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Wideband Array Processing Using a
Two-Sided Correlation Transformation

Shahrokh Valaee and Peter Kabal, Member, IEEE

Abstract— A new method for broadband array processing is
proposed. The method is based on unitary transformation of
the signal subspaces. We apply a two-sided transformation on
the correlation matrices of the array. It is shown that the two-
sided correlation transformation (TCT) has a smaller subspace
fitting error than the coherent signal-subspace method (CSM). It
is also shown that unlike CSM, the TCT algorithm can generate
unbiased estimates of the directions-of-arrival, regardless of the
bandwidth of the signals. The capability of the TCT and CSM
methods for resolving two closely spaced sources is compared.
The resolution threshold for the new technique is much smaller
than that for CSM.

I. INTRODUCTION

RRAY processing is a powerful tool for detecting and

locating the signals arriving at a set of sensors. The
sensors are distributed in space, and the signals received at
each sensor are delayed versions of the signals generated by
the sources. It the noise is uncorrelated between sensors, the
signal-to-noise ratio (SNR) can be increased by adding the
appropriately weighted outputs of the sensors. This is done by
steering a beam toward the source direction (beamforming).
Two sources can be resolved using a beamformer if their
separation is larger than a beamwidth. To provide a better
performance in the detection and localization of signals. a
high-resolution method should be applied.

The objective of this paper is to introduce a new method
for estimating the directions-of-arrival (DOA’s) of wideband
signals. Wideband processing arises in many applications
such as audio conferencing, spread spectrum transmission.
and passive sonar. A wideband signal is one that has a
large bandwidth relative to its center frequency. A common
approach to wideband array processing is based on sam-
pling the signal spectrum at the output of the sensors. Each
frequency bin creates a narrowband signal. In the so-called
incoherent signal-subspace method (ISM), the narrow-band
signals are processed as a vector to estimate the DOA’s,
Then, these results are combined to obtain the final solution
[1]. Perfectly correlated (coherent) sources cannot be handled
by this approach. Furthermore, the efficiency of this method
deteriorates for closely separated sources and low SNR.
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The coherent signal-subspace method (CSM) [2] is an alter-
native to [SM that improves the efficiency of the estimation by
condensing the energy of narrowband signals in a predefined
subspace. This process is called focusing. A high-resolution
method such as MUSIC [3] is then used to find the DOA’s.
The DOA's are estimated by determining the angular location
of peaks in the spatial spectrum of the MUSIC algorithm. It has
been shown [2] that CSM improves the resolution threshold
and resolves coherent sources. Despite the fact that CSM is
very effective in wideband signal detection and estimation,
it suffers from an asymptotic bias of the peaks. The bias
increases with the bandwidth of the sources and deviation
of the focusing angles from the true DOA’s. Recently, we
have shown [4] that with a proper selection of the focusing
frequency the estimation bias can be decreased. However, in
general, an unbiased estimation of the DOA’s is not possible
using the CSM algorithm. We will show this in the present
paper.

Two other techniques have evolved from the CSM method.
The objective of these methods is to reduce the bias of the
estimation, In [5]. Buckley and Griffith propose a broadband
signal-subspace spatial-spectrum estimation (BASS-ALE) al-
gorithm. This method forms a broadband covariance matrix
with the rank of the broadband signal representation subspace
equal to one. The tradeoff is an increase in the computational
complexity. In this method. the estimation bias is reduced
by increasing the dimensionality of the location vectors. In
[6]. Krolik and Swingler propose an algorithm based on the
steered covariance matrix (STCM). In their technique, delay
elements are introduced at the front end of the array, and the
covariance matrix is computed after the delays. With a proper
choice of the delays. a steering beam can be formed. It has
been shown that when the sieering beam coincides with a true
DOA, the STCM contains a dc term equal to the power of the
corresponding source. Thus, by steering the space and locating
the peaks of the dc component, the DOA’s are estimated.

In this paper. we introduce a new technique for broad-
band array processing. Our method is similar to CSM in the
sense that transformation of the signal subspaces is performed
through focusing matrices, A high-resolution spectral estima-
tion algorithm, such as MUSIC, is then applied to determine
the DOA. In the new method, we apply a two-sided unitary
transformation to the correlation matrix. In [7]. it has been
shown that unitary transformations have good performance
in terms of focusing loss and relative information index, The
motivation for using the correlation matrices instead of the
location matrices is based on the fact that most of the high-
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resolution spectral estimation algorithms use an eigenstructure
decomposition of the correlation matrix. We show that the new
method has a lower resolution threshold SNR and a smaller
bias than CSM.

The paper is organized as follows. In the following section,
we formulate the problem and review the CSM method.
Section I1I presents some mathematical background for matrix
approximation. In Section IV, we introduce the new method.
Selection of the focusing matrix is based on minimizing the
subspace fitting error. In Section V, we show that the TCT
algorithm has a smaller subspace fitting error than CSM. In
Section VI. the eigenvalues of the noise-free focused correla-
tion matrix of the CSM and TCT algorithm are compared. It
is shown that in the CSM algorithm, the energy of signal is
extended into the noise subspace. This signal extension acts
as a colored noise with an unknown correlation matrix. In
Section VII, using these results. we show that CSM cannot
asymptotically generate unbiased estimates of the DOA’s.
Section VIII contains a study on the performance of the
proposed algorithm under noisy conditions. There, we show
that the generalized variance of the TCT algorithm is smaller
than that for CSM. This results in a smaller variance of
estimation. Section IX contains the simulation results.

II. COHERENT SIGNAL SUBSPACE PROCESSING

Consider an array of p sensors exposed to ¢ < p far-field
wideband sources. The signals of the sources can be partially
or fully correlated. The output of the sensors is shown by
p-vector z(t) with the ith component

q

,1:“(#) = Z.&'[(f — ’,""(9[)) + H,‘(f),

i=1

L<i<p (D

where
8y {th source signal
B, angle-of-arrival for the Ith source
7,(6;) propagation delay for the Ith source at the sensor 4

with respect to the reference point of the array.
For a linear array with uniform spacing, 7;(¢;) = (i —
1);—’ sin#;, where d is the spacing between two consecutive
sensors, and ¢ is the propagation velocity. It is also assumed
that the observation is corrupted by an additive noise thal is
represented in the model by n;(1).
The array output in the frequency domain is represented by

z(w) = A(w, #)s(w) + n{w) (2)

where s(w) and n{w) are the Fourier transforms of the signal
and the noise vectors, respectively. The px ¢ matrix A{w. #) =
[a{w. ) -al{w.f,)] is called the location matrix of the array
and is assumed to be full rank. In other words, the steering
vectors a{w. f#;).1 = 1..... g, are independent tor every w.
The signal samples are generated independently by a com-
plex Gaussian distribution with an unknown covariance matrix
S(w). The noise samples are an i.i.d. sequence of complex
Gaussian random vectors with unknown covariance matrix 721
and are independent of the signal samples. [t is assumed that
the noise is spatially white. This assumption can be relaxed

if the correlation matrix of the noise is known but for a
scale factor. In that case, a prewhitening step is required to
create uncorrelated intersensor noise. From (2) and using the
assumptions on the signal and noise samples, the covariance
matrix of the observation vector at frequency w is given by

R(w) = Alw.9)S(w)A? (w,6) + 21 3)

where the superscript H represents the Hermitian transpose.

