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Wideband Array Processing Using a 
Two-sided Correlation Transformation 

Shahrokh  Valaee and Peter Kabal, Member, lEEE 

Absrruct-A new method for broadband array processing is 
proposed. The method is  based on unitary transformation of 
the signal subspaces. We apply a two-sided transformation on 
the correlation matrices of the array. It  is shown that the two- 
sided correlation transformation (TCT) has a smaller subspace 
fitting error than the coherent signal-subspace method (CSM). It 
is also shown that unlike CSM, the TCT algorithm can generate 
unbiased estimates of the directions-of-arrival, regardless of  the 
bandwidth of the signals. The capability of the TCT and CSM 
methods for resolving two closely spaced sources is compared. 
The resolution threshold for the new technique is much smaller 
than that for CSM. 

A 
1. INTRODUCTION 

RRAY processing is a  powerful 1001 for detecting and 
locating  the  signals  arriving at a  set of sensors. The 

sensors  are  distributed in space, and  the  signals received at 
each  sensor  are  delayed  versions of the signals  generated by 
the  sources. If the noise is uncorrelated between sensors,  the 
signal-to-noise  ratio (SNR) can be increased by adding the 
appropriately  weighted  outputs of the sensors. This is done by 
steering  a  beam  toward the source  direction  (beamforming). 
Two  sources can he resolved using a  beamformer if their 
separation is larger than a  beamwidth.  To  provide  a better 
performance in the  detection  and  localization of signals,  a 
high-resolution  method  should be applied. 

The objective of this paper is to  introduce  a new method 
for  estimating the directions-of-arrival (DOA’s) of wideband 
signals. Wideband  processing  arises in many  applications 
such as  audio  conferencing, spread spectrum  transmission, 
and  passive sonar. A wideband signal is one that has a 
large bandwidth  relative to its center  frequency.  A common 
approach  to  wideband array processing is based on  sam- 
pling the signal 5pectrum at the  output of the  sensors.  Each 
frequency bin creates  a  narrowband  signal. In the  so-called 
incoherent  signal-subspace  method ( I S M ) ,  the  narrow-band 
signals are processed as a  vector to estimate  the DOA‘s. 
Then, these  results are combined  to  obtain  the final solution 
[ 11. Perfectly correlated (coherent) sources  cannot be handled 
by this approach. Furthermore, the efficiency of this method 
deteriorates  for  closely  separated  sources and low SNR. 
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The coherent  signal-subspace method (CSM) [2] is an  alter- 
native to ISM that improves  the  efficiency of the  estimation by 
condensing  the  energy of narrowband  signals in a predefined 
subspace.  This  process is called focusirzg. A high-resolution 
method  such  as MUSIC 131 is then used to find the DOA’s. 
The DOA’s are estimated by determining  the  angular  location 
ol‘ peaks in the spatial spectrum  of  the MUSIC algorithm. It has 
been  shown 121 that CSM improves  the  resolution  threshold 
and  resolves  coherent  sources.  Despite  the  fact that CSM is 
very effective in wideband  signal  detection and estimation, 
i t  suffers from an asymptotic bias of the peaks. The bias 
increases with the  bandwidth of the  sources  and deviat~on 
of the focusing angles  from  the true DOA‘s. Recently. we 
hiwe shown [4] that with a  proper  selection of the focusing 
frequency the estimation  bias can be decreased. However, in 
general, an unbiased estimation of the  DOA’s is not possible 
using the CSM algorithm. We will show this in the  present 
paper. 

Two  other  techniques have evolved from the CSM method. 
The objective of these  methods is to reduce the bias of  the 
estimation. In [ 5 ] .  Buckley and Griffith propose  a  broadband 
signal-subspace  spatial-spectrum  estimation (BASS-ALE) al- 
gorithm. This  method  forms  a  broadband  covariance matrix 
with the rank of the  broadband signal representation  subspace 
equal to one. The tradeoff is an increase in the computational 
complexity. In this method. the estimation bias is reduced 
by increasing the dimensionality of the location vectors. In 
[6], Krolik and  Swingler  propose an algorithm  based on the 
steered  covariance matrix (STCM). In their technique,  delay 
elements are  introduced at the  front end of the array,  and the 
covariance matrix is computed after  the  delays. With u proper 
choice of the delays.  a  steering beam can be formed. It has 
been  shown that when the  steering beam coincides  with  a true 
DOA. the STCM contains  a  dc term equal to the power of the 
corresponding  source.  Thus. by steering  the  space  and  locating 
the peaks of the  dc component, the DOA’s are estimated. 

In this  paper, we introduce a new technique  for  broad- 
band  array  processing. Our method is similar  to CSM in the 
sense that transformation of the signal  subspaces is performed 
through  focusing  matrices. A high-resolution  spectral  estima- 
tion algorithm. auch as MUSIC, is then applied  to  determine 
the DOA. In the new method, we apply  a  two-sided uni t iq  
transformation to the correlation matrix. In [ 7 ] .  it has been 
shown that unitary transformations  have  good  performance 
i n  terms of f i ~ c ~ ~ ~ s i n g   lo.^ and relative irformatioil index. The 
motivation for using the  correlation  matrices instead of the 
location matriceb is b a d  on the fact that most of the  high- 
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resolution  spectral  estimation  algorithms use an eigenstructure 
decomposition of the correlation  matrix. We show that the new 
method has  a lower resolution  threshold SNR and  a smaller 
bias than CSM. 

The paper is organized  as  follows. In the following  section, 
we fortnulate  the problem and review the CSM method. 
Section 111 presents  some  mathematical  background for matrix 
approximation. In Section IV, we introduce the new method. 
Selection of the  focusing  matrix is based on minimizing  the 
subspace fitting error. In Section V: we show that the TCT 
algorithm  has  a  smaller  subspace fitting error than CSM. In 
Section VI. the  eigenvalues of the noise-free  focused  correla- 
tion matrix of the CSM and TCT algorithm are compared. It 
is shown that in the CSM algorithm, the energy of signal is 
extended into the noise subspace. This signal  extension acts 
as a  colored  noise with an  unknown  correlation  matrix. In 
Section  VII. using these results.  we  show that CSM cannot 
asymptotically  generate  unbiased  estimates of the DOA’s. 
Section VI11 contains  a  study on the performance of Ihe 
proposed  algorithm undcr noisy conditions. There, we show 
that the  generalized  variance of the TCT algorithm is smaller 
than that for CSltl. This results in a  smaller  variance of 
estimation. Section IX contains  the  simulation  results. 

11. COHERENT SIGNAL SUBSPACE PROCESSING 

Consider an array of p sensors exposed to q < p far-field 
wideband  sources. The signals of the sources can be partially 
or fully  correlated. The output  of  the sensors is shown by 
p-vector z ( t )  with the ith component 

I 

. I : , ( / )  = C.sl(t ~ T , ( o ( ) )  + rl ,( t) .  1 5 i 5 / I  (1)  
l:1 

where 
.Y / Ith source  \ignal 
Hi  angle-of-arrival for the Ith source 
r,(H,) propagation  delay  for the Ith source at the  sensor ,i 

For a  linear  array with uniform spacing, T ,  ( H I )  = ( i  - 
j c  s11lH1, where ti is the spacing  between  two  consecutive 

sensors, and c is the propagation  velocity. It is also  assumed 
that the  observation is corrupted by an additive  noise that is 
represented in the model by rr,  ( I ! .  

