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Parametric  Localization of Di&ributed 'Sources 
Shahrokh V a l e ,  Benoit Champagne, Member, MEE, and Peter Kabal, Member, ZEEE 

Abstmet-ost  array pmcsssing  algorithms  are  based on the 
assumption that  the signals are generated  by  point munxs. 
Tbis is a  mathematical constraint that is not sattpeed in mnny 
applications In thh paper,  we  consider  situations  where  the 
sources are distributed  in space with  a  parametric angular c m -  
correlation kernel.  We propose an algorithm  that estimates the 
parameters of thh model using a  generalization of the  MUSIC 
algorithm.  The  method  involves maxhizhg a  cost f'unction that 
depends on a  matrix array manifold  and the noise eigenvectors. 
We study two particular cases: coherent and incoherent spatial 
source  distributions.  The  spatlal  correlation fhction for a mi- 
formly W b u t e d  signal is derived. From thls, we  find the array 
gain and show  that (in contrast to point sources) it  does  not 
increase linearly with  the number of  sources. We compare our 
method to the  conventional  (point  source)  MUSIC algorithm. 
The  simulation studies show that  the  new  method outperforms 
the  MUSIC algorithm by  reducing  the  estimation  bias and the 
standard  deviation  for  scenarios  with  distributed SOUCC~S. It is 
also shown that  the  threshold signal-to-noise ratio required for 
m l v i s g  two closely  spaced distributed sources is considerably 
smaller for the  new  method. 

I. INTRODUCTION 

I N ARRAY processing it is frequently  assumed  that  the 
signals of interest  are  generated by far-field  point  sources. 

Many  practical  examples  can  be  found  where  the  point  source 
assumption  does  not hold. For instance,  in  an  undersea  echo 
beam  sounder,  penetration of the  transmitted  pulse  into the 
seabed  and  scattering  on  the  lower  layers  creates a spatial 
distribution of energy at the  receiving  array  that is equivalent 
to a superposition of plane  waves  originating  from a con- 
tinuum of directions [l]. Such  apparent  distributed  sources 
also  appear  in  the  application of  a microphone  array  to 
the  localization of acoustic  sources  in a highly  reverberant 
mom [2]. In tropospheric or ionospheric  propagation of radio 
waves,  scattering  causes  the  receiver to see a distributed 
source [3]. Also, low-elevation  radio  links  are  subject to 
ground  reflections  resulting  in  distributed  signal  components 
[4]. Similarly,  multipath  propagation  in  indoor  mobile  radio 
communications  affects  the  observed  signal  spatial  distribution 
[SI. Depending  on  the  nature of the  reflection and scattering  in 
the  above  examples,  signal  components  arriving  from  different 
directions  exhibit  varying  degrees of correlation,  ranging  from 
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totally uncorrelated  (incoherent) to fully  correlated (Coherent) 

For narrowband  point-source  configurations,  the  dimension 
of the  signal  subspace  (defined as the  span of the  corre- 
lation matrix in a noise-free  environment)  is equal to the 
number of noncoherent  signals.  Thus,  each  source has a 1- 
D representation  in  the  signal  subspace. A distributed  source 
can be viewed as a combination of a multitude of closely 
spaced  point  sources. If the  point  sources  are  treated as 
being  independent,  the  corresponding  location  matrix  spans  the 
whole  space  and  the  noise  subspace is empty. This explains 
why conventional  array  processing  techniques  such as MUSIC 
[6] and ESPRlT [7], which  are  based  on  the  signal  and  noise 
subspace  decomposition  for  point  source  scenarios,  often  lead 
to erroneous  results  when  directly  applied to distributed  source 
localization [ 11. 

Despite its importance,  the  literature  on  distributed  source 
localization is sparse. Jht t i  [l] models a distributed  source 
with a finite number of point  sources.  Then,  he  uses  the 
traditional MUSIC or ESPRIT algorithms  to  localize  those 
point  sources.  The  drawback  is  that for unique  localization,  the 
maximum  number  of  point  sources  should be upper bounded 
by the  number of sensors [SI. Moreover,  it  is  not  clear 
how  the  point  source  location  estimates  can be used to infer 
about  the  spatial  distribution of an  extended  source. In [9], 
a maximum  likelihood (ML) approach to distributed  source 
localization  has  been  considered.  The  likelihood  function 
is jointly  maximized  for all parameters of  a  model with 
Gaussian  source  distribution.  The  complexity of this method 
grows  exponentially  with the number of unknown  parameters. 
A discrete  modeling  approach  has  been  taken  in [lo] for 
nonoverlapping  sources.  There,  each  distributed  source  is 
modeled by  a number of point  sources (150-2oO is  suggested) 
resulting  in  an array of the  same  dimensionality. To circumvent 
the  problem of unique  localization,  it is assumed  that  the 
parameterized  shape of the  distribution  is  known. 