In practice, a sufficiently long duration of sensor output
is observed. Then, the sampled data are divided into N
snapshots, each containing .J samples. In each snapshot, an
FFT algorithm is used to transform the data into the frequency
domain. Thus, NV sets of transformed data are available where
each set contains .J frequency samples of the spectrum of the
observation vector. We represent these samples by ;.7 =
l....,J. It should be noted that each z; depends on the
snapshot in which it has been produced. For simplicity of
notation, this dependence has not been shown explicitly. In
the sequel, we suppress the frequency variable representing
R(w;) by R; S(w,) by §;. A(w;.8) by A;, and so on.

The signal subspace is defined as the column span of
the steering matrix A(w,#). The dimension of this subspace
is determined by the number of sources. The orthogonal
complement to this subspace is called the noise subspace. It
is seen that the signal subspace is a function of the frequency
« and the angles-of-arrival §. Thus, the signal subspaces at
different frequency bins are different.

The CSM algorithm [2] transforms these subspaces and
overlaps them in a predefined subspace: the so-called focusing
siubspace. The focusing matrices T';’s are the solutions of the
eqguation

T;A; =4, j=1....J 4)
where Ajg is the focusing locarion matrix. The matrices Ay and
Aj; are functions of the DOA’s f. An ordinary beamforming
preprocess gives an estimate of the angles-of-arrival that can
be used in (4). Using the focusing matrices T';, the observation
vectors at different frequency. bins are transformed into the
focusing subspace. In particular, new observation vectors are
formed by

y, =Tz, j=1..... J. (5)
Then, these transformed observation vectors are used to con-
siruct the sample correlation matrices

N
4) L OO
B = L3l 0
=1

where the transformed data vector for frequency bin ;j and
for batch ! is represented by yj”. An average of these
aligned correlation matrices over the frequency bins gives a
universal focused sample correlation matrix that can be used
for detection and estimation. If this matrix is represented by
R, we will have

J
1 .
R==3"R" = ARA] + R, 9

j=1
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where
1 J
R. = —7251. (8)
i=1
1 J
R, = 7ZTJ-TJH. 9
J=1

This transformation improves the efficiency of the estima-
tion by condensing the energy of sub-bands in the focusing
signal subspace. Yet, it creates a problem. It is seen that the
focusing removes the whiteness of the noise. This in turn
changes the SNR at the output of the processor. The focusing
loss is defined as the ratio of the array SNR after and before
focusing. Using this quantity, Hung and Kaveh [7] showed
that the focusing is lossless if 7';’s are unitary transformations.
Specifically, they proposed using the transformation matrices
obtained by the constrained minimization problem

winl| Ao — T, A;|i (1)
T,
st THT, =1
forj=1,..... I. They used the Frobenius matrix norm, which
is defined by
1Bl = [Zb?j] = [tr(BHB)]‘% (1D
"J

where tr(-) stands for the trace of matrix.

III. MATRIX APPROXIMATION

The problem of approximating a given matrix by a matrix in
a specified class arises in multivariate analysis, factor analysis,
estimation of residuals in linear models, and the theory of
generalized matrix inverse. In each case, a minimization
problem is solved to obtain the closest distance between the
two matrices. The distance between the matrices is measured
with respect to an appropriate norm. One class of norms is
known as the wairarily invariant norms. The Frobenius norm,
used here, is one such norm which does not change when a
unitary transformation is applied to the matrix.

We saw previously that the unitary transformation matrices
of the CSM algorithm are the solutions of (10). In factor
analysis, this is known as the problem of finding a procrustean
wransformation of A;. Assume that the singular value decom-
position of Ar,A is represented by V,i_‘JW Then, the

focusing matrix T that solves (10) is given by [8], [7]
T, =V,Wh (12)

In such a case. the error of transformation is

J
ZHAO ~ A7 = S (Ao + 14,2
Jj=1

- 2R tr(AgAFTH))
J

. i@
=2Jpg - 2) Y mi(AcA]) (13)

7=1i=1

where 0;(B).i = 1,.. ., ¢ are the singular values of the matrix
B arranged in nonincreasing order, and R stands for the real
part of a complex number. In (13), we have used the equality

=Y llail* = pg
i=1

which holds for any arbitrary array manifold. We present a
lemma that gives a lower bound to the error in (13).

Lemmal: Let AB € My «xn (an m X n matrix) and
¢ = min{m,n}. Denote by ¢;(A), 0;(B), and ¢;,(AB¥).i =
1.....q¢ the nonzero singular values of the corresponding
matrices arranged in nonincreasing order. Then

zaz(ABHv < Zq:
i=1 i=1

Proof: See Appendix A.
Lemma 1 is presented as a theorem in [9]. In Appendix
A, we have provided a self-contained proof using a different
approach.
From (13) and (15), it is seen that the error of transformation
is lower bounded as
I

2,]pq—22ial (Ag)o; (A
j=1i=1

This lower bound cannot be reached in general using the
one-sided transformation of the CSM method.

Now, consider the alternative of a two-sided transformation.
For such a transformation, we will be able to achieve the lower
bound to the error. In a two-sided transformation, the objective
is to find the unitary matrices U and V such that the following
criterion is minimized:

win||4 - UBVH||2
uUuv

4] (14)

(15)

J
< Ao - TA)% (16)

stUBU =1 and VAV =1 (an

Theorem 1: The solution of (17) is given by U = EX#
and V = FY¥ where A = EXFF and B = XAY# are the
singular value decompositions of A and B, respectively, and
the error of transformation is given by

€= Al +B|* ~2) " oi(A)ou(B

=1

(18)

Proof: See Appendix B.

