, per signaling interval. In each 
signaling interval, the input data are encoded such that one of M 
equiprobable symbols is produced. To transmit these symbols, we 
select M points over the channel space. Each of the source symbols 
is represented by one of these points. This collection of points is 
called a signal constellation. 

A signal constellation is usually selected as a finite subset of a 
regular array of points (packing) bounded within a shaping reglon. 
The main objective in selecting a shaping region is to minimize the 
average energy of the constellation for a given number of points 
from the given packing. The reduction in the average energy per two 
dimensions due to using a region C as the boundary instead of a 
hypercube is called the shaping gain of C and is denoted as y, (C). 

The price to be paid for a shaping gain y, > 1 involves: I) an 
increase in the factor CER, (Constellation-Expansion Ratio) which 
is defined as the ratio of the employed number of points per two 
dimensions to the minimum necessary number of points per two 
dimensions [I], ii) an increase in the factor PAR, (Peak-to-Average- 
power Ratio) which is defined as the ratio of the peak of energy per 
two dimensions to the average energy per two dimensions [I], and 
iii) an increase in the addressing complexity where addressing is the 
assignment of the input data t o  the constellation points. 
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The major problem associated with shaping in a high-dimensional 
space is the addressing complexity. As the cardinality of a mul- 
tidimensional signal constellation is usually a huge number, one 
cannot use a lookup table for this purpose. This means that one 
needs an algorithm to implement the addressing and its inverse. The 
present work concentrates on finding an addressing scheme with low 
implementation complexity and small performance degradation. 

The scheme to be presented here, like that in [2] and other prior 
work [3], is based on partitioning of a 2-D signal constellation into 
K energy shells. Each of these 2-D shells contains the same number 
of points. The first shell cont~lins a subset of the least energy points, 
the second shell contains the next-least energy points, and so forth. 
The 2-D shells are indexed in the radial direction by J E [0, K - 11. 
It can be shown that the average energy of the 2-D shells is well 
approximated by a linear function of the shell index [2]. Keeping 
this point in mind, the cost associated with a 2-D shell is taken to 
be its index. 

In an N = 2n-D space, we obtain K n  clusters of equal car- 
dinality. The N-D clusters are described by the index vectors 
( J o ,  .. . , Jn-1) E [0, Ii' - 11". The cost of such an N-D cluster is 

The final constellation is selected as the collection of the N-D clusters 
of cost not greater than L. The corresponding shaping set is [2] 

L 

En (I<, L )  z U Fn ( K ,  I )  (1) 
i=O 

where 

Note that Fn (IC, L )  denotes the set of the N-D clusters with a total 
cost (sum of the 2-D indices) of L. Later, a recursion on K will be 
developed for the cardinality of the shaping set which is the basis 
for the addressing scheme introduced in this work. The cardinality 
of the shaping set is denoted as T .  

Addressing involves a one-to-one mapping between the input data, 
which may be represented by integers I  in the range 0 5 I 5  T - 1, 
and the elements of the shaping set such that the mapping and its 
inverse can be easily implemented. The basic idea is to use the 
binary expansion of the index vector to partition the shaping set into 
the union of subsets (blocks) B,. By the binary expansion of the 
index vector (Jo, . . . , Jn - I ) ,  we mean a k x n-dimensional matrix 
G, whose ith column is the binary expansion of J,, i = 0,.  . . , n-1. 
These blocks are arranged in a preselected order and are indexed 
by 0 < b 5 B,,,. We assume that for ba > bl, the points of B,(bz) 
correspond to larger data values compared to the points of Bn(bl).  
For a given block b, the cardinality is denoted by LYTb = I Bn ( b )  1 and 
the total number of points in the preceding blocks is denoted by Tb, 
i.e. 

b-1 

Tb = AT%. 
z=O 

For a given data value 0 5 I  5 T - 1 , we first find the index b such 
that Tb 5 I  < Tb+l. Then, the residue R, = I  - Tb is used to address 
a point within the block Bn(b). As we will see later, this scheme 

allows us to decompose the addressing of a TC, (2k ,  L)  set into the 
addressing of k independent TC, (2, L )  sets. 