In this paper, we describe a  new high-resolution  technique 
for  the  localization  of  distributed  narrowband  sources,  which 
was  first proposed  in [ll]. The  method is computationally 
efficient and does not rely  on a decomposition of distributed 
sources  into  clusters of closely  spaced  point  sources.  In our 
approach,  the  spatial  correlation of the  distributed  signal  is 
assumed  to  belong to a class of positive-definite  functions, 
each  function  being  uniquely  characterized by a parame- 
ter vector.  Under this assumption,  the  localization  problem 
reduces to one of parameter  estimation.  The  noise-free  obser- 
vation  vector is modeled as the  image of the  source  signal 
through a linear  operator.  The  adjoint of this operator is 
used  to  transform  properly  defined  noise  eigenvectors  into 
an  appropriate  source  subspace.  The  parameter  vector is then 

cases. 
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estimated by minimizing  a  certain norm of the transformed 
noise  eigenvectors.  The  proposed  localization  method is based 
on  a  generalization of the  MUSIC  algorithm and is applicable 
to  distributed  sources with a  wide  range of spatial  correlation 
structures. In the  paper, we specialize  the new method  to 
two  particular  types of distributed  sources, namely: coherently 
distributed ( C D )  and incoherently  distributed (ID) sources.  For 
a CD source,  the  signal  components  arriving  from  different  an- 
gles within the  extension  width  are  coherent  (fully  correlated). 
For an ID source,  these  components  are  uncorrelated. 

The new method has  been simulated  and  compared  to 
the  conventional  MUSIC  algorithm.  The  results show a  dra- 
matic improvement in performance  for  the new algorithm 
for  distributed  sources. In particular,  the new  method has 
a  smaller  variance  and,  unlike  MUSIC, it is  asymptotically 
unbiased.  The  threshold  signal-to-noise  ratio (SNR) required 
for  resolving two closely  spaced  distributed  sources is also 
considerably  smaller.  Furthermore,  the new  method  has the 
advantage of providing  information  about  the  spatial  extension 
of the sources. 

The  paper is organized  as  follows. In  the following  section, 
we formulate  the  problem and classify  the  distributed  sources 
in terms of their spatial  correlation  functions. In Section 111, 
we develop the  new parameter  estimation  technique  for  the 
localization of distributed  sources.  This is specialized  to  the 
cases of CD and ID sources. In Section IV, we  study the 
shortcomings of the  conventional  beamforming  techniques 
when applied  to  distributed  sources. In particular, we  show 
that the  array  gain is bounded and cannot  increase  linearly 
with  the  number  of sensors.  The  computer  simulations  are 
presented  in  Section V. Section VI summarizes  our  findings. 

11. MODELS FOR SPATIALLY DISTRIBUTED SOURCES 

Consider an array  of p sensors  monitoring  a wave  field 
of q spatially  distributed  narrowband  sources in additive 
background  noise.  For  simplicity, it is assumed  that the sensors 
and  the sources  are in  the same  plane.  However,  the method 
can be easily  extended  to  the 3-D case.  The  complex  envelope 
representation of the array output  observation  vector  can be 
given by 

where a(0) is the p x 1 location  vector of the  array, ~ % ( 0 : $ ~ )  
is  the angular signal density of the ith source  in  the  direction 
0 E [ -~ /2%7r/2] ;$ , ,  is the unknown  parameter  vector, and n 
is the p x 1 additive  noise  vector. 

The  integral in (1) is  the  response of  the  array to  a  linear 
superposition of wavefronts  associated to a  continuum of 
directions 0. The nature of these  wavefronts  (planar,  circular, 
etc.) is dictated by the choice of  the location  vector a(0). 
For  example,  to  obtain  a  plane wave decomposition,  one  must 
use location  vectors a(0) corresponding to planar  wavefronts. 
Examples of the  parameter  vector $i are  the  two  limits  of 
the direction-of-arrival  (DOA)  for  a  uniform  spatial  extension, 
or the  angle of maximum  power and the -3 dB  extension 
width for  a  bell-shaped  distribution.  Fig. 1 depicts two bell- 
shape  distributed  sources  located at  the angles 01 and 0 2  with 

Fig. 1. Two bell-shape distributed  sources  with  spatial  overlap  located at the 
angles 81 and 6’2 with  the -3  dB extension  widths 31 and A2. 

the -3 dB extension  widths AI and A2. For this example, 
the  parameter  vectors  are = (01, A I )  and $2 = (e,? Az). 
Note  that spatial  overlap of the  signals is allowed. 

Modeling  the  angular  signal  densities s ; ( B :  $,) as random 
variables  (for all 0) and  the noise n as  a  random  vector,  and 
assuming  that  the  signal and  the noise  are  uncorrelated,  the 
correlation  matrix of the  observation  vector x is given by 

R, = E ( x x H )  
= R,($) + R, ( 2 )  

where E ( . )  denotes statistical expectation,  the  superscript H 
represents  Hermitian  transposition, R,($) is the noise-free 
correlation  matrix, and R, is  the  noise  correlation  matrix. In 
(Z), the  noise-free  correlation  matrix is given by 

where 

p l j ( O . O ’ : $ i . $ j )  = E [ s ~ ( S : $ , ) S , * ( ~ ” ; $ , ~ ) ]  (4) 

and * represents  the  complex  conjugation. We call 
p I J  ( e ,  0‘; Qi, $ j )  the angular  cross-correlation kernel. 

If the  signals  from  different  sources  are  uncorrelated,  the 
angular  cross-correlation  kernel  simplifies  to 

p&O’:$ , .$J)  =pZ(e .e ’ :$ , i )  6i, (5 1 

p , ( 0 , 0 ‘ ; $ , )  = E[s;(s:$, i )S;(0’:$;)]  (6)  

where bii is  the Kronecker  delta and 

is the angular  auto-correlation  kernel for  source 1:. The  noise- 
free  correlation  matrix (3) is  then given by 

. a(O)p,(0, B’;$,)aH(O’) d0 do’. (7) 

Below, we consider two particular  cases of  the angular  auto- 
correlation  kernel (5) which  are of practical interest. 