Corollary 1: 1f A and B are square Herrmtlan matrices, the
transformation matrices U and V' will be identical and equal
to EX¥, where E and X contain eigenvectors of A and B,
respectively.

From Theorem 1 and Lemma 1. it is seen that the error
of transformation is minimized for the two-sided unitary
transformation. Since the location matrix cannot be separately
measured from the observation, the two-sided transformation
of the location matrices is not practical. However, it is well
known that for ¢ noncoherent sources, the space spanned by
the location matrix is the same as the span of the eigenvectors
of the correlation matrix that correspond to ¢ largest eigen-
values. Our method is based on two-sided transformation of
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the correlation matrix. This will be discussed in the following
section.

V. Two-SIDED CORRELATION TRANSFORMATION

In this section, we introduce a new wide-band array process-
ing technique based on transformation of the signal-subspaces
into the focusing subspace. The transformation matrix at each
frequency bin is unitary and minimizes the distance between
the focusing subspace and the transformed signal subspace.
In the new method, the transformation of the subspaces is
performed through a two-sided transformation applied to the
correlation matrix. The motivation for using the correlation
matrix, instead of the location matrix, is attributed to two
facts. First, a two-sided transformation can be applied, which
results in a smaller error. This issue will be discussed in
detail later. Second, many of the high-resolution methods for
DOA estimation are based on the eigenstructure decomposition
of the correlation matrix. Thus. the closer the transformed
correlation matrices, the better the estimation results.

A. The TCT Criterion

Our method is based on transformation of the matrices

P;=A;8;A", j=1,...J (19
where P; is the correlation matrix of the sensor output at
the jth frequency bin in a noise-free environment. Let Py be
the focusing noise-free correlation matrix. The TCT focusing

matrices are found by minimizing
: H
1%111||PU -U,;P;U}|

st. UNU, =1 (20)

for j = 1....,.J. From Corollary 1, the solution of (20) is
obtained as

H
U,=Xo0X; (21)
where- X and X ; are the eigenvector matrices of Py and
P, respectively. The matrix U, can be used to transfer the
observation vector z; into y; through

y, =Ujz;. (22)
The observation vectors ,,j = 1,...,/ are in the focusing
subspace. Using (7)—(9), thelr correlatlon matrices can be
averaged to find the universal focused sample correlation
matrix.

In computing U;, the matrices A; and §; are assumed
to be known. In practice, a preprocessing step is required
to estimate these matrices. A low-resolution beamformer is
applied to estimate the number and the DOA's of the sources.
Closely separated and correlated sources may not be resolved
at this stage. Like [7], we add two extra focusing angles at
+0.25 By (BeamWidth) of the estimated DOA. For instance.
if the ith DOA is found at ; by the preprocessing, the focusing
angles are chosen at (r‘l —0.25By.4;,8,+0.25By°). In TCT,
the number of focusing angles should be larger than the true
number of sources. Using the results of this preprocessing

step. an estimate of the location matrix A; is obtained. Then,
the eigenvalues of the sample correlation matrices Rj,j =
1,...,J are computed and sorted in decreasing order. The
noise power at the jth frequency bin is estimated by

E:A(R

i=g+1

(23)
—q,

where A;(B) is the ith eigenvalue of B. The source correlation
matrix is then found from

S; = (AfA) T ATR; — 6T1A;(A] A;)” (24)

We will see later that the matrix §; is used to determine
4, which is the focusing noise-free correlation matrix. In
practice, P, is directly computed from

ka2
P, =R, - 4551

J

(25)

P; can be interpreted as the correlation matrix of the cleaned
data. By the cleaned data, we mean the output of a pre-
processing step that decreases the effect of the noise. The
computational complexity of (25) is relatively low since the
Lanczos algorithm [10] can be used to obtain a few of the
smallest eigenvalues of RJ-.

In general. the estimated source correlation matrix (24) may
have negative eigenvalues. However. our simulation studies
have shown that as far as the estimation of the DOA's
is concerned, the TCT algorithm still can be used. As an
alternative to (23) and to guarantee the nonnegativeness of
the estimated source correlation matrix, the noise power can
be estimated from

& = Ap(R) (26)

where A, (R;) is the smallest eigenvalue of R;.

B. Selecting the Focusing Subspace

The noise-free focusing correlation matrix P is a function
of the DOA’s, the frequency of focusing fj. and the focusing
source correlation matrix §;. The focusing DOA's are found
using ordinary beamforming. We still have to choose fy and
5y. The subspace fitting error is defined as

J
£=3|Po-UPUY|

=1

27

Using this error, we can select fy and Sy in two steps. In the
first step, we choose the focusing source correlation matrix S
as follows.

In an ideal case, all the transformed location matrices
superimpose on Ag. This case is called perfect focusing. In
perfect focusing. the column vectors of the location matrix A,
are transformed to the corresponding columns of Ay, i.e.

Ay=U;A;. (28)
In such a case. the subspace fitting error can be shown to be

J
© = [l 4o(So

a=1

DAL (29)
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Minimization of (29) for Sy gives

1 J
S() = 7;51

The estimate of the .S;. which is given by (24), can be used
in (30).

In practice, if the transformation is constrained to be unitary,
perfect focusing cannot be obtained, but since the transformed
location matrices are close to the focusing location matrix,
the same focusing source correlation matrix (30) can be used
in general case. The focusing source correlation matrix (30)
has yet another important property. For coherent sources, the
estimated source correlation matrix (24) might be singular.
However. the average Sy is full rank, Hence, (30) removes the
coherence by smoothing the spectrum of the source signals,
With this averaging, the TCT algorithm can be applied to
coherent cases.