The array  output in the frequency domain is represented by 

with respect to the  reference point of the  array. 

1 r d  ’ 

E ( & ! )  = A(J.H).F(LL’) + n(w) 12, 

where .s(dJ) and n(uj are the Fourier  transforms of the signal 
and the noise vectors.  respectively. The p x  q matrix A(LI. Hj = 
[a(.. H1 j ’ ’ a(&’ .  H,) ]  is called  the location matrix of the array 
and is assumed  to be full rank. In other  words. the steering 
vectors a(&. H ,  1 .  I = 1..  , , . (1, are  independent for every u, 

The signal  samples  are  generated  independently by a com- 
plex Gaussian  distribution with an  unknown  covariance  matrix 
Sjd).  The noise  samples are an i.i.d.  sequence of complex 
Gaussian  random vector5 with unknown  covariance matrix 021 
and  are  independent of the signal samples. It is assumed that 
the noise is spatially white. This assumption can be relaxed 

if the correlation matrix of the  noise is known but for  a 
scale  factor. In that case,  a  prewhitening step is required to 
create uncorrelated  intersensor  noise. From (2) and using the 
alssumptions on the signal and noise  samples: the covariance 
matrix of the  observation  vector at frequency is given by 

R(sj = A ( ~ .  H ) S ( ~ ) A ~ ( & .  H )  + 2 1  (3) 

where  the  superscript H represents  the  Hermitian  transpose. 
In practice,  a sufficiently long duration of sensor  output 

is, observed. Then, the sampled  data are divided  into X 
snapshots.  each  containing .J samples. In each  snapshot, an 
FFT  algorithm is used to  transform  the  data  into the frequency 
domain.  Thus, S sets of transformed data are available where 
e .xh set contains .J frequency  samples of the  spectrum of the 
observation  vector. We represent  these  samples by zJ. j = 
1. . . . , .I. It should be noted that each z3 depends on the 
snapshot in which it has been produced. For simplicity of 
notation,  this  dependence  has not been  shown  explicitly. In 
the  sequel, we suppress  the  frequency  variable  representing 
AUu,)) by R, S(J, :I by Sj .  A(dJ .  0)  by A, ,  and so on. 

The sicqnn/ s d y x 7 c . e  is defined as the  column  span of 
the  steering matrix A(&#.  8 ) .  The dimension of this  subspace 
i:, determined by the number of sources. The  orthogonal 
c’amplement  to  this  subspace is called  the noise suh.ypac,e. It 
i!; seen  that  the signal subspace is a  function of the frequency 

iL8 and  the angles-of-amval 0. Thus, the signal subspaces at 
different  frequency bins are different. 

The  CSM algorithm I?] transforms  these  subspaces  and 
overlaps them in a predefined subspace:  the  so-calledfoc,usina 
s h p a c e .  The #oc,ltsi/lg murrices T, ’s are the solutions of the 
equation 

TjA, AI). j = 1. .  . . ~ J (4) 

where A” is the,fncu.sing locarion nlatrin:. The matrices All and 
A,, are functions of the DOA’s H .  An ordinary  beamforming 
preprocess  gives an estimate of the  angles-of-arrival that can 
be used in (4). Using the focusing  matrices Tj .  the observation 
vectors at  different  frequency.  bins are transformed into the 
focusing  subspace. In  particular, new observation  vectors  are 
formed by 

Then, these  transformed  observation  vectors are used to con- 
siruct  the  sample  correlation  matrices 

where the transformed  data  vector for frequency bin ;j and 
for batch I is represented by y;”. An average of these 
aligned  correlation  matrices over the frequency bins gives  a 
universal focused  sample  correlation  matrix that can be  used 
for detection  and  estimation. If  this matrix is represented by 
I t .  we will have 
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where 

This  transformation  improves  the  efficiency of the estima- 
tion by condensing  the  energy of sub-bands in the  focusing 
signal  subspace. Yet. it creates  a  problem. It is seen  that  the 
focusing removes the  whiteness of the  noise. This in tum 
changes the SNR at the  output of the  processor.  Thefocusirlg 
loss is defined as  the  ratio of the  array SNR after and before 
focusing.  Using  this  quantity, Hung and Kaveh [7 ]  showed 
that the  focusing is lossless if T ,  's  are unitary  transformations. 
Specifically, they proposed using the  transformation  matrices 
obtained by the  constrained  minimization  problem 

for j = 1. . . . , .7. They used the  Frobenius  matrix norm, which 
is defined by 

L r 1 1  

L8 .J  J 

where t r ( , )  stands for the trace of matrix 

111. MATRIX  APPROXIMATION 

The problem of approximating  a given matrix by a  matrix in 
a specified class  arises in  multivariate analysis,  factor analysis, 
estimation of residuals in linear  models,  and the theory of 
generalized  matrix  inverse. In each  case.  a  minimization 
problem is solved  to  obtain the closest  distance  between  the 
two  matrices. The distance  between the matrices is measured 
with respect to an  appropriate  norm. One  class of norms is 
known as the un/'rari/j, r'nwriaizr tmrnls. The  Frobenius  norm. 
used here. is one such norm which does not change when a 
unitary transformation is applied to the matrix. 

We saw previously that the unitary transformation  matrices 
of the CSM algorithm  are the solutions of ( I O ) .  In factor 
analysis,  this is known as the problem of finding a p r o r r ~ ~ s t ~ ~ n  
rran.sjbr.matinn of A Aswme that the  singular  value decom- 
position of AoA, 1s represented by V, ,ZJWf.  Then, the 
focusing  matrix T ,  that solves ( I O )  is given by [ X ] ,  [7] 

H !' 

In such a case, the error of transformation is 
.I 

I t i  

where u? (B), i = 1.. . . , y are the  singular  values of the  matrix 
B arranged in nonincreasing  order,  and 8 stands for the real 
part of a  complex number. In ( 1  31, we have used the  equality 

r= l  

which holds  for  any  arbitrary  array  manifold. We present  a 
lemma that gives  a  lower  bound  to the error in (13). 

Lemma I :  L e t  A .  B E M,, , , ,  (an P ~ L  X 7~ matrix) and 
q = rnirl{rr~, 71,). Denote by r T , ( A ) .  ai (B) ,  and u l (ABH) .  i = 
1.. . . . y the  nonzero  singular  values of the  corresponding 
matrices  arranged in nonincreasing  order. Then 

U a 

i = l  ,=1 

Proof: See Appendix A. 
Lemma 1 is presented as a  theorem in [9]. In Appendix 

A, we have  provided  a  self-contained proof using a different 
approach. 

From ( 13) and i 15). it is seen that the  error of transformation 
is lower  bounded  as 

1 

This lower  bound  cannot be reached in general using the 
one-sided  transformation of the CSM method. 

Now.  consider the alternative of a two-sided transformation. 
For such  a  transformation, we will be able to achieve  the  lower 
bound  to  the error. In a  two-sided  transformation, the objective 
is to find the unitary matrices U and V such that the  following 
criterion is minimized: 

s.t. U H U  = I and V H V  = I .  ( I  7 )  

Theorem I ;  The solution of (17) is given by U = E X H  
and V = F Y H .  where A = ECFH and B = X A Y H  are  the 
singular  value  decompositions of A and B, respectively, and 
the  error of transformation is given by 

LI 

Proof: See Appendix B. 
Corollary I :  If A and B are square Hermitian  matrices.  the 

trimsformation matrices U and V wil l  be identical  and  equal 
to E X H ,  where E and X contain  eigenvectors of A and B, 
respectively. 