Case I-Coherently Distribufed Sources: A source is called 
coherently distribufed (CD) if the  received  signal  components 
from  that  source  at  different  angles  are  delayed and scaled 
replicas of the same signal. In such a  case,  the  angular  signal 
density  can be represented as 

s ( Q :  $ i )  = rd0: $ i )  (8) 

where rz is  a  random  variable  and g(0: $i) is  a  complex-valued 
deterministic  function  of 0 which  we call the deterministic 
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angular signal density. Note  that  a  CD  signal is decomposable 
into  random  and  deterministic  components.  The  deterministic 
component g(8;$i), which is parameterized by the  vector 
$i, characterizes  the  spatial  distribution of the  source,  and 
the  random  component yi reflects  the  temporal  behavior  of 
the  source. To motivate  the  CD  model,  consider  narrowband 
signal  wavefronts  reflected by an  object and observed by 
an array of sensors.  Under  stationary  conditions,  the  signal 
components  reflected  from  different  parts of the  object  differ 
by a  deterministic  phase  component  that  depends  on  the 
reflection  coefficients of the  surface  elements,  the  difference 
in  travel  times,  and  the  frequency of the  incident wave. Such 
a  reflector  can be modeled as a CD source  with  the  phase 
differences of the received  signal  components  modeled by 
a  deterministic  angular  signal  density g ( 8 ; $ i ) .  From (8), 
the  angular  auto-correlation  kernel  for  a  CD  signal  can be 
represented by 

p ( e ,  81; $) = vgw; $)g* (81: $) (9) 

with 

v = E[w*l. (10) 

Case II-Incoherently Distributed Signal: In some  applica- 
tions,  the  signal  rays  arriving  from  different  directions  can 
be assumed  uncorrelated. For example,  in  the  transmission  of 
the radio-waves  through  tropospheric  scatter  links,  the  signal 
rays  reflected  from  different  layers of the  troposphere  have 
uncorrelated  phases. A similar  effect  is  observed  when  the 
signal  rays  are  the  reflections  from  different  parts of a  rough 
surface.O The  angular  auto-correlation  kernel  for  such  a  case 
is written as 

p(0,Q’;  $1 = d e ;  $)qe  - 0’) (1 1) 

where p ( 8 ;  4)  is the  angular  power  density  of  the  source,  and 
b(8) is the  Dirac  delta  function.  A  distributed  source  with the 
angular  auto-correlation  kernel (1 1) is called  the incoherently 
distributed (ID) signal.  The  noise-free  array  correlation  matrix 
for  these  signals  is  shown as 

In practice,  an  intermediate  situation  might  occur  that  corre- 
sponds to a  partially  correlated  signal  where  the  rays of signal 
arriving  from  different  angles  are  partially  correlated. Partially 
correlated  signals  can  also be localized using the  same  method 
proposed  for  the ID signal. 

At this point, we  find it  convenient to summarize  the 
assumptions  about  signal  and  noise  that are used  throughout 
the  paper. 

(Al) The  sources  emit  narrowband  signals  and are located 
at the  far-field of the  array of sensors. 

(A2)  The  number of sources q is known. In this paper, we 
only  address  the  localization  problem. 

where h is the height of the roughness in the surface, 8 is the reflection angle 
OAccording to the Rayleigh criterion, a  surface is rough if h sin 8 > X/8. 

measured from the normal, and X is the wavelength of the reflected signal. 

(A3) For all i # j, and  for all 8 ,8 /  E [-7r/2,7r/2], s i ( 6 ;  $*) 
and s j  (8’; i b j )  are not  fully  correlated. 

(A4)  The  temporal  samples of the  angular  signal  density 
si(@, Jli) are  modeled as independent,  zero-mean,  complex 
random  variables. 
(AS) The  samples of the  complex  envelope of the noise 

are modeled as independent,  zero-mean,  complex  random 
variables  with  a  correlation  matrix a. In the  sequel,  we 
will  only  consider  spatially  white noise. If R, is known, 
generalization to the  nonwhite  case is straightforward. 

(A6)  The  signal  and  noise  are  uncorrelated from each  other. 
(A7) The angular  auto-correlation  kernel of the sources 

belongs to a known  family of positive  definite  functions 
p(8,O’; q!Ji). Here, it  is assumed that  the shape of the  function 
is known;  only  the  parameter  vector is unknown. 

In this paper,  the  main  objective  is to locate  distributed 
signals. The localization is done by estimating  the  unknown 
parameter  vectors $i of the  angular  auto-correlation  kernel 
p(f3,8’;q!Ji) of each  source. In the  following  section,  we 
propose  a  localization  technique  for CD and ID signals. 

III. LWALJZATION 
In this section,  we  propose  a  parametric  localization  tech- 

nique  for  distributed  sources which is based  on a priori 
knowledge  of  the  distribution of the  signals  (Assumption A7). 
Specifically,  it  is  assumed  that  the  angular  auto-correlation 
kernel  of  each  signal  belongs to a  parametric  class of functions. 
With this assumption,  the  localization  of  distributed  sources  is 
the  same as a  parameter  estimation  problem. We use  a  linear 
operator  formulation of array  processing  similar to that of 
[12] to generalize  the MUSIC algorithm  for  the  distributed 
source  model.  The  new  algorithm  trades off optimality and 
computational  complexity. 