As seen from (20), the error of focusing is a function of
fo. To minimize this error. a suitable selection of the focusing
frequency is needed. We seek a frequency fy that solves

30

J
o . H2
&= win 1%1112||Pn -U,P; U7
0 i ):l
. H —
st. U'U, =1, 3D
For a fixed Py, the transformation matrices U; are obtained

from {21). By using these matrices in (31), the focusing error
is given by

J q
£=Y" {|P0||2 +1Pji]? - 220,(}’”)@(&)} (32)
j=1 i=1

Since P,’s are independent of the focusing frequency, fo can
be determined from

J q q
. 2 ) N .
win o (Po) —2) o;(Po)oi(P;)|. 33)
n3 St 2y mromie|
To select the best focusing frequency, we first find the

singular values of the optimum focusing subspace. Next, using
these values, the focusing frequency is selected. Define

J
i = Zai(:PJ).
=1

Using this definition, the criterion (33) is represented as

(34)

q

£ = 11};1‘11;[.]{7?(}70) - Z;L,L-al(P())}. (35)
The minimum of (35) is achieved when
(]‘(P())z%i- i=1,....4q. (36)

Due to structural constraint on Py, in general. (36) is not
attainable. Instead, we perform

y
min E
fu

=1

oi(Po) - & (37)

This is a one-variable optimization problem, and a search
procedure can be applied to find the minimum point. In
practice, it is sometimes convenient to choose a predefined
frequency such as the center frequency of the spectrum for
focusing. However, to improve the performance, a focusing
frequency that produces the smallest error should be selected.

C. The TCT Algorithm

The TCT algorithm is summarized as follows:

1) Use an ordinary beamformer to scan the space and find
an initial estimate of the DOA’s.

2) Apply a DFT to the array output to sample the spectrum
of data.

3) Form A; and S; using the results of the preprocessing
step and (24).

4) Average the source correlation matrices to obtain S as
in (30).

3) Find Py = A(JS[)Aé{ and the P;’s using (25).

6) Determine the unitary transformation matrices (21).

7) Multiply these matrices by the sample correlation matri-
ces, and average the results.

8) Use AIC, MDL [11], or PSC [12] to find the true number
of sources.

9) Apply MUSIC or any other high-resolution spectral
estimation method to find the DOA’s.

10) To improve the performance, iterate steps 3 to 9.

Comparison of the new algorithm with the CSM method
shows that the second part of Step 3 and Steps 4 and § do
not have counterparts in CSM. The presence of these steps in
TCT increases the complexity of computation. The increase in
the computation is due to three parts:

i) estimating the noise power in each frequency bin

i1} estimating the source correlation matrix from (24)

iii) forming the focusing correlation matrix Py =

ApSo AL
To estimate the noise power for each frequency bin, we
only need to compute a few of the smallest eigenvalues
of the sample correlation matrix. To find those eigenvalues,
the Lanczos algorithm [10] that converges in O(p?) flops
for processing can be used. If we use (26) for noise power
estimation, only one eigenvalue needs to be estimated.

The source correlation matrix at the jth frequency bin is
found from (24), where by defining B; = (AfAJ)‘1 Af can
be written as

8; = Bj[R; - 6°I|B”. (38)
The computation of B; requires inverting (A)HA]v) and multi-
plying it by Af. Since (AfAJ) is a ¢ x g Toeplitz matrix, it
can be inverted in O(g?) flops [10]. Using B;, the source cor-
relation matrix Sj is obtained with two matrix multiplications.
The focusing correlation matrix Py can also be formed by two
matrix multiplications. It should be noted that the increase of
the computational complexity is usually small compared with
the load of Step 6.

Another difference in the computational complexity of the
two methods appears at Step 6, where an eigenvalue decom-
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position is performed. To find the unitary matrices in the
CSM algorithm, .J singular value decompositions are needed.
However, in TCT, (J + 1) eigenvalue decompositions of
Hermitian matrices are required. This should be a smaller
computational load.

V. THE ERROR OF TRANSFORMATION

In this section, we compare the error of transformation for
the CSM and TCT algorithms. There are two sources of error
for the transformation: the error due to noisy observation and
the error of transformation. The concern of the present section
is the latter. We consider a noise-free environment where the
error is only due to the focusing procedure.

It is important to note that simply aligning the subspaces
at different frequency bins does not result in a good estimate
of the DOA'’s. The subspaces might be twisted in the process
of focusing, causing an augmentation of the noise in some
directions. This in turn reduces the focusing SNR and can
result in a biased estimation of DOA’s. To prevent warping of
the subspaces, we can use unitary matrices for focusing. How-
ever, using unitary transformation matrices for focusing does
not necessarily produce an unbiased estimate. Furthermore,
there is no unique solution for the unitary focusing matrices.
Here, we define an error of focusing that can be used as a
comparison measure between different focusing methods.

Since the objective is to transform the noise-free correla-
tion matrix at each frequency bin to the focusing noise-free
correlation matrix, the subspace fitting error is given by

E=||Py-W,;P,WH|? (39)

where W is the focusing matrix. The error of transformation
for the TCT algorithm can be obtained by substituting U; in
(39), which simplifies to

4

Ercr = |IPol? + |P,I° = 2)_ o (Po)os( P)).

i=1

(40)

The error of transformation for the CSM algorithm is
represented by

Ecsnt = || Poll® + |1Pj|1? = 2R Te(PoT; P,TY ) (4D)

where T'; is the focusing matrix given by (12). It is possible to
show that the error of transformation for the CSM algorithm
is given by

q
Ecsny = !‘P(;”Z + “I)J‘H2 - 220;(P(|T_;P_/Tj{). 42)

i=]

Using Lemma 1. this error can be written as

q
5('31\[ > HP()H2 -+ ||P,H2 -2 (J’;(P())(T,‘(TJPJ'T.H)(43)
J

t=]1

q
=[Pl + 1P| = 2D o (Po)oi(P;) (44
i=1

=&rer (45)

where we have used the property that the matrices related
with the similariry transformation have the same eigenvalues

[8]. Thus, the error of transformation for the TCT algorithm
is always smaller than that for CSM.

V1. EIGENVALUES OF THE UNIVERSAL
FOCUSED CORRELATION MATRIX

One of the major drawbacks of the CSM algorithm is the
asymptotic bias of the peaks. It has been shown that the CSM
algorithm generates an estimate of DOA that is asymptotically
biased [7]. The bias increases with the bandwidth of processing
and deviation of the focusing angles from the true DOA’s. [n
this section, we study the eigenvalues of the universal focused
correlation matrix of the two methods: CSM and TCT. Using
the eigenvalues of the universal focused correlation matrix,
we show that the signal power in the CSM algorithm is
extended into the noise subspace. This extension acts as a
spatially colored noise with an unknown correlation matrix
that produces biased estimates of the DOA's.