From  Theorem 1 and  Lemma 1. it is seen that the error 
of transformation is minimized for the  two-sided unitary 
trxnsformation. Since the location matrix cannot be separately 
measured from the  observation,  the  two-sided  transformation 
of the location matrices is not practical.  However. it is well 
known that for q noncoherent sources, the space spanned by 
the location  matrix is the same as  the  span of the  eigenvectors 
of the  correlation matrix that correspond  to y largest eigen- 
values. Our method is based on two-sided  transformation of 
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the correlation  matrix. This will be discussed in the following 
section. 

IV. TWO-SIDED  CORRELATION  TRANSFORMATION 

In this  section.  we  introduce  a new wide-band  array  process- 
ing technique  based  on  transformation of the signal-subspaces 
into the focusing  subspace. The transformation  matrix at each 
frequency bin is unitary and  minimizes the distance  between 
the  focusing  subspace  and  the  transformed signal subspace. 
In the new method, the  transformation of the  subspaces is 
performed  through  a  two-sided  transformation  applied  to the 
correlation matrix.  The motivation  for using the  correlation 
matrix,  instead of the  location  matrix, is attributed to two 
facts.  First,  a  two-sided  transformation  can be applied. which 
results in a  smaller error. This issue will be discussed in 
detail later. Second, many of the high-resolution  methods  for 
DOA  estimation  are  based on the eigenstructure  decomposition 
of the correlation  matrix. Thus. the closer the transformed 
correlation  matrices, the better the  estimation  results. 

A .  The TCT Criterion 

Our method is based  on  transformation of the matrices 

Pj = AjSjA:,  j = 1 , .  . . ..I 191 

where P,  is the  correlation matrix of the  sensor  output at 
the j th  frequency bin in a  noise-free  environment. Let PC, be 
the focusing noise-free  correlation  matrix. The  TCT focusing 
matrices  are  found by minimizing 

rrl inllp~ - U , P , U : ~ ~  
U ,  

s.t. UJHU, = I (201 

for , j  = 1.. . . ! .J .  From  Corollary I ,  the solution of (20) is 
obtained as 

u, = X"XY ( 2 1 )  

where Xu and Xj are the eigenvector  matrices of Po and 
P , ,  respectively. The matrix U, can be used to transfer  the 
observation  vector z, into yj through 

y, = u, z; . (22) 

The observation  vectors y,.;j = 1:. . . , .J are in the  focusing 
subspace.  Using (7J-(9), 'their correlation  matrices can be 
averaged to find the universal focused  sample  correlation 
matrix. 

In computing U , ,  the  matrices A, and S, are  assumed 
to be known. In practice,  a  preprocessing  step is required 
to  estimate  these  matrices. A low-resolution  beamformer is 
applied  to  estimate the number and the  DOA's of the  sources. 
Closely  separated and correlated  sources may not be resolved 
at this stage. Like [7], we add two  extra focusing  angles at 
H.25B11- (Beamwidth) of the estimated  DOA. For instance. 
if the ith DOA ic  found at H ;  by the preprocessing,  the  focusing 
angles are chosen at ( H i  -0.25B\\..H,, H ,  +0.25B11.). In TCT. 
the number of focusing  angles  should be larger than the true 
number of sources. Using the results of this preprocessing 

step. an  estimate of the  location  matrix A; is obtained.  Then, 
the eigenvalues of the sample correlation  matrices R j  , ; j  = 
I ~. . . , J are computed  and  sorted in decreasing  order.  The 
noise  power at the j th frequency bin is estimated by 

where &(B) is the ith eigenvalue of B. The source  correlation 
matrix is then found from 

We will see  later that the matrix S,; is used to  determine 
PO. which is the  focusing  noise-free  correlation  matrix. In 
practice, P ,  is directly computed from 

P,, = R ]  - +;I. ( 2 5 )  

P ,  can  be interpreted  as  the  correlation matrix of the cleaned 
data. By the  cleaned data, we mean  the  output of a pre- 
processing  step that decreases the effect of the noise. The 
c:omputational complexity of (25) is relatively low since the 
Lanczos  algorithm [ 101 can be used to  obtain a few of the 
mallest eigenvalues of R;. 

In general, the estimated  source  correlation matrix (23) may 
have negative eigenvalues. However, our simulation  studies 
have shown that as far as the estimation of the DOA's 
is concerned,  the TCT algorithm  still can be used. AS an 
alternative  to (23) and to  guarantee  the  nonnegativeness of 
the  estimated  source  correlation  matrix,  the  noise  power  can 
be estimated from 

where A,(k,) is the  smallest  eigenvalue of R;.  

13.  Selecting the Focu.riq Suhspac,e 

The noise-free  focusing  correlation  matrix Po is a  function 
of the DOA's. the  frequency of focusing d;]. and the focusing 
tDource  correlation matrix So. The focusing DOA's are found 
using ordinary  beamforming. We $till have  to  choose f o  and 
$1. The subspace fitting error is defined as 

.I 

Using  this  error. we can  select fo and So in two  steps. In the 
first step.  we  choose  the  focusing  source  correlation  matrix So 
a s  follows. 

In an ideal case, all the transformed  location  matrices 
superimpose  on A(, .  This  case is called perfec,tfocusing. In 
perfect focusing.  the column vectors of the  location  matrix A ,  
are transformed  to the corresponding  columns of A,] ,  i.e. 

A0 = U,,A, .  . j  = 1. . . .  . ,J. (283 

In  such a  case. the subspace fitting error  can be shown to  be 
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Minimization of (29) for SO gives 

l J  so = scs3 .  (30) 
J=l  

The estimate of the S,. which is given by (24), can be used 
in (30). 

In practice, if the transfonnation is constrained to be unitary, 
perfect focusing cannot be obtained. but since  the  transformed 
location matrices are close to the focusing  location matrix, 
the same focusing  source  correlation matrix (30) can be used 
in general case.  The focusing  source  correlation matrix (30) 
has yet another  important  property.  For  coherent  sources,  the 
estimated  source  correlation  matrix (24) might be singular. 
However.  the  average So is full rank.  Hence, (30) removes the 
coherence by smoothing the spectrum of the  source  signals. 
With this averaging, the TCT algorithm  can be applied  to 
coherent  cases. 

As seen from (20) ,  the error of focusing is a  function of 
fo.  To minimize  this error, a  suitable  selection of the focusing 
frequency is needed. We seek  a  frequency f o  that solves 

7 

s.t. U : U , = I ,  i = l  . . . .  : J .  (31) 

For a  fixed Po, the  transformation  matrices U ,  are  obtained 
from (21). By using these  matrices in (31). the  focusing error 
is given by 

r r  1 

Since P ,  ' s  are  independent  of  the  focusing frequency, fo can 
be deternlined  from 

i=1 J 

To select the best focusing frequency, we first find the 
singular  values of the optimum focusing  subspace.  Next, using 
these values,  the  focusing  frequency is selected. Define 

i = l  

Using  this  definition,  the  criterion (33) is represented as 

(34) 

The minimum of (3s) is achieved  when 

Due to structural  constraint on Po, in general. (36) is not 
attainable.  Instead. we perform 

( 3 7 )  

This is a  one-variable  optimization  problem, and a  search 
procedure  can be applied  to find the minimum point. In 
practice. it is sometimes  convenient  to  choose  a predefined 
frequency such as the center  frequency of the spectrum for 
focusing.  However, to improve  the  performance,  a  focusing 
frequency that produces  the  smallest error should be selected. 