A. Blocks of Identical Binary Weight Vectors 

For a given K = 2" N = 2n, and an integer L E [0, n ( K  - I ) ] ,  
consider k binary n-D vectors g,, i = 0 , .  . . , k - 1, where the weight 
of g, is equal to w(" and 

Obviously, 

The k-tuple w = ( w ( ~ - ' ) ,  . . . , do)) is denoted as a binary weight 
vector of L. For n = 1, this is the normal binary representation with 
k bits. For n > 1, the binary weight vector of L for 

L $ {0,  1, n ( K  - 1) - 1, n(Ii' - 1 ) )  

is not unique. We use the set of binary weight vectors of L to partition 
the F, ( K ,  L) into blocks. 

For a given k-tuple w of the form mentioned, consider the set of 
the binary k x n matrices such that the weight of the ith row is equal 
to w(').  Assume that for a given matrix of this set, say G, the ( i ,  j)th 
element is the i th digit (coefficient of 2 7  in the binary representation 
of the shell index along the jth 2-D subspace. By permuting the 
elements of the rows we obtain different matrices corresponding to 
a subset of points of F,(K, L) .  Note that such permutation does 
not change the weight of the rows, and consequently, the sum of 
the shell indices, as given in (3), remains constant. Applying such 
permutations results in 

k-1 

points, where c,"") is the combinatorial coefficient. The union of 
these points result in one block. In other words, a block of Fn ( K ,  L )  
is the set of elements p satisfying 

where p,'s, 0  < p ,  < c,w('), are a set of integer numbers which in 
Pb,  (3 2 3 9  determine the permutation applied to the elements of 
2'gI.  The procedure for permuting elements will be explained later. 
One can also look at the problem as if the points (po, . . .  ,pk-1)  

belong to a k-D cubic constellation. 
This is similar to the labeling structure of [3] where the rows 

of matrix G correspond to the shaping codes of [3]. The major 
difference is that in [3] the weights of the shaping codes are 
selected independently. This results in a simple addressing scheme. 
This simplicity is obtained at the price of some performance loss. 
However, in our case, the weight of the shaping codes are jointly 
selected according to the range of the input data. This selection 
is achieved such that union of the corresponding blocks results in 
the optimum shaping set. Concerning the implementation of shaping 
codes, Calderbank and Ozarow [3] briefly address this problem and 
propose using a lookup table when the number of codewords is small 
and using a Voronoi constellation, otherwise. Our implementation 
method is more general and also more efficient. 

We assume that the blocks have a lexicographic ordering according 
to the elements of the binary weight vector. For a given data value 
I ,  the block addressing is the determination of the label b (and wb) 
such that Tb < I  < Tb+l. This is discussed in the following. 
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B. Block Addressing 

Assume that the shaping set is equal to ~ ~ ( 2 ~ ,  L,,,). If the 
most significant component of UJ is known to be equal to w ( ~ - ' ) ,  

( k - 1 )  
the shaping set reduces to the union of C," of its subsets each 
of cardinality 

Each of these subsets is the collection of integer n-tuples with 
n - w("') components in the range [O, 2"' - 11 and w ( ~ - ' )  com- 
ponents in the range [2"l, 2k - 11, where the sum of the components 
is less than or equal to Lmax. Considering the lexicographic ordering 
of the blocks, w("') is selected as the largest integer satisfymg 

where Ik-1 = I  is the data value. The residue RkPl is expanded as 

where 

The 9-1 is used in addressing within the blocks to permute gk-l. 
After g,-, is known, the shaping set reduces to the set 

( k - 1 )  k 1 5?%(2k-1,~,,x-w 2 - )  

shifted by the offset vector 2k-1gk-1. The Ik-2 is used to ad- 
dress a point of this set. By replacing k  by k - 1 and L,, by 
L~~~ - @-1)2k-l i n the original problem, the same procedure is 

used to find w("'). The procedure is repeated for k steps untiI all 
the elements of the coefficient vector are computed. The formulation 
for the J th  step, J = k - 2,.  . . , I ,  is as follows: 

w ( J ) - '  