A. Analytical Study

To study the mechanism that generates the asymptotic bias,
a noise-free environment is considered. In such a case, the cor-
relation matrix Rj is equal to the array noise-free correlation
matrix ;. The universal focused correlation matrix is

1 J
] mH
727 ./'P./IJ

i=1

Resa

J
1
=) VWl sa7w Vi (46)

=1

The focused correlation matrix is a function of the focusing
angles and the bandwidth of sources. In general. Rcsyp is
full rank and has nonzero eigenvalues in the noise subspace.
In other words, the received power is distributed in a p-
dimensional space. The components of the signal that diffuse
into the noise subspace act as a nonwhite noise with an un-
known correlation matrix. The MUSIC algorithm that operates
on Rcsyy will provide biased estimates of the DOA’s if the
spatial noise structure is unknown.

For TCT, the universal focused correlation matrix is given
by

b
1
Rrer = 7ZUJPJUJH

. =

J
1
= 7ZXUXJHP.1XJX{){ (47
J =

where (21) has been used to compute U ;. Suppose that the
diagonal matrices of the eigenvalues of P;,j = 1....,. J are
shown by I';.j = 1......J. Then, for any focusing angle,
(47) simplifies to

g
1
5 Y xorx§

J=1

XoIhXE

Rycr

If

(48)
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where I'y = -1f z\:}l:1 I';. Since P; is computed directly from
the sample correlation matrix using (25). the diagonal matrix
Iy is independent of the pre-estimates of DOA. Note that
each diagonal matrix I'; has only ¢ nonzero entries, which
in turn implies that I'y has only ¢ nonzero components. The
matrix X is orthonormal, and hence, (48) is an eigenvalue
decomposition of Rrcr. It is concluded that in TCT, the
transformed subspaces for different frequencies are aligned,
and the eigenvalues at the noise subspace are zero. In other
words, the focused correlation matrix Rt has eigenvalues
in a g-dimensional subspace. This is an important property of
the TCT algorithm that makes it capable of providing unbiased
estimates of the DOA’s.

It is useful to compare (48) with perfect focusing. In
perfect focusing, the noise-free focused correlation matrix is
AORRAgI. where R, is defined in (8). The perfect focusing
can be obtained using the transformation matrices (4). These
transformation matrices are not unitary. In general, it is not
possible to establish perfect focusing of the location matrices
through unitary transformations. In (48), perfect focusing is
achieved by applying the transformation to the eigenvectors
of the correlation matrices. Since the eigenvectors form an
orthonormal basis, it is always possible to use a unitary
transformation to transfer them into another orthonormal basis.
Note that the true DOA implicitly effects the selection of
the focusing subspace through the estimation of S;. Thus,
assignment of the orthonormal basis for the focusing subspace
is implied by the true DOA’s.

B. Experimental Results

We present the results of a computer simulation to study
the eigenvalues of the universal correlation matrix of the
two methods. A configuration with four equipower wide-
band signals arriving at a linear array of 16 sensors in a
noise-free environment is considered. The true DOA’s are
8, 13, 33, and 37°. The spectrum of the signals is flat with
40% relative bandwidth. The initial DOA’s are taken at 6.7,
10.5, 14.3, 31, 35, and 39°. The output of the sensors is
decomposed into 50 snapshots with each snapshot containing
64 samples. An FFT algorithm is used in each snapshot to
sample the frequency spectrum of the signals at 33 equispaced
points. We applied the CSM and TCT algorithms to obtain
the focusing matrices. The eigenvalues of the corresponding
matrices are tabulated in Table I. It is seen that Resyg has
nonzero eigenvalues in the noise subspace due to signal
diffusion. Since the focusing matrices T'; and U are unitary,
the trace of Rqpf Is equal to the trace of Rpc. This means
that the summation of eigenvalues in Table I is identical for
each matrix. This suggests that the energy of the signals after
focusing is identical for the two methods. However, the TCT
method condenses the total received energy in a ¢-dimensional
subspace and, hence, improves the performance.

VIL

One of the major motivations for introducing the TCT
algorithm is to reduce the asymptotic bias of the peaks in CSM.
It is important to note that the MUSIC algorithm is intrinsically

THE BIAS OF ESTIMATION

TABLE I
EIGENVALUES OF THE CORRELATION MATRICES Rgp AND RpeT FOR A
CONFIGURATION OF FOUR WIDEBAND SOURCES. THE SOURCES Have 40%
RELATIVE BANDWIDTH AND ARE ARRIVING FROM THE ANGLES '8, 13, 33, aND
37° AT A LINEAR ARRAY QOF 16 SENSORS IN A NOISE-FREE ENVIRONMENT,

eigenvalues Rcsy  Rrer
A 900.27 918.76
Ao 806.70 808.09
A3 241.68 244.14
A4 155.39 140.99
Ag 4.39 0.00
A6 1.35 0.00
A7 0.40 0.00
As 0.34 0.00
Ag 0.31 0.00
Ao 0.27 0.00
An 0.22 0.00
A2 0.19 0.00
A3 0.15 0.00
Ald 0.12 0.00
A5 0.09 0.00
A1 0.07 0.00

unbiased. The bias in CSM is introduced by focusing. This
implies that one can reduce the bias of estimation with a
proper selection of the focusing method. In the sequel, we
will discuss this issue and show that TCT can asymptotically
generate an unbiased estimate of the DOA’s. We will also
generalize the work of Swingler and Krolik [13]. They showed
that for a single-source scenario. it is possible to have an
unbiased estimate, provided that the focusing frequency is
chosen at the centroid of the source spectrum. Here, we
show that for a multisource case, the bias is eliminated if the
focusing correlation matrix for the true value of the DOA’s is
the average of the transformed correlation matrices. Since the
bias of estimation is independent of the noise, in the rest of
this section a noise-free environment is considered.

The noise-free universal focused correlation matrix is shown
as

J
1 H
R==) WP W]

J=1

(49)

where W is the focusing matrix for the jth frequency bin.
A sufficient condition for unbiased estimation is given by the
following lemma.

Lemma 2: Any focusing method that satisfies

J
aal ]
AnSody = 5> W,P,W]

i=1

(50)

where Sy is a nonsingular, Hermitian, positive-definite matrix,
and Aq is the true location matrix at the focusing frequency,
produces an unbiased estimate of the DOA's.

Proof: Since Sy is nonsingular,
Span{Ay} = Span{V} (51)

where V is the matrix of the ¢ largest eigenvectors of R.
The MUSIC estimator intersects the subspace spanned by the
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¢ largest eigenvectors of the correlation matrix with the array
manifold. Therefore. if (50) is satisfied, the estimation will be
unbiased. d

It is important to notice that (50) is a general condition for
unbiased estimation regardless of the method that has been
applied for focusing. In [13], Swingler and Krolik showed
that for a single source scenario, an unbiased estimation of
the DOA is possible if the centroid of the frequency spectrum
is chosen as the focusing frequency. Lemma 2 shows that in
a multisource case, the focusing correlation matrix should be
the average of the focused correlation matrices for unbiased
estimation.