C. The TCT Algorithm 
The TCT algorithm is summarized as follows: 

Use an  ordinary  beamformer  to scan the space and find 
an initial estimate of the DOA's. 
Apply  a  DFT to the  array  output to sample  the  spectrum 
of data. 
Form Aj and S, using the results of the  preprocessing 
step  and (24). 
Average the  source  correlation  matrices  to  obtain SO as 
in (30). 
Find Po = AoSoAf and the P j ' s  using ( 2 5 ) .  
Determine  the unitary transformation  matrices ( 2  I ) .  
Multiply  these  matrices by the  sample  correlation  matri- 
ces, and  average  the  results. 
Use AIC. MDL [ 1 I ] ,  or PSC [ 121 to find the  true number 
of  sources. 
Apply MUSIC or any other  high-resolution  spectral 
estimation  method to find the DOA's. 

I O )  To improve  the  performance,  iterate  steps  3  to 9. 
Comparison of the new algorithm with the CSM method 

shows that the  second part of Step 3  and Steps 4 and 5 do 
not have  counterparts in CSM. The presence of these  steps in 
TCT increases the complexity of computation.  The  increase in 
the computation is due to three  parts: 

i )  estimating  the  noise  power in each frequency bin 
i i )  estimating  the  source  correlation matrix from (24) 
iii) forming the  focusing  correlation  matrix Po = 

To estimate the noise power for each frequency  bin, we 
only  need  to  compute  a few of the  smallest  eigenvalues 
of the  sample  correlation matrix. To find those eigenvalues, 
the Lanczos algorithm [lo] that converges in O ( p ' )  flops 
for  processing  can be used. If we use (26) for  noise power 
estimation,  only  one  eigenvalue  needs to be estimated. 

The  source correlation matrix at the ,jth frequency bin is 
found from (24). where by defining B, = [ A f A j ) - I  A: can 
be written as 

A ~ S ~ A : .  

The computation  of B, requires  inverting (ATA, ) and multi- 
plying it  by AH Since ( A r A j )  is a y x (1 Toeplitz matrix, it 
can be inverted In O($)  flops [lo]. Using Bj ,  the  source  cor- 
relation matrix S j  is obtained with two  matrix  multiplications. 
The  focusing  correlation matrix Po can also be formed by two 
matrix multiplications. It should be noted that the  increase of 
the computational  complexity is usually small  compared with 
the load of Step 6. 

Another  difference in the  computational  complexity  of the 
two methods  appears at Step 6. where an eigenvalue decom- 

' : 
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position is performed. To find the unitary matrices in the 
CSM algorithm, J singular  value  decompositions are needed. 
However, in TCT, ( J  + 1) eigenvalue decompositions of 
Hermitian  matrices  are  required. This should be a smaller 
computational  load. 

v. THE  ERROR OF TRANSFORMATION 

In this  section. we compare  the  error of transformation for 
the CSM and TCT algorithms. There are two sources of error 
for  the  transformation:  the  error  due to noisy observation  and 
the error of transformation.  The  concern of the  present section 
is the  lalter. We consider a noise-free environment where the 
error is only due to the  focusing  procedure. 

It  is importan1 to note that simply  aligning the subspaces 
at different frequency bins  does not result in a  good  estimate 
of the D 0 . 4 ' ~ .  The subspaces might be tuisted in the  process 
of focusing,  causing an augmentation of the noise in some 
directions. This in turn reduces  the  focusing SNR and can 
result in a biased estimation of DOA's. To prevent  warping of 
the subspaces, we can use unitary matrices for focusing. How- 
ever. using unitary  transformation  matrices for focusing  does 
not necessarily  produce an unbiased  estimate.  Furthermore, 
there is no  unique  solution  for  the unitary focusing  matrices. 
Here, we define an error of focusing that can be used a4 a 
comparison  measure between different  focusing methods. 

Since the objective is to transform  the  noise-free  correla- 
tion matrix at  each frequency bin to  the  focusing  noise-free 
correlation  matrix.  the  subspace fitting error is given by 

E = 111'0 - w,P,w;~(~ (.39) 

where W, is the focusing  matrix. The error of transformation 
for the TCT algorithm  can be obtained bq substituting U,] in 
(39). which sinlplities t o  

Y 

€Tc'T = ~ ~ r ( l ~ ~ 2  + I I P , I I ~  - ~CO,(P~,)O,(P;) .  (40) 
i=1 

The error of transfonnation  for  the CSM algorithm is 
represented by 

E ( ~ , s h [  = ~ I P o ~ / 2  + llPJl12 - 2!R T ~ ( P I I T , , P , T ~ )  (41) 

where T I  is the  focusing matrix given by (12). It is possible to 
show that the  error of transformation  for the CSM  algorithm 
is given by 

4 

E a 1 1  = 1 l P ( 1 1 1 ~  + 1 1 Z ' 3 1 1 2  - ~ C O , ( P O ~ ' , P , T ~ ) .  (42) 
i=l 

Using  Lemma I .  this  error  can be written as 
'i 

~ c s n r  2 I I P ~ I I '  + IIP,II' - 2Cn;i~o)rr,(~,~,~JH)(43j 

= l l P , 1 / 1 2 +  I ( P , ( l ' )  - 2 ~ O , ( P " ) U , ( P , )  (44') 

,=1 
1 

r = l  

= E X T  (45) 

where we have used the property that the matrices related 
with the similarity  transformation  have the same eigenvalues 

181. Thus, the error of transformation  for  the TCT algorithm 
is always smaller than that for CSM. 

VI. EIGENVALL-ES OF THE ~ J N I V E R S A L  
FOCUSED CORRELATION MATRIX 

One of the major drawbacks of the CSM algorithm is the 
a:symptotic bias of the  peaks. It has been shown that the CSM 
algorithm  generates an estimate of DOA that is asymptotically 
biased [7]. The bias increases with the  bandwidth  of  processing 
alld deviation of the focusing  angles  from  the  true DOA's. In 
this section, we study the eigenvalues of'the universal focused 
clsmelation matrix of the two  methods: CSM and TCT. Using 
the eigenvalues of the universal focused  correlation matrix, 
we show that the signal  power in  the CSM algorithm is 
ertended into the noise  subspace. This extension  acts  as  a 
spatially  colored  noise with an  unknown  correlation matrix 
that produces biased estimates of the DOA's. 

A .  Ana iWa l  Srudy 

To study the mechanism that generates  the  asymptotic  bias, 
a  noise-free  environment is considered. In such a case, the  cor- 
rdation matrix R 3  is equal to the  array  noise-free  correlation 
matrix P,,. The universal focused  correlation  matrix is 

J 

The focused Correlation matrix is a  function of the  focusing 
angles  and  the  bandwidth of sources. In general. Rcsnl is 
fu l l  rank and has nonzero  eigenvalues in the noise  subspace. 
I n  other  words,  the  received power is distributed in a p-  
dimensional  space. The  components of the signal that diffuse 
illto the  noise  subspace  act  as  a  nonwhite  noise with an un- 
known  correlation  matrix. The MUSIC  algorithm that operates 
on Rcsll will provide  biased estimates of the DOA's if the 
spatial noise  structure is unknown. 