RJ = I J  - C (2: / ~ ? ~ ( 2 ~ ,  L,,, - w(k- l )  2 - -  
2=0 

. . . - ,( J+1)2J+' - iZJ)l>O (8) 

Considering that ITC, (1 ,  P )  I = 1, 'do, the final step of the recursion 
reduces to 

I )  Storage Requirement: We need a set of k  - 1 memory blocks to 
store the cardinality of TC, sets where the ith block, i = 1, . . . , k  - 1, 
contains the values of 

Considering that 

the 

TABLE I 
PARAMETERS OF THE ACHIEVED POINTS USING = 8, CER, = 1 5 

(Columns Mtc, MtL denote the memory slze in bytes (8-blts) per N-D for a 
computational-based, lookup table-based addressmg scheme Columns Nadd ,  
Nmu2 denote the number of add~tions, multiplications (including d~visions ) 
per N-D for the lookup table-based addressmg scheme. The computational 

complexity for the computational-based addressmg scheme 1s about one 
multiplication per 2-D. Values inside parenthesis are the optlmum y, ) 

N L B,, A- Mtc Nadd Nmui M ~ L  -(,dB PAR, 

0.11 k 0.90 (0.92) 3.52 

64 3564 43 1.0 k 160 2.6 k 1.18 (1.21) 3.76 

128 104 23966 84 6.6k 300 1 7 k  1.27(1.30) 3.84 

256 202 170313 165 40 k 575 116 k 1.32 (1.35) 3.88 

TABLE 11 
PARAMETERS OF THE ACHIEVED Poms USWG A LOOKUP-TABLE-BASED 

ADDRESSING SCHEME FOR K = 4, CER, = 1.25 
(Column MtL. Denotes the memory size in bytes (8-bits) per N-D. Columns 

Nadd, Nmul denote the number of additions, multiplications (including 
divisions) per N-D. Values inside parenthesis are the optimum y, .) 

can be stored with na bits. This results in a total memory of size 

Examples of the value of L,,, are given in Tables I and 11. 
We need another block of memory to store the combinatorial 

coefficients. ?his is used in addressing within the blocks and will be 
computed later. Examples of the total memory size Mtc are given 
in Table I. 

2) Compu~ation Requirement: The calculation of the summation 
in (3, (8) requires w('), z = 1, . . . , k  - 1 , multiply-adds. It is easy 
to verify that the total number of the multiply-adds 

is maximized when (w("'), . . . , w(')) is the binary weight vector 
of LLmax/21 of the lowest lexicographical order, i.e., 

For the cases shown in Table I, this maximum value is equal to 
[LmaX/2]  corresponding to w(' )  = 0, a = 2, . . . , k  - 1. The expan- 
sion of the residue in (6), (9) requires one multiplication, one division, 
and two additions per recursion step, times k  - 1 steps 

For K=8 ( k = 3 )  and CER, = 1.5, the maximum number of 
multiplications is equal to 2 + LLma,/2] and the number of divisions 
is equal to 2. Referring to Table I, we have L,,, -. N resulting in 
about one multiplication per two dimensions. 

3) Tradeoff Between the Storage and the Computational Complexi- 
ties: As an alternative to computing (5) and (8), one can use a lookup 
table to store the required values. The corresponding total memory 
size is shown in columns MtL of Tables I and 11. In this case, the 
number of multiplications, divisions per block is equal to k - 1. 
Columns Naddr Nmul in Tables I and I1 show the corresponding 
computational complexities. 