For further discussion of the bias generating mechanism,
we consider the special case of perfect focusing. In perfect
focusing, the transformed correlation matrices U/ ; A; are super-
imposed on Ay. In such a case, the focusing correlation matrix
is an average of the correlation matrices at the frequency bins,
and the following equality is satisfied:

J
1
A8 Al = 7ZU.,A.,S‘,A5’[ v (52)

J=1

As noted earlier, for any éi estimated by the preprocessing
step, two more focusing angles are added in the vicinity of 4;.
These angles determine an interval on the array manifold. If
this interval is small compared with the curvature of the array
manifold at all the points in that interval, it is transferred to a
corresponding interval on the array manifold at the focusing
frequency fp. This is a consequence of the continuity of the
array manifold and the unitary transformation. Thus, in perfect
focusing. the location vectors of each frequency bin that are
located at the true DOA are transferred to the corresponding
vectors at the focusing manifold. It is seen that in such a case,
the estimation of DOA can be unbiased.

In practice, perfect focusing is not possible. The transformed
matrices are clustered around A,. However, as far as the
equality (50) is satisfied for the true DOA., estimation could be
unbiased. It is straightforward to show that the TCT algorithm
forms a very good approximation of (50). Taking the gradient
of (31) with respect to Py and equating to zero proves that
the minimum of (31) is achieved if and only if Py is the
average of the matrices UJ'PJUfI._/ = L......J. The TCT
algorithm is based on the minimization of (31), which means
that it places the focusing correlation matrix at the average
of the matrices U.,PJ-U{{._/' =1...... J. However, because of
unknown DOA’s and structural constraints on the correlation
matrix, it is not possible to satisfy (5() with equality. The
TCT algorithm provides a close approximation to (50). which
explains its capability to provide asymptotically unbiased
estimates.

VIII. THE EFFECT OF NOISE ON ESTIMATION

It is possible to show that the sample correlation matrices
of the two methods (CSM and TCT) are Wishart distributed
[14] with JN degrees of freedom with the correlation matrices
Rcsn and Rrer, respectively. However, simply considering
the degrees of freedom is not sufficient for comparison since

any transformation of the signal subspaces results in a Wishart
distributed correlation matrix with JN degrees of freedom.
The important factor is how the transformed observation
vectors are distributed in the p-dimensional subspace. In this
section, we will show that the variance of the noise is smaller
for TCT, which results in a better estimate of the DOA’s.
The observation can be considered to be a p-dimensional
signal vector in the g-dimensional signal subspace perturbed
by a p-dimensional noise vector. It is important to note that
the noise component in the signal subspace has no effect in
the estimation process since the MUSIC algorithm estimates
the DOA’s by intersecting the signal subspace with the array
manifold. In other words, if the noise is restricted to the
signal subspace, there will be no error in the estimation.
However, the power of the noise in the noise subspace is very
important in introducing error in the estimation. The effect
of the orthogonal noise can be discussed based on the theory
of generalized variance [14]. The generalized variance of a
multivariate random vector is defined as the determinant of
the correlation matrix. The generalized variance is a metric
for the spread of the observation and is equal to the sum of
squares of the volumes of all different parallelotopes formed
by using any p observation vectors as the principal edges [14].
In a noise-free environment, the observation vectors are
constrained to the signal subspace. and all the parallelotopes
have zero volume in the p-dimensional observation space.
Thus, the generalized variance in such a case is zero. This
is the key point to the estimation of the DOA’s without error.
When the noise is introduced in the svstem, the observation
vectors are expanded into the noise subspace. Extension of
the signal vectors into the noise subspace results in a nonzero
volume and, hence, a nonzero generalized variance. Thus, for
a noisy environment, the estimation of the DOA’s is usually
yielded with error. The smaller the volume of the observation
vectors, the better the estimate of the DOA‘s. Therefore.
a small generalized variance results in a small variance of
estimation. In what follows, we show that the generalized
variance of the TCT algorithm is smaller than that for CSM.
Consider the following maximization problem:

s.t. tri8 = constant
R>0

max (R

(53)

where | - | stands for the determinant of a matrix, and R > 0
neans that the matrix is positive definite. It is known that the
maximum of |R| is obtained if all the eigenvalues are equal.
The maximum corresponds to an equilibrium point where the
energy is equally distributed in all dimensions. Assume that
the eigenvalues are components of a vector. The vector of the
eigenvalues that satisfy the constraints of (53) are located in
a portion of a hyperplane that is cut by the positive quadrant.
The equilibrium point that is the solution of (53) is at the
centroid of this region. The maximization (53) is a convex
problem. Thus, the farther we are from the equilibrium point,
the smaller |R} will be.

Now, we compare the determinant of Resn and Rrer.
Note that both Rcsy and Ryt are positive definite matrices
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with the trace given by

J
1 N
ITRCSM = trRtcT = j E ter

=1

(54)

which is a constant independent of the focusing method. Thus,
they satisfy the constraints of (53). Note that requiring the
trace to be constant assures that the energy is not lost during
the focusing process. We have shown in Section VI that in
the CSM algorithm, the signal energy is extended into the
noise subspace. In other words, the eigenvalues of RycT
in the noise subspace are smaller than the eigenvalues of
the Rogp. whereas the sum of eigenvalues for the two
methods are equal. Thus, the vector of eigenvalues for the
TCT algorithm is farther from the equilibrium point in the
maximization (53) than that for CSM. This means that the
universal focused correlation matrix of the TCT algorithm
has smaller determinant or generalized variance. The smaller
generalized variance of the TCT algorithm results in a smaller
variance in the estimation of the DOA’s.

IX. PERFORMANCE COMPARISON

Recently, Doron and Weiss [15] introduced a method for
wide-band array processing using signal subspace transforma-
tion (SST). The focusing matrix in their method is found from
minimization of HA()D()A{J{—TJAijAf{]'f|l, where Dy and
D; are any Hermitian positive definite matrices. They used
identity matrices for Dy and D; in their simulation. The results
of the simulation shows that the method is biased. There are
two major differences between the TCT and SST algorithms.
First, in TCT, the average of the estimated source correlation
matrices at the frequency bins is chosen as the focusing
source correlation matrix in place of Dy. Second, instead of
A_,D,-AJH. the estimated noise-free correlation matrices P; are
used for focusing matrix determination. Note that in A;D; Al
the estinated DOA’« are utilized; however, for P;, the true
DOA'’s are implicitly used.