A.  A  Generalization of the MUSIC Algorithm 
Let  us denoti by Lz[-n/2,7r/2] the  Hilbert  space of all 

complex-valued  square  integrable  functions  defined  over  the 
interval [-7r/2, ./a]. The  inner  product  and  the  norm  in this 
space  are  defined by 

n / 2  

-(./Z) 
(si,sj)c = 1 s : ( e ) s j ( e )  de (13) 

l lsillc = d- (14) 

where the subscript c refers  to the continuous  nature of the 
functions.  According to (l),, the  observation  vector x at  the 
array  output  can be expressed as 

4 
x = p i ( . ; $ i )  t n ( 1 5 )  

i=l 

where C is a  linear  operator  that  maps L z [ - 7 ~ / 2 ,  ~ / 2 ]  into a p  
dimensional  complex  observation  vector  space C p  according 
to 

13: L* [-7T/2: T / 2 ]  + cp (16) 

(17) 
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Fig. 2. Geometry of the linear operator and the  adjoint  operator. 

The inner product and the norm  in C P  are defined by 

( X i :  Xj)d = x:xj (18) 

I lXi l ld = JGzZl (19) 

where the subscript d indicates the discrete nature of the 
functions. 

By definition, the adjoint operator LC+: CP + L2[-7r/2, 
n/2] satisfies 

( L s :  X j d  = ( s ,  L+X), .  (20) 

For the linear operator (17), we have 

(CS.  X)d = [CS]HX 

= /" .s*(e)aH(e) do x 

= (s,aHx),. (21) 

T i 2  

. - ( X / Z )  

Thus, the adjoint is given by 

L+X = aH(0)x.  (22) 

As a starting point, we extend the definition of the signal and 
noise subspaces to distributed sources. Note that for a fixed 
parameter vector 1c,i. the angular signal density si(6'; $!) in 
(15) is a random process with respect to the DOA parameter 
6'. By the source subspace we  mean the linear span of all 
realizations of the random process si(O:$~],z = 1.. . .  ~ q .  
where the $a's  are fixed. This subspace is  shown  by S and 
is expressed as 

S = S p m  { , ~ ; ( 0 : $ ? ) :  i = 1, ' .  . . q.  and all realizations}. 

(23) 

For simplicity, we assume that the source subspace S is a 
closed subspace of L2[-7r/2, 7r/2]. However,  the theory can 
be generalized. The  range of the linear operator L under S is 
defined as the signal subspace and is represented by 

R = {Cs: all s E S } .  (24) 

The orthogonal complement  of R is defined as the noise 
subspace and  is denoted by Ri. It can  be shown that the range 
of the adjoint operator L+. when the domain  is restricted to the 
noise subspace 72.l. is included in the orthogonal complement 
of S represented by SI. Fig. 2 schematically depicts the 

The above concept of the signal and noise subspaces  can 
be reconciled with the conventional definitions for the point 
source case as follows  (we temporarily relax the assumption 
S E L2[-7r/2,7r/2]). The angular signal density of a point 
source at the DOA qZ can  be  shown as 

s;(0: 4j) = yis(e - &) (25) 

where y1 is the random  complex  envelope of the ith signal. 
According to (23), the source subspace for a point source 
scenario is given by 

S = Span{S(B - 41) , . . . .6(6'  - qq) } .  (26) 

Applying the linear operator L: to (26) gives the signal sub- 
space 

R = Span{a(djl), . . .a(&)} (27) 

which corresponds to the conventional definition of the signal 
subspace for point sources. 

We now  use the new definitions of  the signal and noise 
subspaces to interpret the conventional MUSIC algorithm for 
the point sources given in (26). Suppose we  know a basis for 
RL. say e; E R': i = 1.. . '  . p  - q .  Then 

L+e, = aH(6')ei E SI. i = l ! " . . p -  q .  (28) 

Since the back-transformed vector is in the orthogonal com- 
plement of S .  it  is orthogonal to any vector in S 

/" aH(6')ete*(6') d6' = 0 
n / 2  

. -(n/2) 
f o r a n y s ( B ) E S ,  and i = l , . . . . p - q  . 

(29) 

Using (26) we  have 

sni2 aH(6')ei6(6' - @ j ) d  0 = aH(q>j)e; = 0. 
-(mi?) 

f o r i = l  . . . . , p - q ,  ,j = 1  . . . . . q .  

(30) 

Defining E, = [e l ,  . . ep-q], we  have 

a (?;;j)En = 0. for j = 1.. ' .  ~ q .  

The MUSIC algorithm estimates the DOA's of multiple point 
sources by  maximizing the following "frequency detector" 
with respect to the DOA parameter 11: E +. where 0 is the 
parameter set 

H (31) 

(32) 

(33) 

We use the same approach to derive a MUSIC-type al- 
gorithm for the localization of distributed sources. For the 
moment assume that RI has dimension p - q and we  have a 
basis for Ri, say el .  . . . ~ ep-4r and let E, = [el .  . . ep-q] .  
Since ei's are in RL, their image  under L+ will be in SI. i.e. 

relationship between the linear  operators  and the subspaces. C+et = a*(B)ei E SI, i = 1,".  . p  - q. (34) 
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Thus,  for all s(8) E S we have 

/-::,) aH(8)E,s*(8) dB = 0. (35) 

In (23), the  source  subspace S was  defined as a span of the 
functions si(@;+,). Hence, (35) can  be  written as 

for all realizations of si ( B ;  Jfi), and for i = 1, . . . , q. Since 
si(& +i) is a random  function,  this  is  equivalent to 

Using (6), this equation  can be expressed as 

aH(B)E,p*(B,8’;+,)E,Ha(B’) dB dB’ = 0, 

i =  I . . .  > 4. (38) 

Following  the  approach of the  point  source  case  leading to 
(33), we propose  that  the  parameter  vector +i of the  distributed 
sources be estimated by locating  the  peaks of 

+ = arg rnax 
90 

(39) 

This  criterion  can  also  be  expressed  as 

where tr(.) stands  for  the  trace of a matrix and H(+) is the 
matrix  array  manifold  defined by 

m/2 TI2 

H(+) = 1,,,,, L,, a(B)p*(O, 8‘; +)aH(8’) dB dB’. 