Example: Consider an N = 8-D space with h' = 4 ( k  = 2)  shells 
per 2-D subspaces and CER2 = a. To have CER2 = 2/2, we need a 
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Fig. 1. The points in the two blocks of F4(4,3). 

shaping set of cardinality T = 64. Using the results of [2], we have 

It is seen that 
4 

IE4(4,4)1= IF4(4,1)I =66. 
I=O 

This means that L,,, = 4 and only 29 points of the 31 points in 
F4(4,4) are included in the shaping set. 

The blocks of F4(4, L ) ,  0  < L 5 4,  correspond to the 2-tuple 
of integers ( ~ ( ' 1 ,  do))  such that 0 < w ( l )  5 2 ,  0 1 < 4, and 
L = 27u(11 + w(O). This results in a total of 9 blocks. As an example, 
Fig. 1 shows the individual points in the two blocks of F4 (4 ,3 ) .  

The w(' )  is selected as the largest integer satisfying 

The rest of the problem is formulated as 

w ( o ) - l  

PO = I,, - C C;,o 5 PO < c,Y(~).  (16) 
2=o 

Using the results of [2] ,  we have 

Fig. 2 shows the final lookup table containing the precomputed 
values. Column "I" contains the values of 

J 

C i  lTC4(2,4 - 2i)l, J = 0,1.  
z=o 

Column "11" contains the values of 

Column "111" contains the values of 

Fig. 2. Example of the lookup table used for the block addressing. 

For a data value I  = 58, searching in the first lookup table, we obtain, 
w(') = 1 and 

(column "11"). The residue is R 1  = 58 - 16 = 42. Using (IS), we 
obtain, PI = 3 and 10 = 9. Using the second table with lo = 9, we 
obtain, w(O) = 2 and Po = 9 - 5 = 4. 

C. Addressing of Points within the Blocks 

This is a mapping between the integer numbers P,, 0 5 P, < c,""), 
and the set of binary n-tuples of weight w ( 4 .  Such a mapping is 
discussed in detail in [4]. The basic theorem is as follows [4]: 

Theorem: Consider the set G ( n , w )  of binary sequences 
g = (go, . . . , gn - 1 ) of length n and weight w. Define the partial 
weights 

n-1 

W k  = C gz. 
z=k 

The binary sequences g E G(n, w )  can be labeled according to 

k=O 

where C," = 0 for w > n and 0 < P ( g )  < C,". 
We assume that the C,"_,'s, 1 5  i 5 n - 1, are precomputed 

and stored. As we have (2% = C,"-", just the values of C% for 
w 5 1 + [ m / 2 ]  are stored. As 

we obtain C g  < 2"-', Vw.  This means that the Cg's,  Vw can 
be represented with m - 1 bits. Representing C z  with m - 1 bits 
substantially increases the memory size. In spite of this, as for 
N 1 128 the memory size is still quite small, we use this type of 
the representation. This results in the memory size 

For N = 256, we use [(log, C z ) / 8 ]  bytes (8 bits) to represent the 
C g .  In this case, an additional byte is assigned to each C g  which 
stores the corresponding word length. This results in the memory size 

The whole mapping requires at most k(n - 1)  comparisons and 
A = rs w, additions. Column A,,, in Tables I and I1 shows the 
maximum value of Cz w,  over 0 < L < L,,k. 

Example (continued): In the example given earlier, we obtained 
UJ = (1 ,2 )  and ( P I ,  Po) = (3 ,4 ) .  Using (17), the rows of the final 
matrix are equal to g, = ( I ,  0 ,0 ,0 )  and go = ( l , O , l , O ) .  This results 
in the 2-D shells indexed by 2g1 +go = (3 ,0 ,  I ,  0 )  along the first to 
the fourth 2-D subspaces. 
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D. Decoding 

Decoding is the recovery of data value I from the sequence of 2-D 
shells. For decoding we first compute the matrix G and the k-tuple w.  
Next, the rows of matrix G are used in (17) to calculate the P's. This 
involves at most A,,, additions. Examples of the values of A,,, 
are given in Tables I and 11. Then, (9) and (8) are used recursively 
(in the order mentioned) up to computing I (no division is required). 