There is also a difference between the model equations of
the CSM and TCT algorithms. In CSM, the focusing model
equations are T;A; = Ag. The solution to this equation is
not unique and might be singular. It has been shown [7] that
from an estimation point of view, unitary transformations of
signal subspaces are the most effective focusing methods for
direction finding. In contrast, in TCT, the model equations are
U;P,UY = Py, where P, = R; — 621, and Py = A¢SoA].
with Sy given by (30). Note that the noise-free correlation
matrix P; is directly estimated from the data. and the pre-
estimate of the DOA’s is not used in its determination.

A. Simulation Results

Here, we present the simulation results for two DOA estima-
tion scenarios. In the first example, a configuration with two
sources is considered. For this example, we have compared
the bias, the resolution threshold, and the spatial spectrum of
the MUSIC algorithm of the two methods (CSM and TCT).
The second example is a multigroup DOA estimation problem
with the angles taken from [7]. We have found the bias of

TABLE II
ESTIMATION RESULTS FOR THE FIRST EXAMPLE
BW = 0.4 CSM TCT
fo 11 13 bias 11 13 bias
0.8 1189 1213 124  11.00 13.00 0.00
0.9 1125 12.75 0.35  11.00 13.00 0.0
1.0 11.01 1299 0.01  11.00 13.00 0.00
1.1 10.88 13.12 0.17  11.00 13.00 0.00
1.2 1078 13.22 0.31  11.00 13.00 0.00
BW = 1.0 CSM TCT
fo 11 13 bias 11 13 bias
0.8 - 1201 - 11.01 1299 0.01
0.9 1142 1258 059 1100 13.00 0.00
1.0 11.12 12.88 0.7  11.00 13.00 0.00
1.1 1095 13.05 0.07  11.00 13.00 0.00
12 10.84 13.16 023  '11.00 13.00 0.00

the estimation of the CSM and TCT algorithms and compared
them. We have also shown that the TCT algorithm can locate
coherent sources,

Two Sources: In the first example, we investigate a config-
uration with two equipower uncorrelated sources impinging
from the angles 11 and 13° off broadside. The SNR is 10 dB.
A linear array of eight sensors is used. The spacing between
adjacent sensors is equal to half the wavelength at the center
frequency. An ordinary beamformer gives a peak at 12°. Two
extra focusing points are added at 9 and 15°. Sources are
sampled with 33 frequency bins in the frequency domain. We
imported the actual correlation matrix to the CSM and TCT
algorithms and used the high-resolution MUSIC algorithm for
DOA estimation. The results of the estimation for 40 and 100%
bandwidth and for different focusing frequencies are given in
Table II. The bias columns in this table are the Euclidean norm
of the bias vectors, TCT does not have bias regardless of the
bandwidth of processing.

For this example, we investigate the threshold SNR for the
two methods. The output of each sensor is separated into
50 snapshots of 16 samples each. Then, an FFT algorithm
is applied in each snapshot to sample the spectrum of the
observation at nine points. To find the resolution threshold,
100 independent trials of the same scenario were run for
each SNR. The number of times each algorithm resolved the
sources was counted to estimate the probability of resolution.
The sources were assumed to be resolved when two peaks in
the spatial spectrum of the MUSIC algorithm were observed.
Fig. | shows the probability of the resolution for the two
methods. Two versions of the CSM algorithm are used here.
By UCSM and DCSM, we mean unitary and diagonal versions
of the CSM algorithm, respectively. For DCSM, the focusing
angle is chosen at 12°. It is seen that TCT has a lower SNR
threshold compared with the UCSM and DCSM algorithms.

We also examine the resolution capability of the two algo-
rithms. We increase the number of sensors to 16 and consider
a 40% relative bandwidth. It is assumed that only 20 snapshots
of data are available. Again, at each snapshot, a 64-point DFT
is applied to obtain 33 frequency samples in the frequency
domain. The resolution criterion is defined as the difference



VALAEE AND KABAL: WIDEBAND ARRAY PROCESSING USING A CORRELATION TRANSFORMATION

169

TABLE III
ESTIMATION RESULTS FOR THE SECOND ExampLE. THt: BLANK ENTRIES MEAN THAT CSM Dip Not REsoivE THE DOA,
BwW=0.4 CSM TCT
fo 8 13 33 37 bias 8 13 33 37  Dbias
0.8 - 11.75 34.25 = 8.03 13.03 3298 36.98 0.05
0.9 8.42 1255 33.90 - - 8.01 13.01 3298 36.98 0.03
1.0 8.07 13.01 3312 36.82 0.23 8.02 13.02 3297 36.97 0.05
1.1 7.87 13.21 32.53 37.35 0.64 8.07 13.06 32.92 3691 0.15
1.2 7.72 13.20 32.22 3766 1.10 8.17 13.13 32.83 36.81 0.33
Bw=1.0 CSM TCT
fo 8 13 33 37 bias 8 13 33 37 bias
0.8 - 11.17 34.22 - - 8.04 13.08 32.86 36.88 0.20
0.9 - 11.85 33.88 - - 8.07 13.09 32.88 36.89 0.20
1.0 8.25 12.53 33.58 - - 8.10 13.10 32.87 36.87 0.23
1.1 7.98 12.93 33.21 36.97 0.22 8.15 13.13 32.85 36.85 0.29
1.2 7.85 13.13 32.78 37.44 0.53 8.22 13.19 32.72 36.71 0.50
TABLE 1V
ESTIMATION RESULTS FOR THE SECOND EXAMPLE AFTER Two ITERATIONS
BwW=04 CSM TCT
fo 8 13 33 37 bias 8 13 33 37 bias
0.8 8.04 12.99 33.03 36.90 0.11 8.00 13.00 33.00 37.00 0.00
0.9 8.02 12.99 33.03 36.95 0.06 8.00 13.00 33.00 37.00 0.00
1.0 7.99 1299 33.04 37.03 0.05 8.00 13.00 33.00 37.00 0.00
1.1 7.99 13.01 3298 37.03 0.04 8.00 13.00 33.00 37.00 0.00
1.2 7.98 13.03 32.94 37.03 0.08 8.00 13.00 33.00 37.00 0.00
11
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Fig. 2. Resolution comparison between the two algorithms (TCT and CSM).