(41) 

We call t h i s  method  the distributed  signalparameter  estimator 
(DSPE). To estimate  the  parameter  vector,  the  spectrum of the 
DSPE algorithm  should be searched  in  an  m-dimensional  grid 
for q prominent  local  maxima. 

If the  matrix  array  manifold is precisely  known,  the DSPE 
spectrum  can be computed  for all parameters  in  the  parameter 
space.  Note  that H(+) is independent of the  observation  and 
hence it can be evaluated  and  stored  prior to computation of 
the DSPE spectrum. We refer  to this step as the  calibration 
process. If the  location  vector a(8) is  known  for all 8, 
calibration  amounts to the  evaluation of H(+) for all y5 of 
interest. When  there  are  uncertainties  in  the  location  vector, 
the latter should be measured  experimentally.  Then,  the  matrix 
array  manifold  can be computed  using  the  measured  location 

vectors.  Note  that  the  calibration  should be implemented 
for  an  m-dimensional  set  where m is  the  dimension of the 
parameter  vector of the  angular  auto-correlation  kernel. This 
might be nontrivial if m is large. However,  for  small m,  the 
proposed  method  can be applied  with  modest  increase in the 
computational  complexity  compared to that  for  the MUSIC 
algorithm. 

B. The CD Source Localizer 
The  criterion (39) can be further  simplified  for CD sources. 

b(+) = /“” a(%(@;+) d@ (42) 

and let B(y5) be the  matrix of the  column  vectors, b(+i), i = 
1, . . . , q. The  correlation  matrix of the  array is then  given by 

R = B(+)I’BH(+) + a:I (43) 

where I’ is a correlation  matrix  with  the i j th component 
defined as E[?$], and 0; is  the  noise  variance. If the 
sources  are  uncorrelated  with  each  other, I’ will be diagonal. 
From (43), it is seen that  for CD signals  the  signal  subspace 
is spanned by the  eigenvectors of the  correlation  matrix 
corresponding to the q largest  eigenvalues.  Thus,  the  number 
of signals  can be estimated  as  the  rank of the  noise-free 
correlation matrix. The  localization  criterion (39) for CD 
sources  with  the  deterministic  angular  signal  density g(8;y5) 
is  given  by 

+ = arg rnax 

Let  us  define 

-(TI% 

+ 
TI2 I::,)/-w2) g*(8;+)aH(8)EnE,Ha(8’)g(t91;+) d8 dB‘ 

(44) 

which  is  found by using (9) in (39). With the  definition of 
b(dri) in (42), the  criterion (44) simplifies  to 

3 = arg rnax 
1 

+ IlbH(+)Enl12 
(45) 

which  is  similar  in  form  to (33). The difference is that  the 
array  manifold  for CD sources is the integral of the  location 
vector a(@) over 8, weighted by the  deterministic  angular 
signal  density g(B; +). To instrument  the  estimation,  the  array 
is calibrated with the new array  manifold which is shown by 
b(+) and the  results  are  saved  for later use. For  localization, 
a search  step  is  performed  on  an  m-dimensional  space to find 
the  maxima of (44). These  maxima  are  the  estimates of the 
signal  parameter  vectors. 

C. The ID Source Localizer 
For ID sources,  the  noise  subspace  is  generally  degenerate 

(i.e., equal to the zero vector) and the  whole  observation  space 
is  occupied by the  signal  components. In other  words, RB($) 
in (12) is  full  rank. In such a case, (39) cannot be directly 
used. However,  for  several  cases of practical interest, most of 
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the energy  of the  signal  is  concentrated in a few eigenvalues of 
the  array  correlation  matrix.  The  number of these  eigenvalues 
is referred  to  as  the effective dimension of the  signal  subspace 
and is shown by qe .  For  localization of ID  sources,  the  number 
of the signal  eigenvalues  in  the  DSPE  algorithm  should be 
chosen  equal  to or greater  than qe .  In what follows, we derive 
an analytical  expression  for  the  effective  dimension of the 
signal  subspace  for  a  single  uniform  ID  source.  A  similar 
approach  has  been  taken  in [l] .  The  study of a  uniformly 
distributed  source  gives  insight  into  the  ID  source  localization 
problem.  Later, we will  explain how the  DSPE  method  can be 
applied to nonuniform  kernels. 

Assume that  an  ID source with the  uniform  power  density 

is observed by a  continuous  linear  array.  That is, an observa- 
tion  is made at every  point z in the  interval [ - ( L / 2 ) !  ( L / 2 ) ]  
where L is the  array  length.  Using (12), it is possible  to show 
that for  a  single  uniform  ID  source, with a  small  extension 
width,  the  spatial  cross-correlation  function in a  noise-free 
environment is given by 

where X is the  wavelength, x(.) is  the output of the  array  at 
the point z ,  and sinc(z) = (sinca/.rrz). 