111. COMPARISON WITH OTHER METHODS 

A. Previous Relevant Works 

In the work of Wei [5] shaping is a side effect of the method em- 
ployed to transmit a nonintegral number of bits per two dimensions. 
Addressing of this method is achieved by a lookup table. Forney and 
Wei generalize this method in [I]. 

, Conway and Sloane in [6] introduced the idea of the Voronoi 
constellation based on using the Voronoi region of a lattice h, as 
the shaping region. The Voronoi constellations are further considered 
by Forney in [7]. The idea of trellis shaping is introduced by Forney 
in [8]. This is, in fact, an infinite-dimensional Voronoi constellation 
obtained from a convolutional code. 

In [3], Calderbank and Ozarow introduced a shaping method which 
is directly achieved on the 2-D subspaces. In this method, the 2-D 
subspaces are partitioned into equal-sized shells of increasing average 
energy. A shaping code is then used to specify the sequence of the 
2-D shells. The shaping code is designed so 'that the lower energy 
shells are used more frequently. 

Lang and Longstaff in [9] use an addressing scheme for channel 
coding which first divides the constellation into energy shells. Then 
a point in a shell is found by successively decomposing the space 
into lower dimensional subspaces. Prior to [9], a similar addressing 
scheme was used by Fischer in [lo] to label the points of a vector 
quantizer with a pyramid quantization region. The addressing scheme 
of Lang and Longstaff is further discussed by Khandani and Kabal 
in [2], by Kschischang in [11] (see also Kschischang and Pasupathy 
[12]) and by Laroia, Farvardin, and Tretter in [13]. 

In [14], Kschischang and Pasupathy discuss a shaping method 
which is based on using the 2-D points with nonequal probability (see 
also [Il l) .  In [15], Livingston discusses a shaping method in which 
the 2-D subspaces are partitioned into energy shells of increasing size. 
In this method. the 2-D shells are used with equal probability inducing 
a nonuniform distribution on the 2-D points. Kschischang in [16] 
discusses the structure of a prefix code which closely approximates 
the optimum nonuniform probabilities induced on the 2-D points. 

In our previous works [2], [17] some addressing schemes are 
given which achieve (or closely approximate) points on the optimum 
tradeoff curves. Laroia, Farvardin, and Tretter in [13] suggest methods 
to reduce the addressing complexity of the method discussed in [9]. 
A comparison between the performance and the complexity of most 
of these schemes is available in Section 111-C of this manuscript. 

The technique of shell mapping is suggested by the Motorola Infor- 
mation Systems Group for inclusion in the forthcoming V.fast modem 
standard [18]. This proposal discusses the method in conjunction with 
a practical coding scheme and provides numerical comparison with 
other relevant proposals. 

Finally, the technique of shell mapping is addressed by Forney in 
a paper discussing a variety of recent advances in modem technology 
1191. 

B. Recent Developments in the Technique of Shell Mapping 

The addressing method discussed in this correspondence can be 
categorized under the general technique of shell mapping. This 
technique has been under active developments in the recent years. 

TABLE I11 
PARAMETERS OF THE POINT ACHIEVED USING THE METHOD OF [17] FOR N = 32 

(Values inside parenthesis are the optimum y,. Column Mt is 
the memory size in bytes (8-bits)132-D (no computation).) 

N CER. M, 7. dB PAR 

32 1.2 0.88 k 0.88(0.91) 2.80 

32 1.3 0.72 k 0.95(1.00) 3.09 

32 1.4 0.84 k O.gg(1.04) 3.36 

The major points which have resulted in these developments are as 
follows: 

1) Shaping using a circular 2-D subconstellation [I]. 
2) Observing that the energy shells of the integer lattice can be 

represented by integer numbers and using this property, in 
conjunction with the additivity property of energy, to recur- 
sively decompose the addressing of a constellation into its 
subspaces of half dimensionality [9], [2], [ l l ]  (see also [12]), 
[13]. In a space of dimensionality n = N/2 ,  this results in a 
hierarchy composed of log, n addressing stages. Complexity 
of the addressing at each stage is determined by the number 
of energy shells which in the case of the integer lattice has a 
linear growth with dimensionality (the overall complexity in 
this case grows as n log, n , [12]). 