Fig. 1. Probability of resolution for two closely separated sources using the
TCT and CSM algorithms.

between the average of the spatial spectrum at the peak points
in the MUSIC algorithm and the spatial spectrum in the
valley [16]. It is measured on a decibel scale for different
SNR’s. The results are given in Fig. 2. As it is seen. the
performance of TCT is about 6 dB better than that for CSM.
The spatial spectra of the two methods are overlapped in Fig. 3
for comparison.

Four Sources: For the second configuration we investigate
Example | in [7]. The same array has been used to estimate the
DOA of four equipower uncorrelated sources impinging from
8. 13, 33 and 37°. The bandwidth of the sources is equal to 40
and 100% of the center frequency in two different trials. The

focusing angles are given by 6.7, 10.5, 14.3, 31, 35, and 39°.
The true cross correlation matrices are used for estimation.
Table III presents the results of estimation for this example.
Although TCT performs better, it is not unbiased. To improve
rhe resolution and reduce or eliminate the bias, we can iterate
the algorithm. We consider an array of 16 sensors with the
same four signals as the second example. Application of the
TCT method gives the estimates of the DOA’s at 7.94, 13.03.
33.09 and 37.08°. We use the following focusing angles: 7,
7.94,9, 12, 13.03, 14, 32, 33.09, 34, 36, 37.08. and 38°. The
results for the two methods are given in Table IV. As it'is
seen, the TCT algorithm outperforms CSM and removes the
bias of the estimation, In general, to climinate the bias, this
procedure must be iterated several times.
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Fig. 3. MUSIC spatial spectrum for the two methods (TCT and CSM).
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Fig. 4. MUSIC spatial spectrum for four sources at 8, 13, 33, and 37°. The
source at 13° is a delayed version of the source at 8°.

We also investigate the capability of the TCT algorithm
to resolve coherent sources. In Fig. 4, the MUSIC spatial
spectrum for the coherent source scenario at 10 dB SNR is
depicted. It is assumed that the source at 13° is a delayed
version of the source at 8° with a one sampling time delay. As
it is seen, the TCT algorithm resolves all the sources including
the coherent ones.

To study the performance of the TCT algorithm for alimited
number of observations, the same four sources are received
by a linear array of 16 sensors. The observation interval
is decomposed into 40 snapshots with each containing 32
samples. The focusing angles are taken at 6.7, 10.5, 14.3, 31,
35, and 39°. The SNR is varied, and the bias and the variance
are averaged over 100 independent trials. In Figs. 5 and 6,
the norm of the bias and the variance vectors for the two
methods are compared. These examples show that the TCT
algorithm has smaller bias and variance for a limited number
of observations.

X. SUMMARY

In this paper, we have introduced a new method for local-
ization of broadband signals using an array of sensers. Our
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Fig. 5. Norm of the averaged bias vector for limited number of observations
(40 snapshots of 32 samples) versus SNR for a configuration with four
uncorrelated sources.
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Fig. 6. Norm of the averaged variance vector for limited number of obser-
vations (40 snapshots of 32 samples) versus SNR for a configuration with
four uncorrelaled sources.

method is based on the two-sided unitary transformation of
the correlation matrices, The motivation for this work was to
reduce the error of the subspace fitting and to remove the
asymptotic bias of estimation that is involved in the CSM
algorithm. The bias of estimation in CSM is a function of
the focusing points and the bandwidth of processing. We have
shown that the noise-free universal focused sample correlation
matrix has nonzero eigenvalues in the noise subspace. This
nonuniform expansion of the source energy into the noise
subspace acts as a colored noise with an unknown correlation
matrix. Since the form of the signal extension is unknown,
the estimation will be biased in general. We have shown that
the TCT algorithm does not suffer from this shortcoming.
The noise-free universal focused correlation matrix of the
TCT algorithm has ¢ nonzero eigenvalues, and its columns
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span a g-dimensional subspace regardless of the processing
bandwidth. With iterative use of the TCT algorithm, it is
possible to coincide this g-dimensional subspace with the true
signal subspace; hence, there is unbiased estimation. We have
also shown that the generalized variance of the TCT algorithm
is smaller than its counterpart for CSM. Thus, in a noisy
situation. TCT can generate estimates of the DOA’s with a
smaller variance.

APPENDIX A
SINGULAR VALUES OF A MATRIX PRODUCT

In this Appendix. we prove Lemma 1. We start by intro-
ducing a lemma from [8].

Lemma Al: Let A.B € M,,,, (an n x n matrix), and
¢ = min{m,n}. Denote by o,(A).o;(B) and o (ABHY,
i =1,...,q. the nonzero singular values of the corresponding
matrices arranged in nonincreasing order. Then, for U €
M, xm. V € M, ., being unitary

]
T HpHirHY _ . _
IIIJlfi\)/({RtrAV B7U"} = E ai(A)oi(B).

i=1

(A1)

We use Lemma A.1 to prove Lemma 1. Suppose that the
singular value decomposition of the matrices A and B are
given by

A=EAF". (A.2)
B=XAY" (A3)
Then
4
> o(AB¥) = % w(ABT)
i=1
=R u(A FEYAXEE). (A4
Define
V=Y"F (A.5)
U=EfX. (A.6)
Hence
9
> oi(ABY) = R u(A VI AU (A7)

=1

Using Lemma A.l, the maximum of the right-hand side of
(A.7) is given by the multiplication of the singular values of
the diagonal matrices A, and A;. Thus, we have

Y 4
> 0(ABY) <Y ai(A)ai(B) (A8)

i=]

and the proof is complete.

APPENDIX B
MINIMIZATION OF THE SUBSPACE FITTING ERROR

In this Appendix, we prove Theorem 1. The error of the
two-sided unitary transformation is given by

E=||A-UBVH|?

= |A|]* + |B|]* - 2R w(AVBHUHY.  B.1)

Minimization of (B.1) with respect to the choice of U and V
is identical to maximization of

wax R r(AVBHEUH) (B.2)
uv

subject to V and U being unitary transformations. From
Lemma A.l, it is seen that the maximum value of (B.2)
is given by > ¢;(A)r;(B). Let us represent the singular
value decomposition of the two matrices A and B by

A=EAFH. (B.3)
B=XAY"H. (B.4)
Then, it is straightforward to see that with
U=EXx" (B.5)
VvV =FY¥® (B.6)

the maximum is achieved. This completes the proof.
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