For TCT, the universal focused  correlation matrix is given 
by 

where (21 ) has been used to compute U,j. Suppose that the 
diagonal  matrices of the eigenvalues of PJ,,j = 1.. , . , .I are 
shown by r,.j = 1 . .  . . . .  1. Then, for  any  focusing angle, 
(47) simplifies to 
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where ro = r,. Since Pj is computed directly from 
the  sample  correlation  matrix  using (25). the diagonal  matrix 
To is independent of the  pre-estimates  of DOA. Note  that 
each diagonal  matrix rj has only y nonzero entries, which 
in tum implies that ro has  only  q  nonzero  components. The 
matrix X. is orthonormal. and  hence, (48) is an eigenvalue 
decomposition of RTCT. It is concluded that in TCT, the 
transformed  subspaces  for  different  frequencies are aligned, 
and the eigenvalues at the noise  subspace are zero. In other 
words. the focused  correlation  matrix RTC.T has eigenvalues 
in a  q-dimensional  subspace. This is an important property of 
the TCT algorithm that makes it capable of providing  unbiased 
estimates of the DOA's. 

It is useful to compare (48) with perfect focusing. In 
perfec:t focusing, the  noise-free  focused  correlation matrix is 
A&Af, where R, is defined in (8). The perfect focusing 
can be obtained  using the transformation  matrices (4).  These 
transformation  matrices are not unitary. In general, it is not 
possible  to  establish perfect focusing of the  location  matrices 
through unitary transformations. In (48). perfect  focusing is 
achieved by applying the transformation to the eigenvectors 
of the  correlation  matrices.  Since the eigenvectors form an 
orthonormal  basis, it is always possible to use a unitary 
transformation to transfer them into another orthonormal  basis. 
Note that the  true D0.4 implicitly  effects  the  selection of 
the focusing  subspace  through  the  estimation of S, .  Thus, 
assignment of the orthonormal  basis for the focusing  subspace 
is implied by the  true DOA's. 

B .  Experimental  Results 

I 

We present  the  results of a computer simulation to study 
the eigenvalues of the universal correlation  matrix of the 
two methods. A configuration with four  equipower wide- 
band  signals  arriving at a  linear array of 16 sensors in a 
noise-free environment is considered. The true DOA's are 
8, 13. 33, and  37". The spectrum of the  signals is flat with 
40% relative bandwidth. The initial DOA's are taken at 6.7, 
10.5, 14.3, 31, 35, and  39".  The  output of' the  sensors is 
decomposed  into 50 snapshots  with each snapshot  containing 
64  samples. An FFT algorithm is used in each  snapshot  to 
sample the frequency spectrum of the signals at 33 equispaced 
points. We applied  the CSM and TCT algorithms to obtain 
the focusing  matrices. The eigenvalues of the  corresponding 
matrices are tabulated in Table I. It is seen that Rcsl~ has 
nonzero  eigenvalues in the noise  subspace due to  signal 
diffusion.  Since  the  focusing  matrices T ,  and U ,  are  unitary, 
the  trace of RCSM is equal to the trace of RTCT. This means 
that the summation of eigenvalues in Table I is identical  for 
each  matrix.  This  suggests that the energy of the signals  after 
focusing is identical for the two  methods. However, the TCT 
method condenses the total received  energy in a  g-dimensional 
subspace and, hence.  improves the performance. 

VII. THE BIAS OF ESTIMATION 
One of the major  motivations for introducing the TCT 

algorithm is to  reduce  the  asymptotic bias of the peaks in CSM. 
It is important to note that the MUSIC algorithm is intrinsically 

TABLE I 
EIGENVALUES OF THE CORRELATIO\ M.ATRICI.S RCSM A\D RTCT FOR A 

CONFlCURATlON OF FOUR WIDEBAKD SOURCES. THE SOURCES H4VE 40% 
RELATIVE BANDWIDTH AND .&RE ARRIVING FROM THE h G L E S ' 8 .  13, 33, .AND 

37' AT A LINEAR ARRAY OF 16 SENSORS IN  A N O I S E F R E E  EUYIRONMENT. 

eigenvalues Rcsb1 RTCT 
x1 900.27 918.76 

806.70 
241.68 
155.39 

4.39 
1.35 
0.40 
0.34 
0.31 
0.27 
0.22 
0.19 
0.15 
0.12 
0.09 
0.07 

808.09 
244.14 
140.99 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

unbiased. The bias in CSM is introduced by focusing. This 
implies that one can reduce  the  bias of estimation with a 
proper  selection of the focusing  method. In the sequel, we 
will discuss  this issue and  show that TCT can  asymptotically 
generate  an unbiased estimate of the DOA's. We will also 
generalize the work of Swingler and Krolik [ 131. They ihowed 
that for a  single-source  scenario. i t  is possible to have an 
unbiased estimate,  provided that the  focusing  frequency is 
chosen at the  centroid of the  source  spectrum.  Here, w e  
show  that f . r  u multisourw use, the bias is eliminated if the 
fwusirzg cor.rdutior~ nlatriyfor  the true l*alue of the DOA's is 
the awrage of the rru~~~jorn?ed  correlatiorl nlatrices. Since the 
bias of estimation is independent of the  noise, in the  rest of 
this  section  a  noise-free environment is considered. 

The noise-free universal focused  correlation matrix is shown 
as 

1 
= - j~W.'P, 'WJH (49) 

j=1  

where W ,  is the  focusing  matrix  for  the ,jth frequency  bin. 
A sufficient condition for unbiased  estimation is given by the 
following lemma. 

Lemrnu 2: Any focusing method that satisfies 

where SO is a  nonsingular.  Hermitian,  positive-definite matnx, 
and 2" is the  true  location matrix at the focusing frequency, 
produces an unbiased  estimate of the DOA's. 

Proof; Since So is nonsingular, 

Span(Ao} = Span{V,} (51) 

where V ,  is the matrix of the q largest eigenvectors of R. 
The MUSIC estimator  intersects  the  subspace  spanned by the 



q largest eigenvectors of the correlation matrix with the  army 
manifold.  Therefore. if (SO) is satisfied, the estimation will be 
unbiased. 0 

It is important  to  notice that (50) is a  general  condition for 
unbiased estimation  regardless of the method that has  been 
applied  for  focusing. In [l3],  Swingler  and  Krolik s h o w d  
that for  a  single  source  scenario. an unbiased  estimation of 
the DOA is possible if the centroid of the frequency  spectrum 
is chosen  as  the  focusing  frequency.  Lemma 2 shows that in 
a  multisource  case, the focusing  correlation matrix should be 
the  average of the  focused  correlation  matrices  for unbia4ed 
estimation. 