3) Shaping using a finite number of 2-D energy shells [3]. 
4) Observing that assuming continuous approximation, the aver- 

age energy of a set of K equi-volume 2-D energy shells can 
be represented by the integer numbers [0, K - 11, [2] (this 
fact is used for the first time in [3] to compute the shaping 
performance.). The addressing method of [13] makes use of 
a similar representation method without mentioning a clear 
justification for it. 

5) Using the concentration property of the higher dimensional 
spaces to merge the energy shells while keeping the degradation 
in performance negligible [2] (see also [20]), [13]. 

6) Reducing the computational complexity of the method intro- 
duced in [9] by subdividing the shells into subsets with a 
cardinality which is an integral power of two [2], [17]. 

7) Observing that the recursive decomposition of addressing can 
be based on the 2-D energy shells instead of on the dimension- 
ality. In this way, the number of the recursion steps becomes 
independent of the space dimensionality (present work). 

C. Numerical Comparisons 

In the following, we compare our addressing scheme with that of 
P I ,  PI ,  PI ,  [ W ,  1131, W I ,  U81. 

A four-state trellis diagram of [8] achieves y, = 0.97 dB, 
CER, = 1.5, PAR, = 3.75. 

The direct shell mapping method of [9], [12] is based on the 
first two points mentioned in Section 111-B. This method achieves 
optimum tradeoff but has a substantially higher complexity than the 
methods discussed in the present work or in [2], [13], [17], [18]. 

The proposal in [18] is based on the first four points mentioned 
in Section m-B. The overall complexity in a 16-D space is about 
42 multiply-addsl2-D together with a few divisions and a memory 
of about 0.5 kbytes to achieve nearly optimum tradeoff with a CER, 
up to 1.5. 

The method of 1131 is based on the first five points mentioned in 
Section 111-B. In [13], an example for N = 64 is given which needs 
1440 multiply-adds (assuming a 16-bit processor) and a memory of 
1.5 kbytes to achieve a tradeoffpoint with y, = 1.15 dB, CER, = 1.5. 

The methods of [2], [17] is based on the first six points mentioned 
in Section 111-B. Table DI shows some examples of the performance 
of the scheme discussed in [17]. 
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For N = 64, the present scheme can achieve y, = 1.18 dB, 
CER, = 1.5, PAR, =3.76 using 160 additions, 4 multiplications, 
and 2.6 kbytes of memory. As an alternative, we can achieve the 
same tradeoff point using about one multiply-add per two dimensions 
and a memory of 1.0 kbyte. As another example for N = 64, we can 
achieve y, = 1.0 dB, CER, = 1.25, PAR, = 3.0 using 100 additions, 
2 multiplications, and 1.1 kbytes of memory. 

For N = 128, we need 2 multiplications, 2 divisions, 300 additions, 
and a total memory of 17 kbytes to achieve CER, = 1.5, y, = 1.27 
dB. As an alternative, we can achieve the same tradeoff point with 
about one multiplication per two dimensions and a total memory 
of 6.6 kbytes. As another example for N = 128, we need one 
multiplication, one division, 195 additions, and a total memory of 
6.6 kbytes to achieve CER, = 1.25, y, = 1.07 dB. 

From the numerical comparisons give above we can conclude that 
the present scheme is best suited for realizing near-optimum gains 
in spaces of high dimensionality, i.e., N 2 64 while the scheme of 
[I71 is best suited for N 5 32. 

IV. SUMMARY 

We have introduced an efficient addressing scheme for nearly 
optimum shaping of multidimensional signal spaces. This is based on 
partitioning the space into union of blocks such that the addressing of 
points within the blocks has a low complexity. Addressing of blocks 
is based on a recursive relationship which allows us to decompose 
the corresponding problem into smaller parts of a lower complexity. 
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