To find the  effective  dimension of  the signal  subspace, we 
need  to  perform an eigenvalue  analysis of (47) by solving 

$n(z’) dz’ = P n 4 n ( Z ) .  (48) 

The eigenfunctions & ( z )  are  the (modulated) angular  prolate 
spheroidal functions given by [ 131 

where c is  a  parameter defined as 

L 
c = TA-  COS 00. 

X 
The  eigenvalues p,, are  equal  to 

pn = 2[RC,)(c: 1)]* 

where RF,)(c: 1). n = 0.1 . . . . are the radial prolate  spheroi- 
dal functions [ 131. 

For  a fixed c the  radial  prolate  spheroidal  function RL)(c! 1) 
decreases  exponentially with n. From the tables of the  prolate 
spheroidal  functions [14], it can  be seen that  more than 95 
% of the  energy is concentrated in the first Tc1 eigenvalues, 
where re1 indicates the smallest  integer  larger  than c. The 
effective  dimension of the  signal  subspace ye is the  number 
of significant  eigenvalues in a  noise-free  environment,  which 
we  will take  to be q? = r.1. Once qe is selected,  the  DSPE 
algorithm  can be used to  localize  the  sources. 

In the  above  discussion, it was  assumed  that  the  source 
signal is observed by a  continuous  array  with  a  large  spatial 
aperture. In [15], the  concept of the  continuous  spheroidal 
wave functions has been  extended  to  discrete  case. It has  been 
shown  that  for  a  large  number  of  discrete  samples, the eigen- 
values of the  correlation  matrix of the  discrete  time  series  can 
be approximated by the  eigenvalues of the  continuous  cross- 
correlation  function (47). In our  application, if the  number of 
sensors  is  large, the eigenvalues of the  array  correlation  matrix 
are approximately  equal  to  the  values  given  in (51). 

From  the  above  discussion it is seen that  the  effective 
dimension of the  signal  subspace qe is directly  related  to  the 
parameter c (50). For  a  linear array  with a half wavelength 
spacing, c becomes 

c = -A(p - 1) COSSO. 
7T 

2 

In practice, if c is underestimated,  the  localization will  be 
erroneous  because  some of the  eigenvectors  contributing to the 
signal  subspace  are not  used in  the  localization  process. When 
c is overestimated, no great  loss of performance is observed. 
In such  a  case,  the  variance of the  estimates is slightly  reduced 
due  to  the  additional  noise  components  included in the  signal 
subspace. 

For nonuniform ID sources, an analytical  expression  for qe 
is not available in general.  However,  for  large  SNR, qe can be 
simply approximated as the  number of dominant  eigenvalues 
of the  array  correlation  matrix.  This  approximation  enables us 
to apply  the DSPE algorithm  to  the  localization of ID sources 
with arbitrary  distribution. Using (11) in (41), H($) simplifies 
to 

H(,$) = /=” a(S)p(O;$)aH(0) dB. (53) 
- ( r / Z j  

For  a  uniform  linear  array, H($) has  a  Hermitian  Toeplitz 
form. In  such a  case,  only p complex  numbers need to be 
computed  for  each  parameter  vector $. 

Finally, we  note  that for  partially  correlated  distributed 
signals (Le., neither  CD nor ID), the value of qp lies between 
q and Tc1. Using the  number of dominant  eigenvalues  as 
the  effective  dimension of the signal  subspace, the DSPE 
algorithm  can be applied  as well  to the  localization of partially 
correlated  distributed  sources. 

Iv. THE ARRAY GAIN 
Beamformers  improve  the array output  SNR by steering  a 

beam towards  the  direction of the signal.  Because of the  ease 
of implementation,  these  methods  are  practically  important. 
However, they have  relatively  low  resolution. In a  conven- 
tional  beamformer,  to  achieve  a high resolution,  a  large  number 
of sensors must  be used.  For  point  sources,  increasing  the 
number of sensors  improves  the  array  gain, defined as  the 
ratio of the  SNR at the array output  to  the SNR at a  single 
sensor [16]. Assuming  that  the  noise is spatially  white  and  that 
a conventional  beamformer  is  used,  the  array  gain is given by 

G, = - 
aH R,a 
aHa 
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0.9 '< 

laation of the second sensor (multiples of half waveiength) 

Fig. 3. Spatial  cross-correlation  for a uniform  CD  source  located at 10 ' with 
an extension width 4 O .  (The first sensor is placed at  the  phase reference pint.) 

where a is  the  location  vector of the  array  steered  towards  the 
direction  of  interest  and R, is the correlation  matrix of the 
array  output in a  noise-free  environment. 

Here,  we  show that  for  distributed  sources,  the  spatial 
correlation of the  signal is upper  bounded by an  exponentially 
decreasing  function.  Then, we derive  the  array  gain and show 
that it is bounded and does  not  increase  linearly  with  the 
number of sensors. 