For  further  discussion of the  bias  generating mechanism, 
we consider the special case of perfect focusing. In perfect 
focusing, the transformed  correlation  matrices U , A ,  are super- 
imposed on AI, .  In such ;I case, the  focusing  correlation matrix 
is an  average of the correlation  matrices at the  frequency  bins, 
and the following  equality is satisfied: 

AoSoAf = ICU, ,A, ,S ,A: ' i I : ' .  ( 5 2 )  
1 .I 

I .,=1 

As noted earlier,  for any 0, estimated by the  preprocessing 
step.  two more focusing  angles are added in the vicinity of 0 , .  
These angles  determine  an interval on the  array  manifold. If 
this interval is small  compared with the  curvature of the array 
manifold at all the pointj in that interval, it is transferred  to  a 
corresponding  interval on the array manifold at the  focusmg 
frequency fo. This is ;I consequence of the continuity  of the 
array manifold  and  the unitary transformation. Thus, in perfect 
focusing. the location ycctors of each frequency bin that are 
located at the  true DOA are transferred  to  the  correspondmg 
vectors at the  focusing  manifold. It is seen that in such a  case, 
the  estimation of DOA can be unbiased. 

In practice.  perfect  focusing is  not possible. The transfomled 
matrices are clustered  around Ai). However. as far as the 
equality (50) is satisfied for the true DOA, estimation  could be 
unbiased. I t  is straightforward to show that the TCT algorithm 
forms  a very good  approximation of (50) .  Taking the gradient 
of (31) with respect to Fu and  equating to zero  proves that 
the  minimum of (31 j i h  achieved if and only if PO is  the 
average of the matrices U j P , u y . : j  = 1.. . , .J. The  TCT 
algorithm is based on the  minimlzatlon of (31), which means 
that it places the focusing  correlation  matrix at the average 
of the matrices U,PJiJY., /  = 1. .  . . . . J .  However,  because of 
unknown DOA'\ and  structural  constraints  on the correlatron 
matrix, it is not possible to satisfy ( S O )  with equality. The 
TCT algorithm  pro\.ides  a  close  approximation  to ( 5 0 ) .  which 
explains its capability to provide  asymptotically unbiaqed 
estimates. 

VIII. THE EFFECT OF NOISE ON ESTIMATIOS 
It is possible  to $how that the bample correlation  matrices 

of the two methods tCSM and TCT) are Wishart distributed 
[ 141 with , J X  degrees o f  freedom with the correlation  matrices 
R C ~ M  and RTCT.  respectively.  However,  simply considenng 
the degrees of freedom is not sufficient for  comparison  since 

any  transformation of the  signal  subspaces  results in a Wishart 
distributed  correlation matrix with *J-V degrees of freedom. 
The important  factor is how  the  transformed  observation 
vectors are distributed in the  p-dimensional  subspace. In this 
section. we will show that the  variance of the noise is smaller 
for  TCT. which results in a  better  estimate  of  the DOA's. 

The observation can be considered I:o be a 1)-dimensional 
signal vector in the  q-dimensional  signal  subspace  perturbed 
by a pdimensional noise vector. It  is important to note that 
the noise  component in the  signal  subspace has no effect in 
the estimation  process  since the MUSIC algorithm estimates 
the DOA's by intersecting  the  signal  subspace with the  array 
nlanifold. In other  words. if the  noise is restricted  to  the 
slgnal  subspace.  there will  be no error in the  estimation. 
However,  the  power of the noise in the  noise  subspace is very 
important in introducing error in the (estimation. The  effect 
of the  orthogonal  noise  can be discussed  based on the theory 
of generalized  variance [ 141. The ,gencm/ized variance of a 
multivariate  random  kector is defined as the determinant of 
the  correlation  matrix. The generalized  variance is a  metric 
for the spread of the  observation and is equal to the sum of 
s'quares of the volumes of all different  parallelotopes formed 
by using any p observation  vectors as the principal edges [14]. 

In a  noise-free emironment. the observation  vectors are 
constrained  to  the  signal  subspace, and all the  parallelotopes 
have zero  volume i n  the p-dimensional observation  space. 
Thus. the generalized  variance i n  such a case is zero. This 
i t ;  the key point to the  estimation of the DOA's without error. 
When the noise is introduced in the  system. the observation 
vectors are expanded into the noise  subspace.  Extension of 
the signal vector5 into  the  noise  subspace  results in a  nonzero 
volume  and.  hence. a nonzero  generalized  variance. Thus, for 
a noisy environment. the estimation of the DOA's is usually 
yielded with error. The  smaller  the  volume  of  the  observation 
vectors, the better  the  estimate of the DOA's. Therefore. 
a small generalized variance results i n  a  small  variance of 
estimation. In  what follows, we show that the  generalized 
variance of the TCT algorithm is smaller than that for CSM. 

Consider the follouing maximization  problem: 

I I ~ M  ! H I  st .  trR = constant 
R > 0 ( 5 3 )  

where 1 . 1 stand$ for  the  determinant of a  matrix,  and R > 0 
means that the matrix is positive  definite. It  is known that the 
maximum of IRI is obtained if all the eigenvalues are equal. 
The maximum corresponds to an equilibrium point where the 
energy is equally  distributed in all dimensions. Assume that 
t1x  eigenvalues are components of a  vector.  The  vector of the 
eigenvalues that satisfy the constraints of (53) are located in ' 

a portion of a  hyperplane that is cut by the positive  quadrant. 
The equilibrium point that is the solution of ( 5 3 )  is at the 
centroid of this region. The maximization ( 5 3 )  is a  convex 
problem.  Thus. the farther we are  from  the  equilibrium point. 
the smaller will be. 

Now, we compare the determinant of Rcsp,~ and RTCT.  
Note that both R c s ~  and R r c ~  are positive  detinite  matrices 
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with  the  trace  given by 

l J  
trRCsM = trRTCT = -x trRJ (54) .T 

J = 1  

which is a constant independent of the  focusing method.  Thus, 
they  satisfy  the  constraints of (53). Note that requiring  the 
trace  to be constant  assures that the  energy is not lost during 
the  focusing  process. We have  shown in Section VI that in 
the CSM  algorithm, the  signal  energy is extended into the 
noise  subspace. In other  words,  the  eigenvalues  of RTCT 
in the noise  subspace are smaller  than  the eigenvalues of 
the RCSM. whereas  the  sum of eigenvalues for  the  two 
methods are equal. Thus, the vector of eigenvalues  for  the 
TCT algorithm is farther  from  the  equilibrium point in the 
maximization (53)  than that for CSM. This means  that  the 
universal  focused Correlation matrix of the TCT algorithm 
has smaller  determinant or generalized  variance. The smaller 
generalized  variance of the TCT algorithm  results in a  smaller 
variance in the  estimation of the DOA's. 

IX. PERFORMANCE COMPARISON 

Recently.  Doron and Weiss [ 151 introduced  a  method  for 
wide-band  array  processing using signal  subspace  transforma- 
tion (SST).  The focusing  matrix in their  method is found from 
minimization  of / ~ A ~ ) D ~ ~ A ~ - T , A , D , A ~ l ' ~ I j ,  where DO and 
D, are any  Hermitian  positive definite' matrices.  They used 
identity matrices for Do and Dj in their simulation. The results 
of  the  simulation  shows that the method is biased.  There are 
two major  differences  between the TCT  and  SST  algorithm>. 
First. in TCT, the  average of the estimated  source  correlation 
matrices at the frequency  bins is chosen  as the focusing 
source  correlation  matrix in place of Do. Second, instead of 
A , D j A y ,  the estimated  noise-free  correlation  matrices P, are 
used for  focusing matrix determination. Note that in A , D J A y ,  
the  estimated DOA's are  utilized;  however,  for P,,  the  true 
D0A"s are implicitly  used. 