A. The CD Source Case 
Assume  that the, array  output  can be observed  along  a 

continuous  linear  array. If the  observation at point z is  shown 
by x ( z ) ,  for  a CD source  in  a  noise-free  environment we have 

ej(2nz/x) sin 'yg(O;$) dB ( 5 5 )  

where y is a  zero-mean  complex  random  variable  and g(6'; $) 
is  the  deterministic  angular  signal  density.  Assuming  that  the 
source  is  uniformly  distributed by 

R / 2  
x ( 2 )  = 

L 2 )  

the  observation  vector  at  point z can be written  as 
BofA 

x ( z )  = - e j ( 2 a r / X )  sine dB. (57) 

For  a  small A ,  it is  straightforward  to  show  that 

From (58) we arrive at the  following result. 
Property I :  For a uniform CD source (with small  exten- 

sion), the spatial cross-correlation function at z1 and 22 in a 
noise-free environment is bounded by 

IE[+I)z*(zz)]I 5 Klz1zzl-l (59) 

where K is  a  positive  scalar. 
An example of the  correlation  between  two  points  on  a 

linear  array  for  a  uniform CD source is depicted in  Fig. 3. It 
is  assumed  that the first point is the  phase  reference of the 

number of sensors 
~ 

Fig. 4. Array gain  for a uniform  CD source for  different  extension  widths 
A in degrecs. 

, 
of the correlation  function  decreases  as  the  inverse of the ~ 

distance.  Thus, as the  aperture  length of the  array  increases, the 1 
correlation  between  far-end  sensors  decreases. In other  words, i 
the  signals  at widely separated  sensors  cannot be coherently 
added to increase  the SNR. This suggests  that  the  array  gain ~ 

does  not  increase  linearly  with  the  number of sensors. 
Consider  a  uniform  linear array with half the  wavelength 

spacing  between  sensors. At  the position of the Ith sensor (58) 
can  be  shown as 

: 
x, = yejal sin 00 sinc(lA cos 6'0). (60) 

Assuming  that  the  power of the  source is unity and 00 = 0, 
the  array  gain is given by 

2 

Note that  for  A = 0 the  array  gain is equal  to p which  is 
the gain of a  point  source  scenario.  For A > 0 and  large p ,  
the  sum  in (61) is approximated by 1/(2A) which  reveals 
that  the  array  gain  decreases  as l /p.  The  array  gain  for  a CD 
source as a  function of the  number of sensors p is illustrated 
in  Fig. 4. The  array  gain  has  a  maximum  that  depends  on 
the  extension  width.  Increasing  the  number of the  sensors 
beyond  the  maximum  point  decreases  the  array gain. We have 
found  that at the  maximum  point  the  array  length pmaX can 
be approximated  as 

where A' is the  extension  width  measured  in  degrees. 

G. The  ID  Source Case 
From (47) we can  easily  arrive at the  following result. 

Propem 2: For a uniform ID  source (with small exten- 
sion), the spatial  cross-correlation  function  at z1 and z2 in a 
noise-free environment  is bounded  by 

array.  The  second  point v k e s  along  the  array.  The  envelope where K is a positive  scalar. 
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Fig. 5 .  Array gain for a uniform ID source for different extension widths 
A in degrees. 

Since the spatial  correlation  function  decreases with dis- 
tance, the array  gain  cannot  increase  linearly with the  number 
of sensors. For a  uniform  linear array  with  half  the wavelength 
spacing  between  sensors,  the  spatial  cross-correlation  function 
between the  Ith  and the  kth  sensors is 

Assuming  that 6'0 = 0, the array  gain  is  given by 

Again, it is seen that  for A = 0 we get  the  same  result  as 
in  the point  source  case. With a  change of variable  the  array 
gain  can be represented  as 

The array gain  for  an  ID  source  is  depicted  in  Fig. 5 .  Note 
that in this case  increasing  the  number of sensors  does not 
decrease  the array gain.  That is because for uniform ID sources 
the  spatial  cross-correlation  function  depends  on  the  distance 
between  the two observation  points.  Although  increasing the 
number of sensors  decreases  the  correlation  between  far-end 
sensors, it cannot  reduce  the  array  gain  since  each pair of 
sensors with a fixed separation  have  the  same  correlation 
regardless of their  distance  from  the array reference  point. 
However, the  array gain  saturates  for  large p as depicted in 
Fig. 5 .  For a fixed extension  width,  the  maximum  array  gain 
for  the  uniform ID source is higher  than  that  for  the  uniform 
CD source. 

v. SMULATION RESULTS AND PERFORMANCE  COMPARISON 

A. CD Sources 

We investigate  a  configuration with  two equipower  uncor- 
related  narrowband CD sources  arriving at a  uniform  linear 
array of 20 sensors.  The  spacing between adjacent  sensors is 
equal to  half  the wavelength at  the operating  frequency.  The 

i 
Fig. 6. Probability of resolution for the conventional MUSIC and the DSPE 
versus SNR. 

deterministic  angular  signal  density of the ith source  is  given 
by 

where K,  is a  normalization  factor, Bi is the central  angle of 
arrival, and Ai is the -3 dB extension  width.  The  parameter 
vector  in this example is J l i  = (0 i .  Ai).  The  angular  auto- 
correlation  kernel  for  such  a  signal  density  is  given by 

which  has  a  Butterworth  form  and is proposed  in [17] as a 
model for noise sources. In our  simulations, 01 and 02  are 
taken  as 10 and 13' with  the  extension  widths AI = 1 and 
A2 = 2". It is seen that  the  sources have a  significant  overlap 
in space. 

A Monte-Carlo  simulation of 50 independent runs  with 50 
snapshots  for  each trial was  performed  for  different SNR's. 
The  resolution  performances of the  conventional  MUSIC and 
the  DSPE  are  compared in Fig. 6. For  the  conventional  MU- 
SIC algorithm,  the  two  signals  are  considered  to be resolved 
when two  peaks  are  observed  in the MUSIC  spectrum.  For 
the  DSPE  algorithm,  each  source is considered  detected if 
the  estimates of Bi and the  distribution widths At are within 
one  degree of  the true  values.  Note  that  these  definitions of 
detection  tend  to  favor  the  MUSIC  algorithm more  than the 
DSPE  estimator.  The  resolution  threshold  for  the  DSPE is 
about 15 dB  lower  than that  for the conventional  MUSIC 
algorithm. 

For this source  configuration, we have  found the bias and 
the standard  deviation of the estimates of the central  angle in 
the  MUSIC and the DSPE algorithms.  For  both  sources, the 
estimated  central DOA is biased in the  conventional MUSIC 
algorithm and  the bias  cannot be decreased by increasing the 
SNR  (see  Fig. 7 ) .  The DSPE algorithm  provides  a  smaller 
bias  in the DOA estimation.  Furthermore, the bias  can be 
reduced by increasing  the  SNR.  For both sources, the standard 
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Fig. 7. Bias of estimation  versus SNR for the  source at 13'. 

l o g  2 4 6 8 Ib 1'2 12 1'6 1'6 i0 
eigenvalue index 

Fig. 9. Eigenvalues of a configuration with two ID signals. 

SNR [dB) 

Fig. 8. Standard deviation  versus SNR for the source at 13'. 
Fig. 10. S p e c m  of the DSPE algorithm with  the  dimensionality of the 
effective signal  subspace  equal to four. 

deviation of the  DSPE  estimators is less than that for the 
MUSIC algorithm  (see  Fig. 8). 

B. ID Sources 
For the ID signal  scenario we examine a configuration  with 

two uniformly  distributed  sources  with  the  angular  power 
density 

i f \ 6 ' - 6 ' i l < A i ; i = l , 2  (69) 

arriving  at an array  of 20 sensors. In our  simulation,  the  central 
DOA's are  selected as 6'1 = 8 and 82 = 15' with  extension 
widths A, = 1 and A2 = 1.5", respectively.  The S N R  is 
30 dB and 100 snapshots  are  observed.  For a single  source 
with  three  degree  extension  width,  the  parameter c is smaller 
than 1.6. The  eigenvalues of the  sample  correlation matrix for 
this scenario  are  shown  in Fig. 9. It is  seen that the first four 
eigenvalues  dominate.  The  DSPE  algorithm  was  run for this 
example with 16 noise  eigenvectors.  The  DSPE  spectrum  is 
illustrated in Fig. 10. The two prominent peaks estimate  the 
central DOA's at 7.96 and 14.90' with  extension  widths 1.88 
and 2.80', respectively.  Note  that  when A = 0 the  DSPE 
algorithm  coincides  with the MUSIC algorithm.  The MUSIC 
spectrum  is the A = 0 case  in Fig. 10. 

To show that  higher  number of eigenvalues  can  also be used 
in the  DSPE  algorithm, we simulated  the  same  scenario  with 
five eigenvectors  assigned to the  effective  signal  subspace.  The 

0 otherwise 

Fig. 11. Spectrum of the DSPE algorithm with  the dimensionality of the 
effective signal  subspace equal to five. 

DSPE  spectrum is depicted in Fig. 11. It is seen  that the DSPE 
algorithm  can still be used to  locate  signals.  The  amplitude of 
the  spectrum  at  the  peak points is smaller  for this case. This 
results in a smaller  resolution  threshold. 

VI. SWY AND CONCLUSION 
In this paper, we have  discussed  the  problem of localizing 

spatially  distributed  sources. It has  been  assumed  that  the 
angular  auto-correlation  kernel of the source signals belongs 
to a parametric  class. We have  proposed a WSIC-type 
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distributed  signal  parameter  estimator  (DSPE) that is based 
on  minimizing  a  norm of the  transformed  noise  eigenvectors 
in the  source  subspace.  The  method  has  been  applied  to  two 
cases. First, we  used the  DSPE  algorithm  to  localize  coherently 
distributed  (CD)  signals. For the  coherent  distribution of 
signals we have  shown that the new method is similar  to 
the  MUSIC  algorithm with  an array  manifold  that is the 
integral of the  location  vector  weighted with the  angular  signal 
density. We have  also  considered  incoherently  distributed  (ID) 
signals.  For  these  signals, it has been  shown  that  the  effective 
dimension of the  signal  subspace is a  function of the  product 
of the  extension  width,  the array aperture,  wavelength, and the 
signal  location.  The  DSPE  algorithm is applied  to ID sources 
using  the effective  dimension of the  signal  subspace. 

Computer  simulations were run  to  compare  the new method 
and  the conventional  MUSIC  algorithm. It was shown that the 
resolution  threshold  for the  new method is lower than that  for 
the  MUSIC  algorithm. The DSPE algorithm has a  smaller  bias, 
and unlike  the  MUSIC  estimator,  the  bias can be reduced by 
increasing  the  SNR. It was  also  shown  that  the DSPE method 
provides  a  more  robust  estimation of the  parameter  vector by 
having  a  smaller  standard  deviation  compared  to  the  MUSIC 
algorithm. 

Future work can be in the  direction of avoiding  the  calibra- 
tion process by using an  ESPRIT-type method.  In the  ESPRIT 
algorithm it is assumed  that  the  signal  wave field is sampled 
with an may of perfectly  matched  doublets.  For  a  distributed 
source, we have  shown that the  spatial  correlation  function 
decreases  exponentially with distance.  This  fact  should be 
considered in deriving  an  ESPRIT-type  algorithm  for  the 
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