There is also  a  difference  between  the  model  equations of 
the CSM and  TCT algorithms. In CSM, the focusing  model 
equations are T J A ,  = Ao. The solution to this  equation is 
not unique and might be singular. It has been shown [7] that 
from an estimation point of view. unitary  transformations of 
signal  subspaces are the most effective  focusing  methods for 
direction  finding. In contrast,  in  TCT, the  model  equations  are 
U , P , U p  = Pu,  where P,  = R, - 6:I, and Po = A&lAf. 
with So given by (30). Note that the noise-free correlation 
matrix P, is directly  estimated  from  the data, and the pre- 
estimate of the DOA's is not used in its determination. 

A .  S i n z d a t i o ~  Results 

Here, we present the simulation  results  for  two DOA estima- 
tion scenarios. In the first example, a  configuration with two 
sources is considered.  For  this example, we have  compared 
the bias. the resolution  threshold,  and the spatial spectrum of 
the  MUSIC  algorithm of the two methods (CSM  and  TCT). 
The  second example is a multigroup DOA estimation  problem 
with the angles  taken from [ 7 ] .  We have found the bias of 

TABLE I1 
ESTIMATIOY RESULTS FOR THE FIRST EXAMPLE 

BW = 0.4 CSM TCT 
fo 11 13  bias 11 13 bias 
0.8 11.89 12.13 1.24 11.00 13.00 0.00 
0.9 11.25 12.75 0.35 11.00 13.00 0.00 
1.0 11.01 12.99 0.01 11.00 13.00 0.00 
1.1 10.88 13.12 0.17 11.00 13.00 0.00 
1.2 10.78 13.22 0.31 11.00 13.00 0.00 

BW = 1.0 CSM TCT 
f o  11 13 bias 11 13 bias- 
0.8 - 12.01 - 11.01  12.99 0.01 
0.9 11.42 12.58 0.59 11.00 13.00 0.00 
1.0 11.12 12.88 0.17 11.00 13.00 0.00 
1.1 10.95 13.05 0.07 11.00 13.00 0.00 
1.2 10.84 13.16 0.23 '11.00 13.00 0.00 

the estimation  of  the  CSM  and TCT algorithms  and  compared 
them. We have also shown that the TCT algorithm  can  locate 
coherent sources. 

Two Sources: In the  first example, we investigate  a  config- 
uration with two equipower uncorrelated  sources  impinging 
from the angles 1 1  and 13' off broadside. The  SNR is 10 dB. 
A linear  array of eight  sensors is used. The spacing  between 
adjacent  sensors is equal to half the wavelength at the  center 
frequency. An ordinary  beamformer  gives  a peak at 12". Two 
extra focusing  points are added at 9 and 15". Sources are 
sampled with 31 frequency  bins in the  frequency  domain. We 
imported the actual  correlation matrix to  the CSM  and  TCT 
algorithms  and used the  high-resolution MUSIC algorithm  for 
DOA estimation. The results of the  estimation  for 40 and 100% 
bandwidth  and  for  different  focusing  frequencies  are  given in 
Tdbk 11. The bias  columns in this  table  are the Euclidean n o m  
of the bias  vectors. TCT doe5 not have bias regardless of the 
bandwidth of processing. 

For  this example. we investigate  the  threshold SNR for  the 
tWo methods.  The output of each sensor is separated into 
50 snapshots of I6 samples each.  Then, an FFT  algorithm 
i, applied in each snapshot to sample  the  spectrum of the 
observation at nine  points. To find the  resolution  threshold. 
100 independent trials of the same scenario  were  run  for 
each  SNR.  The number of times  each  algorithm  resolved the 
sources  was  counted  to  estimate  the  probability of resolution. 
The sources were assumed to be resolved when two peaks in 
the  spatial  spectrum of the MUSIC  algorithm  were  observed. 
Fig. 1 shows the probability of the resolution for the  two 
methods. Two versions of the CSM algorithm are used here. 
By UCSM and DCSM, we mean  unitary and diagonal  versions 
of the CSM algorithm.  respectively.  For DCSM, the focusing 
angle is chosen at 12". It is seen that TCT has  a lower SNR 
threshold  compared with the UCSM and DCSM algorithms. 

We also examine the  resolution  capability of the two  algo- 
rithms. We increase the nunlher  of  sensors  to 16 and consider 
a 40% relative  bandwidth. It is assumed that only 20 snapshots 
of data are available.  Again, at each  snapshot,  a  @-point DFT 
i b  applied to obtain 33 frequency  samples in the  frequency 
domain. The resolution  criterion is defined as the  difference 
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TABLE It1 
ESTIMATIOU RESULTS FOR THE SECOND EXAMPLE. THL BLANK ENTRIES MEAN THAT CSM DID NOT RESOI.VE THE DOA 

BW=0.4 CSM TCT 
fo 

- 
8 13 33 37 bia.s 8 13 33 37 b i F  

0.8 ~ 11.75 34.25 2 8.03 13.03 32.98 36.98 O . E  
0.9 8.42 12.55 33.90 - 8.01 13.01 32.98 36.98 0.03 
1.0 8.07 13.01 33.12 36.82 0.23 8.02 13.02 32.97 36.97 0.05 
1.1 7.87 13.21 32.53 37.35 0.64 8.07 13.06 32.92 36.91 0.15 
1 .2  7.72 13.29 32.22 37.66 1.10 8.17 13.13 32.83 36.81 0.33 

BW=1.0 CSM 
- - 

TCT 
fo 

- 
8 13 33 37 bias 8 13  33 37 b i r  

0.8 ~ 11.17 34.22 ~ 

~ 8.04  13.08  32.86  36.88 0 . 5  
0.9 ~ 11.85 33.88 ~ 

1.0 8.25 12.53 33.58 - 

~ 8.07 13.09 32.88 36.89 0.20 
8.10 13.10  32.87 36.87 0.23 

1.1  7.98  12.93 33.21 36.97 0.22 8.15 13.13  32.85 36.85  0.29 
1.2 7.85 13.13 32.78 37.44 0.53 8.22 13.19  32.72 36.71  0.50 

- 

TABLE IV 
ESTIMATION RESULTS FOR THE SECOND EX.A\.IPLE .AFTER T i \ U  I'rER4TIO'.S 

BW=0.4 C SM TCT 
- 

f a  8 13 33 37 b i a F  8 13  33 37 h i a s  
0.8 8.04 12.99 33.03 36.90 0.11 8.00 13.00 33.00  37.00 0.66- 
0.9 8.02 12.99 33.03 36.95 0.06 8.00 13.00 33.00 37.00 0.00 
1.0 7.99 12.99 33.04 37.03 0.05 8.00 13.00 33.00 37.00 0.00 
1.1 7.99 13.01 32.98 37.03 0.04 8.00 13.00 33.00 37.00 0.00 
1.2 7.98 13.03 32.94 37.03 0.08 8.00 13.00 33.00 37.00 0.00 

SNR 

TCT and CSM algorithms. 
Fig. 1. Probability of resolution for t i40 closely  separated  sources  using  the 

between the average of the spatial  spectrum at the peak points 
in the MUSIC algorithm and the spatial  spectrum in the 
valley 1161. It is measured on a  decibel  scale  for  different 
SNR's. The  results are given in Fig. 2. As it is seen. the 
performance of TCT is about 6 dB better  than that for CSM. 
The spatial spectra of the two  methods  are  overlapped in Fig.  3 
for  comparison. 

F o n r  Sources: For the  second  configuration we investigate 
Example 1 in [7].  The same  array has been used to estimate  the 
DOA of four equipower uncorrelated  sources  impinging from 
8, 13, 33 and 37". The bandwidth of the sources is equal to 40 
and 100% of the  center  frequency in two different trials. The 

Fig. 1. Rrsolution comparison  between the two algorithmr (TCT and CSM). 

Focusing angles are given by  6.7! 10.5, 14.3, 31. 35,  and 39'. 
'The true cross correlation  matrices are used for estimation. 
'Table I11 presents  the  results of estimation for this example. 
4lthough  TCT performs  better, i t  is not unbiased. To improve 
].he resolution  and  reduce or eliminate  the  bias, we can iterate 
\:he algorithm. We consider an array of 16 sensors with the 
:same four signals as the  second example. Application of the 
'TCT method gives  the  estimates of the DOA's at 7.94, 13.03. 
33.09  and  37.08". We use the  following  focusing  angles: 7 ,  
'7.94, 9, 12, 13.03, 14. 3 2 ,  33.09, 34. 36, 37.08, and 38". The 
results  for  the two methods are given in  Table IV. As i t ' is  
',em, the TCT algorithm  outperforms CSM and removes the 
hias of the estimation. In seneral, to  eliminate the bias, this 
procedure must be iterated several times. 
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3.  MESIC  spatial  spectrum  for the two methods (TCT and CSM). 

DOA (degrees) 
Fig. 4. MUSIC spatial  spectrum  for  four  ?ources  at 8. 13, 33, and 37'. The 
source at 13' is a delayed  version of the source at 8". 

We also investigate  the  capability of the TCT algorithm 
to resolve  coherent  sources. In Fig. 4, the MUSIC spatial 
spectrum  for the coherent  source  scenario at 10 dB SNR is 
depicted. It is assumed that the  source at 13' is a delayed 
version of the source at 8' with a one sampling  time  delay. As 
it is seen, the TCT algorithm  resolves all the  sources  including 
the  coherent ones. 

To study the  performance of the TCT algorithm for a  limited 
number of observations,  the  same four sources  are  received 
by a linear array of 16 sensors. The observation  interval 
is decomposed  into 40 snapshots with each  containing 32 
samples.  The focusing  angles are taken at 6.7. 10.5, 14.3, 31, 
35. and 39". The SNR is varied,  and  the bias and the variance 
are  averaged over 100 independent  trials. In Figs. 5 and 6, 
the norm of the bias and the variance  vectors for the two 
methods are compared.  These  examples show that the TCT 
algorithm  has  smaller bias and variance for a  limited  number 
of observations. 

X. SUMMARY 

In this paper. we  have  introduced  a  new  method  for  local- 
ization of broadband  signals using an array of sensors. Our 

O . O i I ;  0.0 SNR (dB) . 

Fig. 5. Norm of the  averaged  bias  bector for hmited  number of observations 
(40 snapshots OF 32 samples)  versus SNR for  a  configuration w ~ t h  four 
uncorrelated  sources. 

CSM 
- - - - - _ _ _ _ _ _ - - - - - -  

2- '\ 

CSM 

TCT 

I 
15 20 25 30 35 

SNR (dB) 
Fig 6. Nom of the  averaged  variance  vector  for  limited  number of obser- 
vations (40 snapshots of 32 sampler)  versus SNR for a  configuration  with 
four  uncorrelaled  sources. 

method is based on  the  two-sided unitary transformation of 
the  correlation matrices.  The motivation  for  this  work was to 
reduce  the  error of the  subspace fitting and to remove the 
asymptotic  bias of estimation that is  involved in the CSM 
algorithm. The bias of estimation in CSM is a  function of 
the focusing  points  and the bandwidth of processing. We have 
shown that the  noise-free universal focused  sample  correlation 
matrix has nonzero  eigenvalues in the  noise  subspace. This 
nonuniform  expansion of the source  energy into the noise 
subspace  acts  as  a  colored  noise with an unknown  correlation 
matrix. Since the form of the signal  extension is unknown, 
the estimation will be biased in general. We have  shown that 
the TCT algorithm does not suffer from this  shortcoming. 
The noise-free universal focused  correlation  matrix of the 
TCT algorithm  has (1 nonzero eigenvalues, and its columns 
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span a q-dimensional  subspace  regardless of the  processing 
bandwidth. With iterative use of the TCT algorithm, it  is 
possible to coincide  this  q-dimensional  subspace  with  the  true 
signal  subspace;  hence, there is unbiased estimation. We have 
also  shown that the generalized  variance  of  the TCT algorithm 
is smaller  than its counterpart  for CSM. Thus, in a noisy 
situation. TCT can  generate  estimates of the DOA's with a 
smaller  variance. 

APPENDIX A 
SINGULAR  VALUES OF A MATRIX PRODLICT 

In this  Appendix. we prove  Lemma I .  We start by intro- 
ducing  a lemma  from [X] .  

L m m u  A.1:  Let A. B E M,,, (an 111 x 7 1 .  matrix), and 
q = m i ~ ~ { r t / . n } .  Denote by n , ( A ) . a , ( B )  and u7,(ADjr) .  
i = 1. , . . , q .  the  nonzero  singular  values of the corresponding 
matrices  arranged in nonincrearing  order. Then, for U E 
MI,, V E M,, y , l  being unitary 

We use Lemma A.l  to prove Lemma I. Suppose that the 
singular  value  decomposition of the matrices A and B are 
given by 

A = E A , , F H .  
13 = XAr ,YH.  

Then 

q C O , ( A B ~ )  = !K t r (ABH) 
i=l 

= !K t r ( A , , F H Y & X H E ) .  ( A . 4 )  

Define 

V = Y H F .  
U = E H X .  

Hence 

Using Lemma A. 1,  the  maximum of the right-hand  side of 
(A.7) is given by the  multiplication of the singular  values of 
the  diagonal  matrices A,, and Ai,. Thus, we have 

and the proof is complete. 

APPENDIX B 
MINIMIZATION OF THE SCBSPACE FITTING ERROR 

In this  Appendix, we prove Theorem 1.  The error of the 
two-sided unitary transformation is given by 

€ = IIA - UBVH 1 1 '  
= llAll' + llB/l' - 2!R t r (AVBHUH).   (B. l )  

h4inimization of ( B . l )  with respect  to  the  choice of U and V 
i:; identical to  maxitnization of 

mtx R Ir(AVBHUH) 03.2) 

subject  to V and U being  unitary  lransformations. From 
L.emma A.1. i t  is seen that the  maximum  value of (B.2) 
i:; given by Cy='=, n ; ( A ) n , ( B ) .  Let us represent  the  singular 
value decomposition of the two matrices A and B by , 

u.v 

A = E A , , F H .  (B.3) 
B = X A i . Y H .  (B.4) 

Then, it is straightforward  to  see that with 

U = E X H  03.51 
V = FY" (€3.6) 

the  maximum is achieved. This completes the proof. 
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